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Biology of Hodgkin’s lymphoma

Introduction
In the current WHO lymphoma classifica-

tion, Hodgkin lymphoma (HL) is subdivided
into a classical form and a nodular lympho-
cyte predominant form.1 Classical HL,
which accounts for about 95% of cases, is
further subdivided into nodular sclerosis,
mixed cellularity, lymphocyte-rich, and
lymphocyte depleted HL. This subclassifica-
tion is largely based on differences in the
morphology of the tumor cells and the his-
tological picture.

HL is a very peculiar and hence fascinat-
ing malignancy, due to several specific fea-
tures. First, the tumor cells, named
Hodgkin and Reed/Sternberg (HRS) cells in
classical HL and lymphocyte predominant
(LP) cells in nodular lymphocyte predomi-
nant HL (NLPHL), are rare in the lym-
phoma tissue and usually account for only
about 1% of the cells. The vast majority of
other cells in the lymphoma tissue resem-
bles an inflammatory infiltrate and is com-
posed of T cells, B cells, plasma cells, neu-
trophils, eosinophils, histiocytes, mast cells,
and others. Although the tumor cells are
rare, HL is still a fatal disease if left untreat-
ed (with some exceptions for NLPHL).2

Second, whereas in all other lymphomas,
the tumor cells retain key immuno-pheno-
typic and gene expression similarities with
their cells of origin, HRS cells in classical HL
show a very “mixed” phenotype, which
does not resemble any normal cell of the
hematopoietic system.3 Third, although
deregulation of numerous signaling path-
ways is a hallmark of all leukemias and lym-
phomas, it appears that HRS cells are rather
unique in the extent to which multiple sig-
naling pathways show a deregulated and
partly aberrant activation in these cells.

Deregulated transcription factor 
networks in HRS cells

The detection of rearranged and somati-
cally mutated immunoglobulin (Ig) variable
(V) region genes in isolated HRS and LP cells
unequivocally established the mature B cell
origin of these cells, as Ig gene rearrange-
ments and somatic hypermutation are B cell
specific-processes.4–7 LP cells of NLPHL also
show a mature B cell phenotype, with
expression of key B cell transcription factors
(e.g., Bcl-6, Pax-5, Oct-2) and differentiation
markers (e.g., CD20).8 However, HRS cells of
classical HL express only few B cell markers
and express multiple markers of other
hematopoietic cell types, which was one
reason why the origin of HRS cells has been
enigmatic for a long time.9–11 As such a dra-
matic “reprogramming” to a mixed-lineage
phenotype is unique among lymphoid
malignancies, this is likely a key factor for
HL pathogenesis. Thus, there is much inter-
est in understanding the mechanisms that
cause this loss of the B cell phenotype and
the upregulation of genes not normally
expressed by B cells. Several factors con-
tributing to the “reprogramming” have been
identified in recent years. The B cell tran-
scription factors Oct-2, BOB1, and Pu.1 are
strongly downregulated in HRS cells, which
explains why many of their target B cell
genes are also not expressed.10,12,13 The silenc-
ing of these and other factors is also influ-
enced by epigenetic mechanisms, including
DNA methylation in the promoter regions of
these genes.14 Another main B cell transcrip-
tion factor, E2A, is still expressed, but its
activity is blocked in HRS cells by high levels
of the two E2A inhibitors ABF-1 and ID2.15,16

Notably, ID2 is normally expressed by natu-
ral killer and dendritic cells, supporting their
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differentiation and inhibiting a B cell development of
lymphoid precursors. HRS cells also express the impor-
tant myeloid colony stimulating factor 1 receptor
(CSF1R).17 The mechanism for its aberrant expression in
the HRS cells involves the reactivation of an endoge-
nous retrovirus located upstream of the CSF1R gene.17

The lost suppression of this retroviral element is at least
partly caused by downregulation of the corepressor
CBFA2T3.17 This downregulation appears to affect the
expression of many other endogenous retroviral
sequences, so that potentially many genes may be aber-
rantly expressed in HRS cells through the activity of
reactivated retroviral elements. HRS cells also express
the T cell transcription factors, Notch1 and GATA3.18–20

Notch1 is a main T cell lineage differentiation factor,
and in early lymphocyte development, suppresses B cell
genes and thus a B cell development, and promotes T
cell differentiation. GATA3 is typically expressed by T
helper type 2 cells. We recently showed that the high
activities of Notch1 and NF-κB in HRS cells contribute
to aberrant GATA3 expression in these cells and that
GATA3 activity plays a role in the cytokine expression
and signaling pattern of these cells.21 Further factors that
have been implicated in the downregulation of B cell
genes in HRS cells include the polycomb group gene
BMI-1, active STAT5, and in the Epstein–Barr virus
(EBV)-positive cases, the EBV-encoded genes latent
membrane protein 1 (LMP1) and latent membrane pro-
tein 2a (LMP2a) (reviewed in ref.3).

Thus, multiple factors contribute to the grossly dereg-
ulated gene expression program in HRS cells. However,
it is still not clear how this “reprogramming” of the HRS
cells is initiated, and whether so far undetected onco-
genic events are involved in this process.

Mechanisms causing constitutive NF-κB activity

The transcription factor family NF-κB consists of five
members – Rel, RelA (p65), RelB, p50, and p52 – which
function as homo- or heterodimers.22 A canonical and a
non-canonical NF-κB signaling pathway is distin-
guished. In the canonical pathway, NF-κB is kept inac-
tive by binding to IκBa or other members of the IκB
family in the unstimulated stage, which retains the NF-
κB dimers in the cytoplasm. Upon activation of the NF-
κB signaling pathway, IKK kinases induce the degrada-
tion of the IκB factors, so that the NF-κB dimers can
translocate to the nucleus and activate the transcription
of their target genes.22 In the non-canonical pathway,
inactive precursor proteins are expressed in the absence
of stimulatory signals. Upon stimulation of this path-
way, the NIK kinase processes the p100 precursor of
p100/RelB heterodimers into the active p52 form, which
then translocate as p52/RelB dimers into the nucleus.
NF-κB activates multiple genes involved in inflamma-
tion, survival, and proliferation, including IL6, IL13,
CCL5, BclXL, and FLICE inhibitory protein (FLIP). In
normal B cells, NF-κB is only transiently activated.
However, several types of B cell lymphomas, including
HL, show a constitutive activation of NF-κB. The patho-
genetic role of this activation is evident from the obser-
vation that inhibition of NF-κB in HL cell lines causes
the apoptotic death of the cells.23

Multiple mechanisms likely contribute to the consti-
tutive NF-κB activation in HRS cells. First, HRS cells
express several surface receptors known to activate NF-
κB, including CD30, CD40, and RANK.8 HRS cells are
often in direct contact with CD40L expressing T cells,
and CD30L-positive eosinophils, and mast cells are reg-
ularly seen in the HL microenvironment, suggesting lig-
and-mediated activation of the CD30 and CD40 recep-
tors.24–26 Signaling through Notch1, TACI, and BCMA
presumably also contributes to NF-κB activation.8

Second, in about 30–40% of cases of classical HL, the
HRS cells are infected by EBV, and in these cases, LMP1
is expressed, which is known to mimic an activated
CD40 receptor and activate NF-κB.27 Third, genetic
lesions in HRS cells play an important role in the dereg-
ulated NF-κB activity. These lesions include genomic
gains of the NF-κB factor Rel and of the NF-κB activat-
ing kinase NIK, and inactivating mutations in the genes
NFKBIA (encoding IκBa) and NFKBIE (encoding IκBe).
Gains of Rel and NIK are found in about 40% and 20%
of cases, respectively,28–30 whereas NFKBIA and NFKBIE
mutations have been detected in approximately 10% of
cases.31–35 We and others recently identified mutations in
the TNFAIP3 gene, encoding the NF-κB inhibitor A20, as
a frequent genetic lesion in HRS cells: 40% of HL cases
showed such mutations.36,37 TNFAIP3 mutations are also
frequent in classical HL cell lines, as four out of six lines
in the initial analysis showed inactivating TNFAIP3
mutations.37 In the SUP-HD1 classical HL cell line, we
also recently detected an inactivating mutation in exon
2 (Figure 1). Interestingly, most mutated HL cases were
EBV-negative, and TNFAIP3 inactivation was seen in
70% of EBV- cases of classical HL.37 These findings also
prompted the analysis of further regulators of the NF-κB
pathway for mutations, but mutations in the NF-κB
inhibitors CYLD and TRAF3 were rare. CYLD inactiva-
tion was found in one of eight HL cell lines analyzed,
but in none of ten primary cases of classical HL.38

Similarly, destructive TRAF3 mutations were identified
in one of six classical HL cell lines studied, but not in iso-
lated HRS cells from seven cases of classical HL (own
unpublished data).

Considering the various types of genetic lesions in
components of the NF-κB pathway in HRS cells, the
question arises whether these are cooperating or mutu-
ally exclusive events. Indeed, for many cancers, the con-
cept has been proposed that there is usually only one
genetic lesion per oncogenic pathway,39 and the obser-
vation that TNFAIP3 mutations are largely restricted to
EBV-negative cases of classical HL (see above) shows
that these NF-κB activating events are largely mutually
exclusive. For the other lesions, this issue cannot be
answered with primary cases, as for all the genes ana-
lyzed by us and others, independent collections of cases
were studied. However, we have a clearer picture for
the HL cell lines (Table 1). Notably, several line show
genetic lesions in more than one of the oncogenes and
tumor suppressor genes of the NF-κB pathway.32–34,37,38

Therefore, it appears that we have the unusual situation
that multiple genetic lesions cause the deregulation of
one transcription factor. As some mutations affect the
canonical and others the non-canonical NF-κB pathway,
it appears to be a selective advantage for the HRS cells
to deregulate both arms of this pathway, which likely
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Figure 1. TNFAIP3 mutation in HL cell line SUP-HD1. PCR amplification and sequence analysis of the coding exons of
TNFAIP3 in the classical HL cell line SUP-HD1 according to the protocol published in ref.37 revealed that SUP-HD1 harbors
a frameshift-causing insertion (which is largely a duplication of the sequence further 3’) in exon 2. The 10 bp insertion
is underlined. As only the mutated sequence was obtained, this is either a homozygous mutation (perhaps caused by an
uniparental disomy event), or the other allele of TNFAIP3 is deleted. In any case, no functional A20 can be generated. The
corresponding aminoacid sequences are given above the wild type and below the SUP-HD1 DNA sequences. The 3’ part
of exon 2 is shown. The SUP-HD1 exon 2 sequence has been submitted to the EMBL database under accession number
FR775799.

leads to deregulation of more NF-κB target genes than
through activation of only one of the pathways.
Moreover, one may speculate that because of the multi-
level regulation of NF-κB activity, a mutation in only
one component would not be sufficient to cause the
very strong constitutive NF-κB activity in HRS cells.

A recent gene expression profiling study of isolated LP
cells of NLPHL revealed that also these lymphoma cells
show constitutive NF-κB activity.40 However, the mech-
anisms for this activity appear to be quite distinct from
those identified in HRS cells of classical HL. LP cells do
not express CD30, they are not surrounded by CD40L
expressing T cells, they are virtually never EBV-infected,
there is no indication for Rel gains, and inactivating
mutations in NFKBIA or TNFAIP3 were not found in a
molecular analysis of ten cases of NLPHL and the LP
cell-derived cell line DEV.41

The pathogenetic role of the 9p24.1 
amplification in HRS cells

In 2000, Joos and colleagues reported that gains or
amplifications of the chromosomal region 9p23-p24 are
frequent in HRS cells and can be found in about a third
of cases.42 Later, they showed that such gains were also
present in three of four HL cell lines analyzed.43 9p24
gains are also frequent in primary mediastinal B cell
lymphoma (PMBL), a B cell lymphoma with numerous
similarities to classical HL.8,44 The amplified region har-
bors the JAK2 gene, an important factor of the
JAK/STAT cytokine signaling pathway. This pointed to

a potential role of the JAK/STAT pathway in HL patho-
genesis. Constitutive activation of this pathway was
indeed validated, as active forms of STAT3, STAT5, and
STAT6 were found in HRS cells.45–48 Moreover, inhibi-
tion of STAT activity in HL cell lines impaired cell pro-
liferation.46,49,50 A role of JAK/STAT deregulation in HL
pathogenesis was further supported by the finding that
HRS cells in about 40% of HL carry somatic mutations
in the SOCS1 gene, a main negative regulator of STAT
activity.51 Activation of the JAK/STAT pathway in HRS
cells also involves signaling through cytokines, in partic-
ular IL13 and IL21.47,52,53 Thus, there is strong evidence
that activation of the JAK/STAT signaling pathway
through cytokine signaling and genetic lesions is a major
factor in HL pathogenesis.

Two recent publications now indicate that the 9p24
amplifications have additional pathogenetic conse-
quences. Green et al. revealed that the programmed
death-1 (PD-1) ligand genes 1 and 2 (PD-L1 and PD-L2,
respectively), which are also located in the amplicon,
show an increased expression in the HRS cells of those
HL cases with gains of the 9p24 region.54 PD-1 is an
inhibitory receptor expressed on T cells, and there is
evidence that HL-infiltrating T cells are functionally
impaired through PD-1 ligand/PD-1 signaling.55,56 Thus,
increased PD-L1 and PD-L2 expression by HRS cells
likely contributes to the immunosuppressive microenvi-
ronment in classical HL. Enforced PD-1 ligand expres-
sion in HRS cells with 9p24 gains is not only due to
increased gene dosage of the PD-L1 and PD-L2 genes,
but also through further transcriptional upregulation of
these genes by JAK2.54

Based on an RNA interference screen of genes located
in the 9p24 amplicon region, Rui and colleagues identi-
fied a further gene in this region with pathogenetic rel-
evance.57 Downregulation of expression of the histone
demethylase JMJD2C was toxic for a HL cell line and
cell lines of PMBL, which harbored the 9p24 amplifica-
tion. Importantly, not only JMJD2C modulates histones,
but also JAK2 has been reported to modify histones, by
phosphorylating histone H3. Indeed, further experi-
ments showed that both proteins modulate the epige-
netic state in HL and PMBL, and that they cooperate in
this regard to promote proliferation and survival of HRS
and PMBL cells.57

Taking these findings together, the pathogenetic role
of the amplification of 9p24 in HRS cells (and PMBL)
involves at least four genes, and the tumor-promoting
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Table 1. Multiple genetic lesions in regulators of NF-κB
activity in HL cell lines.

HL cell line NFKBIA NFKBIE TNFAIP3 CYLD TRAF3 REL

L428 + + - - - +
L591 - n.a - - n.a. n.a.
L1236 - n.a. + - - +
KMH2 + n.a. + + - +
HDLM2 - n.a. + - - n.a.
UHO-1 n.a. n.a. + - + n.a.
SUP-HD1 n.a. n.a. + - - n.a.

+ denotes presence of a genetic lesion, - a wildtype sequence. For NFKBIA, NFKBIE, TNFAIP3, CYLD, and TRAF3, inacti-
vating point mutations and deletions are considered; for REL chromosomal gains. L591 is the only EBV-positive HL cell
line. n.a.: not analyzed



mechanisms include activation of the JAK/STAT
cytokine signaling pathway (JAK2 gains), suppression of
tumor-infiltrating T cells (PD-L1 and PD-L2 gains), and
epigenetic remodeling (JAK2 and JMJD2C gains).

The search for HRS stem cells

In several types of cancers, there is convincing evi-
dence that not all tumor cells have the same prolifera-
tive capability and that a small subset of cancer stem
cells is mainly responsible for sustaining the tumor
clone.58 As cancer stem cells show differences in their
gene expression to the bulk of the tumor clone and
often appear to be more chemotherapy resistant than
their descendents, the identification and characteriza-
tion of cancer stem cells is also of high clinical relevance.

In HL, years before the issues of cancer stem cells
became an important topic, there was a discussion
whether the rare morphologically visible HRS cells
indeed account for the whole tumor clone, or
whether other tumor clone members might exist
among the many other cells in the lymphoma
microenvironment. It was also debated what the rela-
tionship between the mononuclear Hodgkin and the
multinucleated Reed/Sternberg cells is.

The detection of rearranged immunoglobulin heavy
and light chain V region genes firmly established the
derivation of HRS cells from mature B cells.5,6 Moreover,
as most rearrangements carry a high load of somatic
mutations, and as the process of somatic hypermuta-
tion, which generates such mutations, is linked to anti-
gen-activated B cells proliferating in germinal centers,59

HRS cells derive from germinal center B cells or their
descendents, with the pattern of mutations suggesting a
derivation from germinal center B cells that normally
would have undergone apoptosis.5,60 Importantly, as all
HRS cells of a clone carry the same Ig V gene rearrange-
ments and (with very few exceptions) the identical
somatic mutation pattern, putative HRS stem cells – if
they exist – must carry the same Ig V gene rearrange-
ments and mutations and hence must also derive from
mature B cells.

Regarding the relationship between the mononucleat-
ed Hodgkin and the multinucleated Reed/Sternberg
cells, there is now firm evidence from studies with HL
cell lines that Hodgkin cells give rise to Reed/Sternberg
cells through endomitosis.61–63 Cell fusion is not involved
in the generation of Reed/Sternberg cells from Hodgkin
cells, or the generation of the HRS cell clone as such.64,65

Reed/Sternberg cells had little proliferative capacity in in
vitro studies,61–63 and it has been suggested that nuclear
disorganization and telomere loss in Reed/Sternberg
cells causes their failure to undergo further cell divi-
sion.66 Thus, the mononucleated Hodgkin cells represent
or harbor the proliferative pool of tumor cells that give
rise to more Hodgkin cells and to Reed/Sternberg cells.

The question whether the HRS tumor clone consists
of more cells than the typical CD30+ HRS cells was
addressed in several studies. First, in two HL cases in
which the HRS cells showed numerical chromosomal
abnormalities, it was analyzed whether cells with such
abnormalities were also present among CD30- cells in
the HL microenvironment. A few CD30- cells with tri-

somies as seen in the respective HRS cells were report-
ed, arguing for the existence of clone members among
the CD30-negative cells.67 However, numerical abnor-
malities are not a stringent clonal marker, and increased
frequencies of normal B cells with chromosomal abnor-
malities have actually been reported for HL.68 Second, it
was argued that in EBV+ cases of HL, in which the HRS
clone shows a monoclonal viral infection pattern, puta-
tive HRS clone members not visible as CD30+ HRS cells
must also be EBV-infected. However, in a detailed study
of microdissected HRS cells and CD30-EBV+ cells, few,
if any of the small EBV-infected cells belonged to the
HRS clone, arguing against the existence of HRS clone
members among CD30- cells in the HL tissue.69 In a
third study, it was reported that clonotypic B cells can
be found in the peripheral blood of HL patients. These
cells had a B cell phenotype (CD19+ and surface Ig+)
and expressed the putative stem cell marker ALDH
(aldehyde dehydrogenase).70 However, this study was
criticized as none of the data presented unequivocally
demonstrated a clonal relationship between the
ALDH+CD19+ B cells in the peripheral blood and HRS
cells in the tissue.71 In another study that searched for
HRS clone members in the peripheral blood of HL
patients, using a highly sensitive PCR with HRS clone
specific Ig V gene primers, no HRS cell-specific amplifi-
cates were obtained, arguing that HRS clone members
are very infrequent or absent in the peripheral blood.72 It
is also important to consider that B cell clones generated
in a germinal center can be very large.73 Thus, one may
potentially find with highly sensitive assays other mem-
ory B cell descendents from a germinal center B cell
clone that gave also rise to an HRS cell clone. These
cells, although clonally related to the HRS cells, may be
non-malignant B cells, or pre-malignant cells that share
some transforming events with the HRS cells. As these
clone members will likely differ in the Ig V gene somatic
mutation pattern from the HRS cells, a detailed study of
the Ig gene rearrangements is needed to distinguish
between putative HRS stem cells and pre-malignant
clone members (Figure 2).

Another approach to search for a subpopulation of
cells among the HRS cells with specific features in terms
of proliferation and chemotherapy resistance involves a
flow-cytometric strategy. The increased chemoresis-
tance of some cancer stem cells appears to be closely
related to their expression of drug transporters of the
ABC family, which expel chemotherapeutical drugs
from the cells. As ABC transporters also extrude the
Hoechst dye 33342, negativity for Hoechst dye staining
has been used to identify ABC+ cells, which are called
‘side population cells’, in flow cytometry studies.74,75

Although cancer stem cells and side population cells are
defined through different features of tumor cell subpop-
ulations, these populations appear to overlap in several
instances.74,75 Two recent studies addressed the issue
whether side population cells exist in HL cell lines. Side
population cells were indeed found, accounting for less
than 1% of cell line cells. These cells were small (i.e.,
Hodgkin cells), chemoresistant, and could repopulate a
mixed population of Hodgkin cells and Reed/Sternberg
cells.76,77 Thus, these cells fulfill key criteria of tumor
stem cells.78 However, not all HL cell lines harbored side
population cells,77 arguing against a general role of these
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cells for the maintenance of the HRS tumor clone, and it
remains to be shown whether side population cells
clonally related to the HRS cells also exist in vivo.

Taken together, although the identification of side
population cells in some HL cell lines and some other
observations might indicate that HRS stem cells exist, it
still remains unclear whether such cells exist in vivo in
the patient, and if so, what their role is in the establish-
ment and perpetuation of the HRS tumor clone.
Moreover, it will be important to clarify whether side
population cells are responsible for treatment failure in
some patients.
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