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Unraveling the molecular pathogenesis of acute myeloid
leukemia with a normal karyotype

Introduction 

With an incidence of 3-4 cases per 100,000
people, acute myeloid leukemia (AML) is the
commonest myeloid malignancy and the com-
monest acute leukemia in adults.1 The clinical
presentation of AML is relatively uniform and
principally secondary to hematopoietic failure;
however, the disease is highly heterogeneous
at the molecular level. Steady progress in deci-
phering this heterogeneity has been made over
the last few decades2-5 and this accelerated dra-
matically as a consequence of recent advances
in genomics.6-8 Our understanding of all sub-
types of AML has benefited from these
advances, but the particular beneficiary has
been AML with a normal karyotype (AML-
NK), the largest subgroup representing 45% of
all cases. Initially defined by the absence of
recurrent chromosomal abnormalities, AML-
NK as a group has an intermediate prognosis.9

However, it is now clear that AML-NK hides
within it an extensive degree of diversity. In
fact, at least 23 genes are significantly mutated
in AML-NK and individual cases arise as a
result of different mutational combinations,
creating an almost limitless number of permu-
tations.8 Nevertheless, as well as presenting
direct drug targets, individual mutations can

impart their own distinct molecular
signatures,8,10-12 which in turn influence the
clinical features,13-15 therapeutic vulnerabili-
ties16-19 and prognosis9,20-23 of their cognate
leukemias. 

Genetic mutations in AML-NK and relat-
ed myeloid neoplasms 

The cellularity, morphology and surface
phenotype of AML reveal the two important
processes commandeered by leukemogenesis,
namely block of differentiation and uncon-
trolled proliferation. In AML with recurrent
cytogenetic abnormalities, the former can be
primarily attributed to mutations such as the
fusion genes RUNX1-RUNX1T1 or CBFB-
MYH11, which disrupt hematopoietic tran-
scription factors (Class II mutations), and the
latter to proliferative mutations such as those
affecting FLT3 and RAS genes (Class I).24

However, whilst its phenotype may not be
noticeably different, the mutations found in
AML-NK are less easy to categorize into one
or other class, alluding to the fact that the
leukemic phenotype relies on the synthesis of
complimentary molecular effects.
Nonetheless, AML-NK mutations can be
grouped into classes according to their gene

Acute myeloid leukemia

Acute myeloid leukemia (AML) is the most common myeloid malignancy and the most common
acute leukemia in adults with an incidence of 3-4 cases per 100,000 people. Clinical presentation is
relatively uniform and principally secondary to hematopoietic failure; however, the disease is highly
heterogeneous at the molecular level. Steady progress in deciphering this heterogeneity has been
made over the last few decades and this has accelerated dramatically as a consequence of recent
advances in genomics. Our understanding of all subtypes of AML has benefited from these advances,
but the particular beneficiary has been AML with a normal karyotype (AML-NK), the largest subgroup,
representing 45% of all cases. Initially defined by the absence of recurrent chromosomal abnormali-
ties, AML-NK as a group has an intermediate prognosis. However, it is now clear that AML-NK hides
within it an extensive degree of diversity. In fact, at least 23 genes are significantly mutated in AML-
NK and individual cases arise as a result of different mutational combinations, creating an almost lim-
itless number of permutations. Nevertheless, as well as presenting direct drug targets, individual
mutations can impart their own distinct molecular signatures, which in turn influence the clinical fea-
tures, therapeutic vulnerabilities and prognosis of their cognate leukemias. 

Learning goals

At the conclusion of this activity, participants should:
- recognize the spectrum and molecular groups of mutations driving AML-NK and related myeloid

neoplasms;
- appreciate the pre-clinical clonal evolution and subclonal structure of AML-NK;
- understand the known molecular effects of the most common mutations and how these promote

leukemogenesis alone and in collaboration;
- identify the prognostic impact and therapeutic implications of particular mutations.
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family or their anticipated molecular consequences
(Figure 1), bearing in mind that their particular roles in
leukemogenesis are understood to very different degrees.
When examining the patterns of these mutations, it
becomes clear that certain mutations co-occur regularly in
the same AML (e.g. NPM1 and FLT3), whilst others
almost never co-occur (e.g. NPM1 and ASXL1). When
these observations are combined with what we know
about the function of individual mutations, it becomes
apparent that mutations that co-occur more often than
expected by chance (co-occurrence) collaborate with each
other in leukemogenesis. By contrast, mutations with sim-
ilar function do not co-occur or do so less often than
expected by chance (mutual exclusivity).

Another attribute of AML-associated mutations, which
has important therapeutic implications, is their hierarchi-
cal position in the clonal evolution of the disease. Once
again, there is good evidence that leukemia-associated
translocations are likely to be initiating or “founder”
events25,26 and that proliferative mutations are usually
acquired late in disease evolution.27 However, until recent-
ly, the clonal hierarchy of the many mutations identified in
AML-NK was poorly understood. The finding that
DNMT3A mutations were consistently stable through the
course of AML28 and that they can be present in pre-
leukemic hematopoietic stem cells (HSCs)29 indicated that
these mutations were founder events. Similarly, TET2
mutations had been identified in elderly individuals with
clonal hematopoiesis but without any hematologic abnor-

malities.30 Subsequent studies have now shown that AML
and related myeloid neoplasms are often preceded, proba-
bly by many years or even decades, by clonal hemopoiesis
driven most commonly by mutations in DNMT3A, TET2,
JAK2 and ASXL1, a phenomenon that becomes more fre-
quent with age31-33 [age-related clonal hemopoiesis
(ARCH)] and is probably present in the majority of per-
sons aged over 90 years.34

These and other relevant findings propose that whilst
Darwinian selection underlies the clonal evolution of
AML, the speed with which the sufficient set of leuke-
mogenic mutations is acquired (and by extension, the like-
lihood of AML developing in a person’s lifetime) is influ-
enced by the ability of individual mutations to generate
large numbers of clonal cells susceptible to the acquisition
of subsequent mutations35 (Figure 2). This model also pro-
vides an explanation for the frequently subclonal nature of
AML, as the large number of susceptible cells required to
make onward progression likely, invites the acquisition of
different mutations in different cells, each with a distinct
impact on growth kinetics. Viewed from a different per-
spective, the model also explains the extensive overlap in
the mutational spectra of AML-NK with those of myeloid
neoplasms such as the myelodysplastic syndromes
(MDS)36 and the myeloproliferative disorders (MPD),37

with these disorders representing alternate or overlapping
evolutionary routes to neoplasia, as reflected, for example,
by the increased proportion of elderly patients with de
novoAML-NK carrying MDS-associated mutations.38 The
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Figure 1. Mutation classes in acute myeloid leukemia with a normal karyotype and their frequencies.



alternative model, that somatic mutations increase the rate
of mutagenesis, is not supported by evidence that AML-
NK carries only a small total number of coding mutations
(average n=13, of which 5 are “drivers”), which is not sig-
nificantly different to that of individual normal HSCs from
a person of a similar age.8

The above observations are intriguing and reveal many
interesting facets of AML-NK pathogenesis. A deeper
understanding of their basis, and in turn of the biology and
therapy of this disease, can be gained by examining what
is known about the effects of individual genes and genetic
pathways corrupted in AML-NK and related malignan-
cies. The most important mutations are discussed below,
with greater emphasis given to those that are more com-
mon or clinically relevant. 

Genes involved in DNA modifications

Genomic DNA is packaged into a macromolecular
structure known as chromatin, which is composed of

DNA, proteins and RNA. Eukaryotic chromatin carries
chemical modifications that are added to either DNA or
chromatin proteins. These epigenetic modifications vary
across the genome and their presence or absence regulates
local gene transcription. The addition and removal of these
chemical marks by proteins referred to collectively as epi-
genetic modifiers, is a closely regulated process whose
disruption plays a role in the pathogenesis of many can-
cers, including AML.39 Cytosine methylation is the most
important direct modification of DNA and can be found
throughout mammalian genomes, with the exception of
short regions rich in CpG dinucleotides and known as
CpG islands (CGIs).40 Most CGIs are located within gene
promoters and their methylation provides an important
means for controlling transcription, with increased methy-
lation associated with reduced gene expression and vice
versa.41 Several genes are involved in the process of CpG
methylation (Figure 3) and, strikingly, the majority of
cases of AML-NK harbor mutations in one or more of
these.
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Figure 2. Proposed kinetics for the clonal evolution of acute myeloid leukemia. Hematopoietic stem/progenitor cells har-
boring the same set of driver mutations are depicted in the same color and the number of such mutations indicated. The
acquisition of one of a limited number of founder mutations such as those affecting DNMT3A, TET2 or ASXL1 leads to the
establishment of a founder clone of stem cells that drive clonal hemopoiesis in the absence of detectable clinical abnor-
malities. As this clone of cells expands, the acquisition of a second mutation in a collaborating gene becomes more likely,
and when it does occur, a new clone is founded harboring both mutations. This process continues, selecting cell clones
along Darwinian principles until a set of mutations occurs that imparts on its host cells an acute myeloid leukemia phe-
notype. The total number of mutations required for this will vary depending on their potency and the extent to which they
collaborate with each other. Importantly, whilst mutation acquisition is stochastic, the time to leukemic progression is
likely to be shorter for mutations that expand cell clones the fastest as this increases the likelihood of acquiring subse-
quent mutations (“opportunity” hypothesis35). Along the path of leukemic evolution, one or more independent subclones
of different sizes can develop and these will form part of the leukemic bulk at the time of diagnosis.



DNMT3A mutations

The DNA methyltransferase family includes DNMT1,
DNMT3A, DNMT3B, and DNMT3L. DNMT3A and
DNMT3B are de novo DNA methylases responsible for
the establishment of genome-wide DNA methylation pat-
terns during development and play important roles in HSC
differentiation.42,43 DNMT3A mutations, identified through
whole genome and exome sequencing of primary AML
samples,44-46 have been shown to occur in more than 30%
of cases of AML-NK.18,47 Two types of DNMT3A muta-
tions are seen: heterozygous missense mutations affecting
codon R882 (60%) and mutations dispersed through the
length of the gene which are usually biallelic and often
lead to premature chain termination (40%).8 The muta-
tions are associated with changes in gene expression and
DNA methylation patterns, whilst DNMT3A mutants dis-
played a reduced affinity to histone H3 in vitro.46 The
effect of these mutations on DNMT3A protein function
has not been fully defined, but there is evidence that they
are associated with loss of methylase activity,48 and in the
case of R882 mutations, that they do this is a dominant
negative manner (i.e. they inhibit wild-type DNMT3A)49

offering an explanation for why R882 mutations are
almost always heterozygous. Methylation changes associ-
ated with loss of DNMT3A function preferentially affect
non-CGI regions50 and occur throughout the genome,50,51

although there is evidence that certain genes involved in
leukemogenesis, such as the HOX genes, are hypomethy-
lated in AML-NK with mutant DNMT3A.50 However, it is
most probable that rather than any individual effect of dis-
rupted DNMT3A function, it is the sum total of all its
effects that drives clonal outgrowth and promotes the
development of AML and related myeloid neoplasms
which also frequently carry DNMT3A mutations.37,52 With
DNMT3A as the founding mutation, the phenotype of the
eventual malignancy is to a significant extent determined
by the nature of secondary collaborating mutations,35 and
this can also be said for mutations affecting TET2. In
AML, DNMT3A mutations probably have an adverse
overall impact,47,53 although this effect is more significant
for older patients,18 and can be at least partially mitigated
by the choice or dose of anthracycline used.19, 22

TET2 mutations

The Ten-eleven Translocation dioxygenases (TET1,
TET2 and TET3) are responsible for the modification of
methyl marks in methylcytosine nucleotides of DNA.
Their enzymatic activity is dependent on iron and 2-ketog-
lutarate (also known as 2-oxoglutarate) and acts to convert
5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC)54 (Figure 3). The precise role of 5hmC is not fully
understood, but its introduction may change chromatin
structure by recruiting selective 5hmC-binding proteins
and displacing chromatin-modifying complexes recruited
by 5mC, thus altering gene transcription.55 Also conver-
sion of 5mC to 5hmC may provide a means for removal of
the methyl mark and restoration of the unmodified cyto-
sine in DNA.56

Mutations affecting TET2 disrupt its enzymatic func-
tion, are found in up to 27% of patients with AML-NK,
can affect one or both alleles of the gene57 and are associ-
ated with a worse prognosis.58,59 Myeloid malignancies
with mutant TET2 have decreased global levels of 5hmC,

whilst disruption of Tet2 in mouse hematopoietic progeni-
tors promotes myeloid differentiation60 and enhances HSC
self-renewal.61 The changes in 5hmC associated with
mutant TET2, are likely to vary throughout the genome in
a similar way to those of mutant DNMT3A, but have not
yet been fully deciphered. The recent development of
technologies for the quantitative analysis of 5hmC at sin-
gle base resolution promises to provide new insights into
the molecular effects of these mutations.62

IDH1 and IDH2 mutations

IDH1 and IDH2 are the cytosolic and mitochondrial
isoenzymes of isocitrate dehydrogenase, a key enzyme in
the citric acid (Krebs) cycle. Mutations in IDH1 were ini-
tially isolated in colonic adenocarcinoma and then
glioblastomas, before they were identified in AML, where
mutations in IDH2 were also identified.6,63 Overall, muta-
tions in IDH1 (IDH1 R132H) are found in 10%-16% and
those in IDH2 (IDH2 R140Q and R172H) in 10%-19% of
AML-NK.22,64-66 The role of IDH enzymes in the citric acid
cycle is to convert isocitrate to alpha ketoglutarate (α-
KG), while reducing NADP+ to NADPH (Figure 3). The
mutant forms of IDH1/2 change their enzymatic activity
leading to the conversion of α-KG to 2-hydroxyglutarate
(2-HG),67 an oncometabolite that inhibits enzymes which
use α-KG as a substrate, including TET2 and the Jumonji-
C domain-containing (JMJC) family of histone lysine
demethylases leading to impaired hematopoietic differen-
tiation.68,69 Mice expressing Idh1 R132H conditionally in
the hematopoietic compartment developed splenomegaly
due to extramedullary hematopoiesis and expansion of the
multipotent progenitor compartment.70 However, as with
Dnmt3a43 and Tet261 knock-out mice, Idh1 R132H mice
did not go on to develop AML. 

Reports on the prognostic impact of IDH1 and IDH2
mutations are conflicting71 and may be compounded by
their significant association with NPM122 and mutual
exclusivity with TET268 mutations. Nevertheless, it is
probable that IDH2R172H mutations impart a poorer than
average prognosis.72,73 Interestingly, a neighboring single
nucleotide polymorphism appears to have an adverse
impact on the prognosis of IDH1 mutant AML. With
regards to treatment, early data describing the effects of
IDH1/2 inhibitors74,75 promise to open new therapeutic
avenues for patients with these mutations.76 Also, human
AML cells carrying IDH1 or IDH2 mutations were recent-
ly shown to be dependent on BCL2 for their survival and
were sensitive to treatment with a BCL2 inhibitor.77

NPM1 mutations

AML-associated mutations in NPM1, the gene for
nucleophosmin, were identified through the fact that they
lead to mislocalization of this nucleolar/nuclear protein to
the cytoplasm,78 hence their annotation as “NPM1c”.
NPM1c mutations occur in 40%-55% of AML-NK and
confer a favorable prognosis, although this is annulled
when they co-exist with FLT3-ITD.21,79-82 Unlike many of
the other mutations discussed here, NPM1c mutations
rarely occur in neoplasms other than AML-NK83 and,
despite being the most common mutations in this disease,
were not found to drive ARCH, placing them in the role of
“gatekeeper” for the development of AML-NK.34 In fact,
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the three most common mutations in AML-NK, namely
those affecting DNMT3A, NPM1 and FLT3, are acquired
in this order and co-exist in up to 10% of AML-NK, often
in the absence of any other known driver mutations.8

Cases of AML-NK carrying NPM1c mutations exhibit
overexpression of anterior homeobox genes with an estab-
lished pedigree in leukemogenesis, including HOXA5,
HOXA9 and HOXA10.10 In fact, mice expressing the
human mutation from the endogenous locus also over-
express these genes and prime HSCs to transformation by
additional proliferative mutations.12 Also, mice carrying
both NPM1c and FLT3-ITD develop aggressive leukemia
within 4-6 weeks from birth, emphasizing the extraordi-
nary complementarity of these two types of mutation.84,85

However, whilst the mutant nucleophosmin was shown to
displace a number of other proteins to the cytoplasm, it is
not known which of its many interactions drive its molec-
ular and cellular effects.86

Mutations in chromatin modifiers

Post-translational modifications of histone tails play a
central role in the regulation of gene expression.
Mutations in genes responsible for these modifications
and others influencing their function are common in
hematopoietic and other cancers. The longest known of
these affect the MLL (KMT2A) gene, which codes for a
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Figure 3. Enzymes involved in cytosine modification and acute myeloid leukemia with a normal karyotype. Methylation
of cytosines in DNA is an important node for the control of gene expression. Cytosine (C) is methylated by DNA methylases
to methylcytosine (mC) and can then be further modified to hydroxymethylcytosine (hmC) by TET deoxygenases. The latter
reaction uses α-ketoglutarate as substrate and this is generated from isocitrate by the action of isocitrate dehydrogenas-
es (IDH1 in the cytosol and IDH2 in the mitochondria) within the citric acid cycle. These biochemical reactions are fre-
quently corrupted in acute myeloid leukemia (AML) with normal karyotype as a result of loss-of-function mutations in the
DNMT3A and TET2 genes or gain of function mutations in IDH1 and IDH2. Particular IDH1 and IDH2 mutations (red text)
lead to the generation of the oncometabolite 2-hydroxyglutarate, which exerts its oncogenic effects through the inhibition
of TET dioxygenases (including TET2), chromatin modifying enzymes (such as JmjC domain containing demethylases) and
EGLN prolyl hydroxylases, a family of α-ketoglutarate-dependent dioxygenases that regulate the activity of hypoxia-
inducible factor (HIF). Genes/proteins subject to recurrent somatic mutations in AML are indicated in blue text.



histone methyltransferase and is involved in chromosomal
translocations and partial tandem duplications (PTDs) in
AML.87 MLL-PTDs mediate overexpression of HOX
genes including HOXA7 and HOXA9,11 occur in 8%-10%
of AML-NK,88 and are associated with worse clinical out-
comes.22,88 More recently, mutations in another gene in this
category, ASXL1, were identified in diverse myeloid
malignancies.89,90 These mutations occur in up to 6%-25%
of AML, their incidence increases with age, and they are
associated with a poor prognosis.90-92 ASXL1 interacts
with several proteins including LSD1 and RARa,93 and
leukemia-associated mutations result in loss of protein
expression and an associated reduction in histone H3
lysine 27 methylation, a repressive mark normally intro-
duced by the chromatin modifier PRC2.94 Mouse models
with reduced Asxl1 expression developed hematopoietic
defects including MDS/MPD that accelerated in the pres-
ence of mutant NrasG12Dmutations, which co-occur with
ASXL1 in human myeloid malignancies.94

Mutations in myeloid transcription factors

Somatic mutations affecting hematopoietic transcription
factors occur in up to 20% of AML-NK and most com-
monly affect the genes CEBPA, RUNX1 and GATA2.  Also
germ-line mutations in each of these genes are associated
with familial MDS/AML syndromes.95

C/EBPα is an important hematopoietic transcription
factor that controls differentiation of myeloid cells to
mature granulocytes.96 Mutations in CEBPA are found in
10%-15% of patients with AML-NK4,97 and can affect one
or both alleles of the gene.97 The mutant (truncated) pro-
teins acted in a dominant negative fashion to inhibit wild-
type C/EBPα from binding DNA resulting in a failure of
myeloid differentiation.4 Single CEBPA mutant cases had
a better than average prognosis in some series;98 however,
only double mutations were found to be  independent
favorable prognostic predictors and these are associated
with long-term survivals beyond 60%.98-100 Also, double
CEBPA mutations were found to frequently co-occur with
mutations in GATA2,101 a hematopoietic transcription fac-
tor known to interact directly with C/EBPα,102 whilst sin-
gle mutations can co-occur with mutant NPM1 and
FLT3.98,100

RUNX1 is a master hematopoietic regulator103 which, as
well as participating in the RUNX1-RUNX1T1 (AML1-
ETO) fusion gene in AML associated with t(8;21),104 is
also a target of substitutions and indels in approximately
5% of de novo AML-NK.22,105 These mutations usually
lead to protein truncation, frequently co-occur with tri-
somy of chromosome 13 and MLL-PTD mutations, and
are associated with distinct gene mRNA and microRNA
signatures106,107 and a worse overall prognosis.106-108

Mutations in tumor suppressor genes

WT1 (Wilm Tumor 1) loss-of-function mutations occur
in 10% of AML-NK and are associated with a worse than
average prognosis.109-111 Unlike other tumor suppressor
gene mutations, WT1 mutations usually affect only one
allele in AML-NK, are more common in AML with bial-
lelic CEBPAmutations (where they do not have an adverse
prognostic impact),112 and rarely co-occur with TET2 or

IDH1/2 mutations,22,112 suggesting they may have similar
molecular effects to these. In fact, the WT1 protein physi-
cally interacts with TET2, and reduction of WT1 levels
was recently shown to reduce 5hmC levels, as is seen with
TET2 mutations.113 Interestingly WT1 mutations are lost in
relapsed disease in approximately 1 in 3 cases and occur
more commonly in female patients.112

The X-linked genes BCOR (BCL6 co-repressor),
BCORL1 (BCOR-like 1) and PHF6 [plant homeodomain
(PHD) Finger Protein 6] are affected by what appear to be
loss-of-function mutations in AML-NK. BCOR mutations
in AML are similar to germline BCOR BCOR mutations
found in the X-linked dominant oculo-facio-cardio-dental
syndrome and are associated with reduced BCOR mRNA
and absence of the full-length protein. AML BCOR muta-
tions were present in 3.8% of AML-NK and frequently
associated with mutant DNMT3A, whilst they were virtu-
ally mutually exclusive of NPM1 mutations and associat-
ed with inferior patient outcomes.114 Mutations in the relat-
ed gene BCORL1 were also identified in around 6% of de
novo AML patients115 and in 7%-9% of other myeloid
malignancies, including CMML and post-MDS AML.116

BCORL1 mutations were associated with RUNX1 and
DNMT3A mutations.116 PHF6 mutations are present in
20% of T-cell acute lymphoblastic leukemia (T-ALL)117

and in approximately 3% of adult AML.118 In both T-ALL
and AML mutations are inactivating (frameshift or non-
sense) or affect the second PHD-like domain of the pro-
tein,117,118 and are almost exclusively found in male
patients (unlike BCOR and BCORL1 that are found in
males and females). PHF6 mutations in AML were asso-
ciated with a worse prognosis in univariate but not multi-
variate analysis.22

Mutations affecting TP53 are found in up to 15% of de
novoAML, are frequently biallelic and strongly associated
with a complex karyotype, but are only seen in 1%-2% of
AML-NK.8,119 They behave as a distinct subgroup of AML
that displays primary resistance to therapy and a very poor
prognosis.120 Recently, TP53 mutations associated with
therapy-related AML were shown to have been present
prior to the administration of chemotherapy, suggesting
that a pre-leukemic subclone harboring a TP53 mutation
gained a survival advantage after chemotherapy, rather
than the chemotherapy causing the mutation.121 This sug-
gests that therapy-related and de novo AML associated
with TP53 mutations may have more in common than was
previously thought.

Mutations in cohesin genes

Cohesin is a molecular complex composed of four
major subunits, SMC1A, SMC3, RAD21 and STAG1/2,
with a key role in sister chromatid exchange122 and impor-
tant functions in gene expression and DNA damage
repair.123 Mutations in cohesin genes were found in 5%-
13% of AML, are almost always mutually exclusive of
each other, and are significantly associated with NPM1c
and RUNX1 mutations.8,23,124,125 The incidence of aneu-
ploidy is not increased in AMLs with cohesin gene muta-
tions, suggesting that their role in sister chromatid
exchange is not central to their leukemogenic properties
and turning the focus to their effects on gene expression.
One of the probable ways through which cohesin regulates
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gene expression is by mediating long-range communica-
tion between gene promoters and distant regulatory ele-
ments,126 the disruption of which forms a well-established
paradigm in the pathogenesis of hematologic cancers,
including AML.127

Mutations in spliceosome genes

RNA splicing, the removal of intronic sequences from
newly synthesized pre-mRNA, is performed by a large
molecular complex composed of multiple proteins and
small nuclear RNAs (snRNA) known as the spliceosome.
Spliceosome gene mutations in myeloid malignancies can
affect many different genes, including SF3B1, SRSF2,
U2AF1 and ZRSR2. They were first identified in patients
with MDS,128 but are also present in other myeloid neo-
plasms, including 6%-15% of de novo AML.8,129 Of the
two most commonly mutated spliceosome genes in MDS,
SF3B1 is strongly associated with refractory anemia with
ring sideroblasts and a favorable prognosis,128,130 and
SRSF2 with a worse prognosis.18 Patients with SF3B1 and
SRSF2 mutations are significantly older than other MDS
patients, and so are patients with hematologically silent
clonal hematopoiesis driven by these mutations, suggest-
ing that they may only give a clonal advantage in the con-
text of an aging hematopoietic compartment.34 It is not
known how spliceosome gene mutations drive leukemoge-

nesis, as their effects on RNA splicing, and therefore pro-
tein expression, appear to be genome-wide.129 However,
recent studies have identified effects on particular genes
that include known players in leukemogenesis, such as
RUNX1 and ASXL1 (reviewed by Boultwood et al.131).
From a therapeutic standpoint, the role of spliceosome
inhibitors is being investigated as a way to exploit the fact
that cells with spliceosome mutations may be particularly
sensitive to these compounds, as they already have
impaired splicing.131

Mutations in signal transduction genes

Mutations affecting the tyrosine kinase gene FLT3 and
RAS pathway genes are widespread in myeloid malignan-
cies and present in more than 70% of AML-NK.8 FLT3 is
targeted by ITD and tyrosine kinase domain (TKD) muta-
tions (Figure 4), both of which are associated with consti-
tutive activation of the kinase and of downstream signal-
ing pathways that drive cellular proliferation, such as RAS
(ITD and TKD) and STAT (ITD). FLT3-ITD mutations are
found in 35%-40% of AML-NK,8,132 confer a poor progno-
sis,79,82,133 and significantly co-occur with NPM1 and
DNMT3A mutations.8 FLT3-TKD mutations are less com-
mon, but may also impart a less favorable prognosis
amongst younger AML patients.134 Non-synonymous
NRAS and KRAS mutations are widespread in human can-
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Figure 4. Mutations affecting the gene for the FLT3 tyrosine kinase in acute myeloid leukemia. The protein domains of
the FLT3 tyrosine kinase are shown and the sites of somatic mutations found in de novo acute myeloid leukemia (AML)
and those that mediate resistance to FLT3 inhibitors indicated. Of note, mutations affecting D835, I836 and N676 can
be found in both de novo AML and during/after therapy with FLT3 inhibitors as they mediate resistance to these drugs.  



cer and are also found in 10%-15% of AML-NK,8,82 whilst
mutations in the RAS regulator PTPN11 are mutated in just
under 10%.8 FLT3-ITD mutations present an attractive
therapeutic target, and FLT3 kinase inhibitors can indeed
achieve initial disease control in AML. However, their
efficacy is limited by acquired resistance associated with
mutations in the tyrosine kinase domain of the gene.135,136

Strategies to overcome acquired resistance, such as the use
of FLT3-specific inhibitors (most of the currently avail-
able agents inhibit other tyrosine kinases such as KIT137

causing dose-limiting hematopoietic toxicity), and the
development of new molecules active against TKD mutant
FLT3136,138 are being pursued. However, these approaches
need to take into account the fact that signal transduction
mutations including those affecting FLT3 are usually
acquired late in AML evolution and their targeting is
unlikely to eliminate ancestral clones or co-existing sub-
clones of the disease carrying different driver muta-
tions.28,139

Conclusion

More than 40 years after they were first introduced,
cytotoxic chemotherapies continue to form the mainstay
of AML therapy. Scientific advances made over this peri-
od, and accelerated by recent developments in genomic
technologies, have brought our understanding of the
molecular pathogenesis of the least well understood AML
subgroup, AML-NK, to a level which permits optimism
that significant rational therapeutic advances are impend-
ing. However, although some of the leukemogenic muta-
tions discussed above offer themselves as drug targets,
others do not, are less well understood and pose much
more difficult challenges. Nevertheless, progress in the
last few years has continued at an unprecedented rate and
there is a pervasive sense that therapeutic breakthroughs
are forthcoming.
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