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Take-home messages

- DBA is a congenital erythroblastopenia amongst the inherited bone marrow failure syndromes (IBMFS), highly heteroge-
nous in phenotype and genotype.

- DBA is the first ribosomopathy described and p53 stabilization is involved in DBA erythroblastopenia.
- HSP70 is one of the major key factors involved in DBA pathophysiology.

Diamond-Blackfan anemia (DBA)1, 2 has been the first riboso-
mopathy described3,4 and belongs to the inherited bone mar-
row failure syndromes (IBMFS). DBA is characterized by a
specific erythroid tropism and is associated with a lower risk
of malignancies (5% of the DBA cases)5,6 compared to
Fanconi anemia, Shwachman-Diamond syndrome or dysker-
atosis congenita. DBA is revealed early in infancy (median
age of 2 months) with a moderate to severe, usually macrocyt-
ic aregenerative anemia and a normal platelet and white blood
cell count in the vast majority of the DBA patients. The ery-
throblastopenia in an otherwise normal bone marrow is the
main feature of the disease. The erythroid blockade has been
stated between the BFU-e and the CFU-e stages.7 DBA pheno-
type is however highly heterogeneous and in 50% of the DBA
cases, various malformations mostly in the cephalic area and
the extremities have been reported.8,9 Steroid therapy should
be initiated only after one year of age, in order to protect
growth during the first year of life. More than 60% of DBA
cases are steroid good responders. Corticoresistant or corti-
codependent more than 0.5 mg/kg/day (or even >0.3 mg/kg/day)
DBA patients should enter into a regular transfusion program
associated with an iron chelation after a certain amount of
transfusions and based on ferritin level. However, so far bone
marrow transplantation with an HLA identical intra-familial
and non silent phenotype donor is the only curative treatment
for DBA.10 DBA genotype is also highly heterogeneous. A het-
erozygous mutation is found in more than 70% of the DBA
affected patients in one of the 14 ribosomal protein genes,
which have been shown to be involved in DBA, including
RPS19 (25%), RPL5 (7%), RPL11 (5%), RPS24 (2,4%),
RPS26 (7%), RPS10 (3%), RPL35a (3%), RPS17 (1%), RPS7
(<1%), RPS28 (<1%), RPS27a (<1%), RPL15, RPL9, RPL26.

Large deletions in these genes are reported.11-13 The occurrence
of mutations is sporadic, or de novo, in 55% of DBA affected
patients, while in the familial cases, the inheritance is domi-
nant. The RP gene mutation is responsible for a defect in
rRNA maturation at different level depending on the RP
gene.3,14 The link between the mutation in an RP gene, the
ribosome biogenesis impairment and the erythroblastopenia is
still to be fully defined. However, several groups, including
ours, identified p53 as one of the major proteins involved in
the disease.15,16 Indeed, it has been shown that rRNA matura-
tion impairment leads to nucleolar or ribosomal stress which,
in turn, leads to an increase in the expression level of various
RP genes, with an RP binding to MDM2 (or HDM2). MDM2
is an E3 ubiquitin ligase, which binds p53 and directs it for
proteasomal degradation. During the nucleolar stress, p53 is
thus free and induces apoptosis and cell cycle arrest, responsi-
ble at least in part for the erythroblastopenia, the feature of the
disease.15,16 However, p53 independent pathways are now
described17 and non-RP genes have been identified in DBA,
which may open new pathway(s) involved in DBA pathophys-
iology. Recently, two genes, namely TSR218 and GATA1,19

which are not related to an RP gene have been identified in a
few DBA patients. GATA1 is the major erythroid transcription
factor. In GATA1 mutated DBA patients19 and in RP mutated
DBA patients,20 the long form of GATA1 disappears, with only
the short form remaining. The ribosomal defect in GATA1
mRNA translation in DBA results from this mRNA having a
higher threshold for initiation of translation (highly structured
5’UTR are more poorly translated).20 However, we recently
identified another key factor that may explain the more severe
DBA phenotype. Indeed, we were previously able to identify
two DBA in vitro phenotypes resulting from the mutated RP
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gene.16 The respective DBA patients, affected by an RPS19
mutation, exhibited a decrease in erythroid proliferation, but a
normal erythroid differentiation and no apoptosis, while DBA
patients carrying a mutation in RPL5 or RPL11 exhibited a
dramatic decrease in erythroid proliferation, a delayed ery-
throid differentiation, and significant erythroid cell apopto-
sis.16 In all these DBA patients, independently of the RP gene
mutated, we found a cell cycle arrest in G0/G1. Seeking to
decipher the significance of these dual phenotypes, we were
able to identify the protein involved in these discrepancies.
Strikingly, the Heat Shock Protein S70 (HSP70) was
expressed at a normal level in RPS19 mutated DBA patients
and in shRNA-RPS19 infected CD34+ from cord blood, while
absent or largely decreased in RPL5 or RPL11 mutated DBA
patients or in the shRNA-RPL5 or -RPL11 infected erythroid
cells (manuscript in revision). The decrease in HSP70 is due
to an enhanced proteasomal degradation of polyubiquitinylat-
ed HSP70. Overexpression of wild type HSP70 is able to
restore the erythroid defect caused by DBA, in particular the

erythroid proliferation and differentiation defect in the severe
DBA phenotype, confirming the specific role of HSP70 in
DBA pathophysiology. Furthermore, overexpression of wild-
type HSP70 reduced p53 stabilization. In a parallel study, we
were able to show a disequilibrium between the heme and glo-
bin synthesis. We observed a normal or slightly decreased total
heme content, but an excess of free heme, in DBA affected
patients in association with both, transcriptional and transla-
tional, defect in globin protein expression level. GATA1 tar-
gets, namely HRI, ALAS2 and globin genes, were indeed
downregulated. Wild-type HSP70 overexpression was able to
increase GATA1 and its targets, restoring globin chain expres-
sion levels. HSP70 should thus be considered as one of the key
factors of DBA pathophysiology (Figure 1). New therapeutic
developments involving the HSP70 nuclear re-localization
and its GATA1 chaperon function may be considered as an
innovative treatment for DBA patients, who faced until now in
the vast majority of cases, only iterative transfusions or long-
term steroid therapeutics options.
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Figure 1. HSP70 as a major key factor in DBA pathophysiology.
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