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Stem cell transplantation - GvHD - Section 1

GvHD prophylaxis and treatment, new modalities

Robert Zeiser

Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Germany

Take-home messages

- Recent advances in understanding the pathophysiology of GVHD are being discussed.
- Certain findings in the mouse model could not be translated into the clinical application. Therefore, the advantages and short-
comings of different animal models for GVHD are being elucidated.

Introduction

Despite the advances in our understanding of the pathogenesis
of acute graft-versus-host disease (aGvHD) and the prophy-
lactic treatment with a wider array of immunosuppressive
medication, about 30-50% of our patients that undergo allo-
geneic hematopoietic cell transplantation (alloHCT) develop
grade 2-4 aGvHD.! aGvHD patients who are refractory to
standard steroid treatment have a dismal long-term prognosis
with only 5-30% overall survival.>* Here we discuss different
prophylactic and therapeutic modalities against aGvHD that
are based on pharmacological or cellular strategies.

Current state of the art

Based on the observation that the release of pro-inflammatory
cytokines is a hallmark of aGvHD many investigators have
focused their work on the role of multiple cytokines in the
pathophysiology of aGvHD. Highly pro-inflammatory
cytokines such as IL-1B,3 IL-6 (6,7) and TNF-0#° and protec-
tive cytokines IL-10'" and IL-11"!2 were identified to be func-
tionally involved in murine aGvHD. However, the findings in
the mouse models are often not directly translatable into the
human situation. For example in the mouse model of GvHD,
IL-11 promoted T cell polarization towards a Th2 phenotype
which was protective against GvHD.!"'2 However in a phase I/I
double-blind, placebo-controlled study for mucositis and
aGvHD prevention, recombinant human interleukin-11 was
connected to a high mortality based on severe fluid retention
that caused pulmonary edema.!® This example indicates that a
cytokine that was well tolerated by the mice induced severe side
effects in humans. Conversely, IL-18 was shown to be a proin-
flammatory cytokine in some murine GvHD models,>!'*!5 while
other studies in mouse models showed only a minor role for

IL-1 in GvHD pathophysiology.'¢ Early clinical studies using
IL-1 antagonism in the therapeutic setting suggested a benefit
for patients suffering from GvHD,>!” while a later prospective,
randomized controlled trial failed to show a protective effect
of IL-1 blockade in the prophylactic setting.'® In different
mouse models of GVHD, TNF-a was shown to be operational
in GVHD?%! and to downmodulate the function of regulatory
T cells (Treg).? Clinical studies using TNF-a antagonism with
etanercept®! or infliximab?? in the therapeutic setting showed
some activity against GvHD. Infliximab combined with
steroids reduced GvHD severity, however the reported non-
relapse mortality (NRM) was high.?? Etanercept given as a
combination therapy with inolimomab (anti-IL-2Ra) for the
treatment of steroid-refractory aGvHD was connected estimat-
ed rates of 2-year overall survival of 10%.2! Other reports on
TNF-a blockade after allo-HCT showed a high incidence of
fungal infections?® and reduced GVL effects.?* These findings
are in keeping with mouse studies indicating TNF antagonism
reduced GVL effects against P815 cells.® Another pro-inflam-
matory cytokine, IL-6 was shown to be responsible for
aGvHD in mice.%” The later prospective single-institution
phase 1/2 clinical study testing the IL-6R antagonist
tocilizumab for aGvHD prophylaxis showed an incidence of
grade 2-4 acute GvHD in patients treated with tocilizumab at
day 100 of 12% which is lower than expected.?

Besides blocking individual cytokines, the costimulation of T
cells was recognized as a potential powerful target against
aGvHD. Blockade of a major costimulatory molecule, CTLA4
was shown to reduce lethal murine GvHD.?¢ CD28:CD80/86
costimulation blockade with abatacept caused low GvHD
rates.?” Another negative regulator of T cell activation namely
programmed death-1 (PD-1) using checkpoint inhibition
showed promising results in the mouse model?*?° that have so
far not been investigated in the clinic.
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Another potential target of GvHD are chemokines that guide
the migration of T cells towards GvHD target organs.’%3!
However this strategy is seen controversial as high radiation
can affect the principles of chemokine mediated tissue migra-
tion of T cells. For example CCRS inhibition was protective
against GVHD in a non-irradiated GvHD mouse model*® while
in the presence of total body irradiation (TBI) an earlier time
to onset and a worsening of GvHD was observed when CCR5-
=T cells were applied.*? In the GvHD prophylaxis setting a
single institution phase-I trial reported that CCRS inhibition
prevents aGvHD of liver and gut before day 100.3 T cell
egress from the lymph node*** and DC migration®® were both
potently inhibited by the sphingosine I-phosphate receptor
agonist FTY720 in the mouse model of GvHD. This important
therapeutic concept is currently investigated by using a sphin-
gosine 1-phosphate receptor type 1 agonist’’ in a clinical study
on patients undergoing alloHCT (ClinicalTrials.gov Identifier:
NCT01830010).
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As aGvHD is a multifactorial disease, it is likely that inhibi-
tion of multiple layers of the disease, e.g. by blocking down-
stream signals of multiple cytokine and chemokine receptors
could be more effective than classical approaches targeting an
individual cytokine, chemokine or co-stimulatory molecule.
Signalling of multiple cytokine receptors relies on intact Janus
kinase (JAK) 1 and 2 activity (Figure 1). Based on this obser-
vation different groups could show that pharmacological inhi-
bition of JAK1/2 reduced aGvHD in the mouse.3$* A later ret-
rospective survey that included 19 stem cell transplant centers
in Europe and the United States showed that the use of the
JAK1/2 inhibitor ruxolitinib for steroid refractory GvHD*
was connected to overall response rates of 81.5% (44/54) in
steroid refractory aGvHD including 25 complete responses
(46.3%). JAK1/2 inhibition for steroid refractory cGvHD was
connected to an overall response rate of 85.4% (35/41), con-
sistent with data in a cGVHD mouse model.*. Ruxolitinib is
currently being investigated in a prospective trial in Germany

Cytokine antagonists

\</ (Infliximab, Eternacept)

TE_E ”'_1". o Cytokine receptor antagonists
L Je) (Daclizumab, Basiliximab,

Tocilizumab, Anakinra,
O \( Inolimomak)
Cytokine-R

Janus kinase 1, 2
inhibitors {Ruxolitinib)

mTOR inhibitors
[Sirolimus, Everolimus)

Inhibitors of cell proliferation
(MTX, MMF)

Corticosteroids
O Release of pro-

inflammatory

HDAC inhibitors
(Vorinostat)

Figure 1. The different pathways for T cell activation, cytokine production and proliferation are shown in the context of their inhibitors

used in GvHD prophylaxis and therapy.
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(NCT02396628) and a clinical trial using the JAK1 selective
inhibitor INCB39110 has begun for the treatment of GvHD
(NCT02614612). Also a recent pre-clinical study indicates
that topical ruxolitinib suppresses GvHD and protects skin fol-
licular stem cells.*' Another promising approach to reduce
aGvHD in the mouse model is based on the NFkB inhibition,
thereby reducing inflammatory protein production via the pro-
teasome inhibitor bortezomib.*> Clinical trials using a short-
course, bortezomib-based GvHD prophylaxis yielded low
aGVHD rates.##

Besides approaches that target the effector cells, strategies that
aim at protecting target tissues were investigated. One exam-
ples is enhanced regeneration of the epithelial barrier by using
a growth factor called keratinocyte growth factor (KGF).4546
KGF reduced aGvHD in mouse models as shown by different

groups,®4® but the survival benefit did vary between the dif-
ferent reports raging from a modest improvement of the sur-
vival® to very potent protective effects.*® Based on these pre-
clinical data, the drug Palifermin was analyzed in a clinical
study where it did not reduce aGvHD but the need for par-
enteral nutrition after TBL.#’*% Another approach that aimed at
enhancing epithelial regeneration via stimulation of intestinal
stem cells was via R-spondin-1 which yielded promising
results in the mouse model of aGvHD.#

The multiple approaches developed from the mouse model
into a clinical application for aGvHD are summarized in
Figure 1 and listed in Table 1.

We apologize to those investigators whose work could not be
cited due to space restrictions.

Table 1. Translation of immunosuppressive strategies from animal models of acute GvHD into clinical trials.

Main conclusion from the preclinical model of GvHD (year) Ref. Main conclusion from the clinical trials (year) Ref.
IL-11 down-regulated IL-12, and reduced aGvHD-related (11,12) IL-11 leads to increased mortality in patients (2002). (13)
mortality (1998, 1999). Phase I/1I double-blind, placebo-controlled study.
IL-1 blockade reduces GvHD in mice in some but not all models (1991). (5) IL-1 antagonist is not effective in the GvHD prophylaxis setting (2002). (18)
Phase Il prospective placebo-controlled study.
TNF-o antagonism reduces GvHD (1999, 2003). (8,9 Infliximab and corticosteroids are effective as initial treatment (22,50)
of GvHD 2009: Prospective phase Il study, 2011: Retrospective analysis.
IL-6 blockade reduces acute GvHD in mice (2009). 6,7) Early IL-6 inhibition with tocilizumab leads to a low risk of aGvHD (2014) (25).
Phase 1/2 single institution trial.
Anti-CCR5 antibody treatment protects against (30,31) CCRS inhibition prevents aGvHD of liver and gut before (51)
aGvHD-related mortality (1999, 2003). day 100 (2012). Phase 1/2 single institution trial.
The sphingosine 1-phosphate receptor agonist (34, 35) Active clinical study on KRP203 in patients undergoing alloHCT (2016). (52)
FTY720 reduces GvHD (2003, 2009). Randomized, Open-label Phase 1/2 study.
CTLA4-1g reduces lethal murine GvHD (1994). (26) (D28:CD80/86 costimulation blockade with abatacept leads (27)
to low GvHD rates (2013). Single-arm feasibility study.
KGF reduces but does not uniformly eliminate GvHD lethality (45, 46) Palifermin does not reduce aGvHD severity (2012) but the need (47, 48)
in mice (1998, 1999). for parenteral nutrition after TBI (2013).
2012: Randomized, double-blind, placebo-controlled trial.
2013: Retrospective analysis.
HDAC inhibition reduced GvHD severity in mice (2008). (53) Vorinostat in combination with standard GvHD prophylaxis (54)
is associated with a low incidence of severe aGvHD (2014).
Phase 1/2 trial.
JAK1/2 inhibition reduces aGvHD (2014, 2015). (38,39)  JAK1/2 inhibition reduces aGvHD in patients refractory (40)
to multiple therapies (2015). Retrospective analysis.
Proteasome inhibition with bortezomib reduces GvHD (2004). (42) Short-course, bortezomib-based GvHD prophylaxis yields (43, 44)
low aGvHD rates (2009, 2012). 2009: phase 1 trial. 2012:
prospective phase I/Il trial.
o-GalCer reduces GvHD (2005). (55) RGI-2001 is tested for GvHD prevention (2016). Phase 1/2 trial. (33)
Cyclophosphamide can induce tolerance towards skin allografts Post-transplantation cyclophosphamide is effective as single-agent aGvHD (58,59)
(1989)(56) and post-transplant CP reduced GvHD severity in mice (2014). (56, 57) Prophylaxis (2014). Open Label multi-institutional trial.
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