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Take home messages

� Disorders in systemic iron regulation or intestinal iron absorption can result in functional or absolute iron deficiency or iron overload.
� A generation of pharmaceuticals are now entering clinical trials aimed at manipulating systemic iron regulation to alleviate
pathologic iron loading or depletion.
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Introduction

Insights into mechanisms of iron absorption and systemic iron
handling have improved understanding of the pathophysiology of
a range of clinical conditions that cause iron deficiency (or iron
withholding from the plasma, ‘functional iron deficiency’) or iron
overload, and have led to rationally-designed novel therapeutics
that may transform management of iron withholding or overload
states, some of which are now entering clinical trials. Here, we
review recent advances in iron-related physiology, pathology and
pharmaceuticals.

Current state of the art
Mechanisms of iron uptake and distribution

To prevent iron deficiency and overload, iron utilization and
losses must be balanced by iron uptake (Fig. 1). Systemic iron
distribution is governed by the hepatic-derived hormone hepcidin.
Hepcidin binds to the only known cellular iron exporter,
ferroportin, to both occlude its channel1 and cause its internali-
zation and degradation, thus controlling entry of iron to the
plasma from the duodenum (absorption) and reticuloendothelial
system (recycling). Hepcidin is transcriptionally (epigenetically via
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HDAC3)2 regulated by BMP/SMAD signaling (iron availability
via iron sensing in the liver, erythropoietic demand via
erythroferrone

∗3,∗4 and acute serum iron deprivation5), and
inflammation (IL6, JAK/STAT signaling) (Fig. 1).

Mishaps
Iron deficiency. Here we focus on clinical factors that impair iron
uptake through either impaired luminal iron function or increased
hepcidin expression.
Impaired luminal iron absorption causes iron deficiency.

Defective acidification of the intestinal contents impairs solubility
of ferric iron in the intestine, limiting absorption.6 This poses a risk
for patients who have undergone gastrectomy, and those who
undergo gastric bypass for treatment of obesity.7Helicobacter
Pylori infection may cause iron deficiency8 by impairing the acidic
gut environment and promoting gastrointestinal bleeding. Chronic
gastric acid suppression (ie, proton pump inhibition or histamine
receptor antagonism9) can increase risk of iron deficiency.
Intestinal (especially duodenal) dysfunction impairs iron

absorption. Coeliac disease causes immune-mediated destruction
of the intestinal absorptive surface resulting in diminished
absorption of numerous nutrients including iron.10 Iron deficiency
may indicate occult coeliac disease and screening for this
condition is now widely suggested for iron deficient patients.
Other disorders of the intestinal functional surface (eg, environ-
mental enteropathy in developing countries), or intestinal
absorptive area (eg, resections due to inflammatory bowel disease)
may promote iron deficiency.
Iron absorption and organ utilization is diminished in systemic

conditions which physiologically or pathologically raise hepcidin
(functional iron deficiency). Anemia of chronic disease occurs
in inflammatory conditions (infections, cancer, autoimmune
diseases) that increase hepcidin expression via IL6 (also IL22)
mediated JAK-STAT signaling or directly abrogate ferroportin
transcription via TLR signaling.11 Among clinically-well but
subclinically inflammed populations, elevated hepcidin is an
important cause of iron deficiency: for example, in sub-Saharan
Africa where subclinical plasmodium infection is common12 and
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Figure 1. Systemic ironmetabolism and therapeutics against the hepcidin-ferroportin axis. Therapeutics that alter iron levels via the hepcidin-
FPN axis are highlighted in red. Iron circulates in the plasma predominantly bound to transferrin (Tf; green squares). Iron reaches the plasma via
absorption of dietary iron by duodenal enterocytes and recycling of iron from senescent erythrocytes by reticuloendothelial macrophages. The
mechanism of dietary iron entry to enterocytes depends on the type of iron. Non-heme ferric iron (Fe3+; black circles) is reduced to ferrous iron (Fe2+;
grey circles) by the ferrireductase DCYTB and transported across the apical membrane by DMT1. Heme iron (red circles) entry is probably via an
undiscovered transporter. Once internalized, iron from both sources is exported to the bloodstream through the basolateral membrane via the only
known iron exporter, ferroportin (FPN; red channel). The ferroxidase hephaestin (HEPH) co-localizes with FPN and oxidizes exported Fe2+ to Fe3+

allowing it to bind Tf. Reticuloendothelial macrophages phagocytose and degrade senescent erythrocytes, releasing heme into the phagolysosome,
which is then exported into the cytoplasm and degraded. Iron can then be stored in the macrophages in ferritin (grey hexagons) or released via FPN
where it will circulate bound to Tf. Systemic iron distribution is controlled by the hepatic derived hormone hepcidin (grey stars), which binds,
occludes and leads to the degradation of FPN. Hepcidin expression is determined at the transcriptional level by BMP/SMAD and JAK/STAT (via IL-6/
IL-22) signaling. The BMP/SMAD pathway is negatively regulated by TMPRSS6, which in low iron conditions cleaves hemojuvelin (HJV, a BMP co-
receptor), inhibiting hepcidin expression. Immature red cells (erythroblasts), which accumulate during increased erythropoiesis, produce
erythroferrone (ERFE; blue hexagons). ERFE negatively regulates hepcidin expression by dampening BMP/SMAD signaling. BMP=bone
morphogenetic protein, BMPR=BMP receptor, CP=ceruloplasmin, DCYTB=duodenal cytochrome B, DMT1=divalent metal transporter 1, EPO=
erythropoietin, ERFE=erythroferrone, FPN= ferroportin, HAMP=hepcidin, HEPH=hephaestin, HIF=hypoxia inducible factor, HJV=hemojuvelin,
IL-6= interleukin 6, IL-R= interleukin receptor, JAK=Janus Kinase, STAT3=signal transducer and activator of transcription 3, Tf= transferrin,
TMPRSS6= transmembrane serine protease 6.
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Table 1

Therapeutic agents in clinical trial that influence plasma iron levels.

Therapeutic
agent Company

Administration
route Acts on

Effect on
plasma iron

Clinical trials
(Iron related) Reference

PRS-080 Pieris Pharmaceuticals Intravenous Hepcidin Increase NCT03325621,
NCT02754167

Moebius et al.18

NOX-H94 NOXXON Pharma AG Intravenous Hepcidin Increase NCT01691040 Schweobel et al.19

LY2787106 Eli Lilly and Company Intravenous Hepcidin Increase NCT01340976 Vadhan-Raj et al.20

LY2928057 Eli Lilly and Company Intravenous Ferroportin Increase NCT01991483 Barrington et al.21

LY3113593 Eli Lilly and Company Intravenous BMP6 Increase NCT02144285,
NCT02604160

TP-0184 Tolero Pharmaceuticals Oral ALK2 (BMPR1)
receptor

Increase NCT03429218 (Phase-I,
not iron related)

Peterson et al.22,35

Vitamin D (including
Paricalcitol and
Calcitriol)

Multiple Oral vitamin D receptor Increase Many including:
NCT03145896,
NCT0287621,
NCT01768351

Bacchetta et al.23

Siltuximab Multiple Intravenous IL-6 Increase NCT01024036 Casper et al.25

Tocilizumab Multiple Intravenous IL-6 receptor Increase NCT00951275,
NCT01183598

Isaacs et al.24

LJPC-401 La Jolla
Pharmaceutical
Company

Subcutaneous Ferroportin Decrease NCT03381833,
NCT03395704

Lal et al.27

PTG-300 Protagonist Therapeutics Subcutaneous Ferroportin Decrease NCT0380220 Nicholls et al.26

IONIS-TMPRSS6-LRX Ionis Pharmaceuticals Subcutaneous TMPRSS6 Decrease NCT03165864 Guo et al.28

SLN124 Silence Therapeutics Subcutaneous TMPRSS6 Decrease CTA to be submitted in
2019

Altamura et al.29

VIT-2763 Vifor Pharma Oral Ferroportin Decrease Phase-I completed http://www.viforpharma.com/
∼/media/Files/V/Vifor-Pharma/
documents/en/media-releases/
2019/pr-vifor-pharma-
ferroportin-inhibitor-en.pdf

Sotatercept Multiple Subcutaneous Activin receptor Decrease NCT01464164,
NCT01712308

Komrokji et al. 32; Cappellini
et al.33

Luspatercept Multiple Subcutaneous Activin receptor Decrease NCT03194542,
NCT03342404

Platzbecker et al.34
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in Western countries where prevalent obesity may elevated
hepcidin elevation.13 Iron deficiency may also occur in genetic
mutations of TMPRSS6 causing upregulation of hepcidin
expression despite low iron stores (‘Iron-Refractory Iron-
Deficiency Anaemia, IRIDA’).

∗14
Iron overload. Genetic mutations impairing hepcidin expression
or function can result in excess iron uptake and iron overload.
Mutations affecting the HFE gene are most common but of low
penetrance, with rarer mutations in HJV, TfR2 and HAMP
producing a more severe phenotype. Mutations that quantitative-
ly affect ferroportin or inhibit its degradation by hepcidin also
result in iron overload (reviewed15).
Inherited (ie, haemoglobinopathies) and acquired (eg, myelo-

dysplastic syndromes) genetic haematologic conditions can
produce ineffective erythropoiesis. The expanded erythroid pool
creates enormous iron demand and causes suppression of hepcidin
likely via erythroblast production of erythroferrone.16 Together
with hypoxia-mediated upregulation of duodenal DMT1,

∗17 this
results in increased iron absorption and overload.
Future perspectives
Therapeutic manipulations in iron handling

At least 16 therapeutics entering clinical trials aim to increase or
reduce plasma iron entry by manipulating the hepcidin-ferro-
portin axis (Table 1 and Fig. 1).
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Downregulation of hepcidin. Several drugs prevent hepcidin
function. PRS-080, an Anticalin protein linked to linear poly-
ethylene-glycol, binds hepcidin and inhibits its function; it is being
trailed in patients with chronic kidney disease.18 Similarly, NOX-
H94, a PEGylated anti-hepcidin L-RNA oligonucleotide inacti-
vates hepcidin after binding, inhibited serum iron suppression in
anemia of inflammation experimental models.19 LY2787106 is a
neutralizing hepcidin monoclonal antibody which has shown
safety and efficacy in patients with cancer-related anemia.20

LY2928057, a humanized FPN antibody, inhibits hepcidin
function by protecting ferroportin from hepcidin-induced
degradation and stabilizes FPN on the cell surface. It raised
iron levels but not hemoglobin in a Phase I study in renal
patients.21

Drugs that decrease hepcidin expression include: LY3113593,
a humanized BMP6 monoclonal antibody, inhibits the canonical
pathway of hepcidin transcription, and is being trialed in chronic
kidney disease. TP-0184, an ALK2 receptor kinase inhibitor,
likewise inhibits BMP/SMAD-driven hepcidin transcription22

but appears currently to be being clinically tested for treatment
of solid tumors. Vitamin D (as well as vitamin D analogs
paricalcitol and calcitriol) may act via vitamin D receptor
binding to vitamin D response elements in the hepcidin
promoter.23 Reducing hepcidin levels are potentially beneficial
secondary benefits approved IL6 targeted treatments: anti-IL-6
(Siltuximab) and anti-IL-6 receptor (Tocilizumab) antibodies
used to treat patients with rheumatoid arthritis,24 cancer and
Castleman’s disease.25

http://www.viforpharma.com/~/media/Files/V/Vifor-Pharma/documents/en/media-releases/2019/pr-vifor-pharma-ferroportin-inhibitor-en.pdf
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Upregulation of hepcidin. Therapeutics that increase hepcidin
levels or function aim to alleviate iron loading conditions.
LJPC-401 is a synthetic full-length hepcidin which has entered
Phase 2 clinical trials for b-thalassemia and haemochromatosis,
while PTG-300 is a hepcidin mimetic which has likewise entered
clinical trials for b-thalassemia. Both drugs induce reductions in
serum iron in human Phase I studies,26 and in both cases non-
limiting local injection site reactions appeared to be the chief
adverse effect.27

Inhibition of hepatic TMPRSS6 upregulates hepcidin expres-
sion At least 2 molecules with therapeutic potential that silence
TMPRSS6 mRNA translation have been developed. IONIS-
TMPRSS6-LRX is a ligand conjugated TMPRSS6 silencing
molecule that upregulates hepcidin in preclinical models and
has entered trials for thalassaemia.

∗28 Likewise, SLN124 is a
conjugated GalNac siRNA targeting TMPRSS6 which has shown
pre-clinical activity in thalassemia models with clinical trials
planned in the near future.29 Beyond agents acting on hepcidin,
VIT-2763 is a small molecule inhibitor of FPN and therefore
replicates hepcidin function, and completed a Phase-I clinical trial
in October 2018. Activin receptor ligand traps (Sotatercept,
Luspatercept) have preclinical30,31 and clinical32–34 activity in
diseases of ineffective erythropoiesis which indirectly counteracts
hepcidin suppression.

Conclusions

New understanding of the molecular pathways governing iron
homeostasis has led to a greater appreciation of the pathophysi-
ology of iron related disorders and a pipeline of rationally
designed novel therapeutics against the hepcidin-FPN axis.
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