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Introduction

With the introduction of BCR-ABL kinase
inhibitors, chronic myeloid leukemia (CML)
has become a rather indolent type of leukemia.
The overall survival of CML patients is close
to 90% after eight years, and emergence of
TKI resistance and progression into accelerat-
ed phase and blast crisis is exceedingly rare if
patients achieve respective response mile-
stones according to European LeukemiaNet
(ELN) guidelines.1 However, CML stem cells
are resistant to TKI and life-long treatment is
important to sustain remission and prevent
progression. This comes at the expense of
side-effects, potential long-term toxicities and
extremely high costs. 

Unraveling the mechanisms of CML stem
cell persistence is a prerequisite to develop
new strategies that may ultimately convert an
infinite into a transient form of therapy. This is
an ambitious challenge, because residual CML
stem cells closely resemble their normal coun-
terparts, which would explain why an efficient
targeting of biological, biochemical or genetic
differences between CML and normal stem
cells is so difficult.2 Pre-clinical data, includ-
ing those from CML animal models, have
uncovered numerous novel drug candidates
for this purpose,3 but for a variety of reasons
none of these have so far entered advanced
stages of clinical development. In the light of
these facts, it may perhaps not come as a sur-
prise that a relatively out-dated substance,
interferon alpha 2a or 2b (IFN), whose mode

of action in CML is, at best, only vaguely
understood, is currently being tested in clinical
trials as a combination partner for TKI. This
IFN revival is reasonable mainly for three rea-
sons. First, IFN / imatinib combination thera-
py was shown to be significantly more effi-
cient than imatinib monotherapy in inducing
molecular end points.4-8 Secondly, combining
low doses of pegylated IFN (pegIFN) with
imatinib is clinically feasible and effective.9
Finally, based on different effector mecha-
nisms, this combination may hold the promise
of also targeting CML stem cell persistence.
Therefore, I will briefly summarize key CML
stem cell characteristics and highlight those
that govern imatinib / TKI insensitivity.  

CML stem cells: features governing 
imatinib response 

Although BCR-ABL is the causative onco-
gene of CML,10,11 it is comparably weakly
transforming. As opposed to oncogenes such
as MOZ-TIF or MLL-AF9, expression of
BCR-ABL does not directly confer self-
renewal ability to committed progenitor
cells.12-14 CML leukemogenesis must, there-
fore, involve expression of BCR-ABL in the
context of a hematopoietic stem cell providing
intrinsic self-renewal capacity. Moreover,
recent evidence suggests that BCR-ABLp210

when expressed from the endogenous promot-
er in the Bcr-locus is incapable of inducing
CML.15 This observation would be in line with
the finding that BCR-ABL mRNA can fre-
quently be detected in healthy donors who will
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never develop CML.16,17 It also supports the model that a
fully malignant, disease-perpetuating CML stem cell clone
only emerges over time, starting from a pre-malignant,
BCR-ABL-positive stem cell by a sequential accumula-
tion of additional genetic and / or epigenetic changes.18

Clinical observations, and particularly imatinib discon-
tinuation studies, provided extremely valuable insights
into the biology of persisting CML stem cells. They are
considered to be a small BCR-ABL-positive population
which resides in the CD34+/CD38–/CD90+/lineage-19 or a
CD34-/lin- stem cell compartment.20 However, in contrast
to numerous in vitro studies, which so far mainly imply a
relatively homogenous TKI insensitivity of the entire
CD34+/CD38– stem cell fraction,21-24 longitudinal in vivo
data from CML patients under imatinib or dasatinib treat-
ment provide intriguing new insights. Accordingly, both
the CD34+/CD38+, but particularly also the
CD34+/CD38–compartment (enriching for stem cells), are
in vivo very rapidly cleared from Philadelphia chromo-
some-positive leukemic cells.25 Therefore, it seems justi-
fied to propose that only a very minor fraction of
CD34+/CD38– CML stem cells are capable of sustaining
long-term survival in a BCR-ABL-kinase independent
manner (Table 1). 

Under circumstances of permanent kinase inhibition
(with imatinib or any other TKI), residual CML stem cells
are apparently genetically quite stable. This is evidenced
by a lack of progression or of TKI resistance development
once a deep molecular remission has been achieved.26-28

However, if kinase activity is restored upon imatinib ces-
sation, persisting CML stem cells are capable of fully
reconstituting frank CML within weeks or months. Why a
minute fraction of stem cells escape imatinib’s selective
pressure is still not completely understood. Various genes
and pathways (e.g. Foxo, Wnt/catenin, AKT/mTor, JAK2,
ALOX5, SIRT1, PP2A, BCL6 / p53, NFAT, Hedgehog
and cytokines such as SDF, PTH, GM-CSF) or external
stimuli by the stem cell niche have been associated with
CML stem cell persistence. Most of these candidates have
been derived from CML mouse models and were con-
firmed in vivo as reasonable therapeutic targets to over-

come persistence.3 However, a detailed description of
them would be beyond the scope of this paper (for further
review see O’Hare et al.2 and Chomel and Turhan29). 

Table 1 summarizes clinical and therapeutic implica-
tions of human CML stem cell characteristics that govern
the biology of imatinib persistence and may be also rele-
vant targets of IFN signaling.

IFN-signaling

How interferon works: the IFN signaling pathway 

Interferon has come of age. After the first discovery of
interferon in 1957, diverse interferon proteins have been
identified and were classified as type 1 interferon (a,b),
type 2 interferon (g) and type 3 interferon (IFN g1-3).53

Only the type 1 interferon, IFN, and IFN signaling is
briefly presented here, as it is relevant for CML therapy. 

In short, IFN binds to the type 1 IFN receptor subunits,
IFNAR1 and IFNAR2, on the cell surface of hematopoiet-
ic cells. The latter are associated with Janus activated
kinase 1 (JAK-1) and tyrosine kinase 2 (Tyk2) (Figure 1).
Upon ligand binding, JAK-1 and Tyk2 become phospho-
rylated and in turn activate signal transducer and activator
of transcription (STAT) proteins, mainly STAT1, STAT2,
but also STAT3 and STAT5.54-56 Phosphorylated (activat-
ed) STAT1 and STAT2 form a complex with unphospho-
rylated IRF9 to build the ISGF3 complex, which translo-
cates into the nucleus and initiates transcription of inter-
feron sensitive genes (ISG) by binding to specific sites in
their promoters, such as the interferon stimulated response
(ISREs) or gamma interferon activation site (GAS)-ele-
ments (Figure 1). Which ISG become activated upon IFN
binding to mediate apoptosis, cell cycle control, target
gene transcription57 or immune modulatory effects
depends on a multitude of factors that cannot be elucidated
in great detail here. Interferome v.2.0 provides a useful
platform to search for a microarray database for cell type
specific target genes activated by interferons in different
species in vivo or in vitro.58
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Table 1. Features of CML stem cells that govern biology of imatinib response and CML persistence.

Features of CML stem cells Clinical / therapeutic consequence
(governing imatinib biology) 

BCR-ABL kinase activity is potently inhibited by TKI30,31 TKI prevent CML progression and improve survival1,32

BCR-ABL-dependent expression of tumor-associated antigens may restrict anti-leukemic immune responses33,34

Lack of BCR-ABL addiction22,23,30,35 Indefinite TKI treatment of CML1
CML relapse after TKI discontinuation36-39

CML stem cell persistence21,39-41

Lack of genetic pressure to select for kinase mutations and absence of de novo TKI resistance 
development during deep molecular remission26,27

Failure of second-generation TKI to overcome stem cell persistence
BCR-ABL independent survival pathways as targets to overcome persistence29

Acquisition of self-renewal in progenitors during CML Low therapeutic efficacy of TKI during AP/BC 
progression42,43

High BCR-ABL expression at primary diagnosis22,23,44,45 Rapid upfront elimination of BCR-ABL over-expressing clones may restrict progression46,47

Low BCR-ABL expression during persistence41,48 CML persistence mechanism41,49 

Maintenance of low level oncogene (BCR-ABL) activity is tumor suppressive50-52 

Freedom from progression26,27 and increased overall survival as a consequence of deep molecular remission28



Besides activating signaling via the JAK-STAT path-
way, the IFNAR signaling network is further enriched by
feeding alternative pathways such as PI3K-Akt-mTor,59,60

MAP kinase (including erk and p38-MAPK),61 C3G-Rap-
162 or CrkL-STAT563,64 (reviewed by Platanias54) in a JAK-
STAT-independent manner (Figure 1). The outcome of any
of these signaling activities depends on the respective cell
type and differentiation status (primitive stem cells, imma-
ture progenitor cells, differentiated immune cells) and
concurrent signaling input from other pathways. In CML,
the situation is further complicated by the presence of
BCR-ABL, because aberrant BCR-ABL signaling inter-
feres with all of the aforementioned IFN-employed path-
ways with a hardly predictable outcome.

Clinical activity of IFN in CML

Conventional IFN

The first in vitro reports linking IFN with inhibitory
effects on hematopoietic progenitor cell proliferation were
published over four decades ago.65-67 It was subsequently
noted that IFN also had clinical activity in the treatment of
neoplasia, namely, breast cancer, multiple myeloma and

lymphoma.68 This stimulated the further clinical develop-
ment of IFN in CML.69-72 These early trials revealed an
unprecedented CML treatment efficacy for IFN. Rates of
hematologic complete remission (CHR) with IFN
monotherapy ranged between 22% and 71%.69,70,73 Other
studies report that 10-30% of patients achieved a complete
cytogenetic remission (CCyR) with IFN.74-77

The 5-year overall survival with IFN was 50-59% and
compared favorably with the overall survival (OS) of 29-
44% for patients receiving busulfan or hydroxyurea.74-77 In
an analysis of 1573 IFN-treated patients, the median sur-
vival with IFN was 8.2 years for low-risk patients, 5.4
years for intermediate-risk patients, and 3.5 years for high-
risk patients.78

CCyR has been established as a reliable predictor for
good long-term prognosis. In a European study of 317
CCyR patients under IFN (IFN-CCyR), the OS after ten
years was 72%. It was 89% for a Sokal low-risk cohort.79

These data were corroborated by another study on 512
patients, of whom 140 (27%) achieved a CCyR with IFN.
In this study, the OS was 78% after ten years.80 Two con-
trolled trials suggested that a combination of IFN with
chemotherapy (cytarabine and hydroxyurea) increases sur-
vival.81,82 Before imatinib became standard therapy, IFNa
plus cytarabine was considered the standard of care for
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Figure 1. Cross-interference between BCR-ABL- and IFN- signaling cascades and possible biological effects. Of note, inhi-
bition of BCR-ABL with imatinib or second-generation tyrosine kinase inhibitor (TKI) would restore IFN-initiated physiolog-
ical signaling flux and thus mechanistically explain a TKI / IFN treatment synergism.



CML patients that could not undergo allogeneic stem cell
transplantation.81

Pegylated IFN

Pegylated IFN formulations were developed to increase
IFN exposure through a linear pharmakokinetic profile
and to limit side-effects. Whereas a phase I study indeed
suggested that pegylated IFN 2b induces improved
response rates compared to conventional IFN 2b, 2 con-
trolled trials comparing IFN 2a with PegIFN 2a83 and IFN
2b with PegIFN 2b84 gave inconsistent results.
Nevertheless, based on the results of the Lipton study, in
which PegIFN 2a nearly doubled the rates of major cyto-
genetic responses compared to standard IFN,83 and the
convincing data from the French and Nordic imatinib /
IFN combination therapy trials,4,5 pegylated IFN is the
preferred IFN drug.  

Comparing features of IFN and imatinib responses

Mechanisms and kinetics 

Tyrosine kinase inhibitors, such as imatinib, specifically
inhibit the causal oncogenic kinase of CML BCR-ABL.
This results in proliferation arrest and apoptosis of the Ph-
positive (Ph+) clone. Responses occur fast. In the IRIS
study, 84% of the imatinib-treated patients, but only
30.3% of the IFN-treated patients achieved a major cyto-
genetic response after 12 months.85 CCyR rates at 18
months were 76.2% in the imatinib group and 14.5% in
the group that was given IFN.85 If a CCyR was achieved,
the median time until CCyR was approximately 16 months
with IFN.80 Thus, responses to IFN occur rather slowly. In
contrast to imatinib, a myriad of possible effector mecha-
nisms are initiated by IFN signaling (Figure 1) including
pro-differentiating, cell cycle inhibitory and direct cyto-
toxic effects. However, also cytokine and complex
immune regulatory effects are supposedly involved in IFN
induced remission.77,86,87

Durability 

Imatinib-induced CCyRs are also more durable than
those achieved with IFN. For example, according to a
European registry study, loss of a CCyR occurs with IFN
at a rate of 12% annually within the first two years. The
probability of a CCyR-loss after five and eight years was
42% and 50%, respectively.79 Although imatinib patients
may also lose their CCyR, these events (loss of cytogenet-
ic remission) are dramatically less frequent. Progressions
in the IRIS study were documented at a rate of 5.1% in the
first year versus only 0.3% in the fourth year of therapy.88

Depth of remission 

The depth of molecular remission with imatinib and
newer TKI steadily increases over time. After eight years
of imatinib therapy, 36.5% and 46% of the patients may
obtain a MR4.528,89 also referred to as UMRD (unde-
tectable minimal residual disease). Comparable molecular
remission data are rare for IFN CCyR patients. In the IRIS
study, it was estimated that 39% had a 3-log decline in
BCR-ABL transcript levels from baseline, as compared

with only 2% in the IFN cohort.90 This suggests a signifi-
cant inferiority of IFN in the induction of molecular remis-
sions. In an earlier study of IFN-CCyR patients, the medi-
an BCR-ABL/ABL ratio was 0.04%.91 Although difficult
to compare with current BCR-ABL PCR standards, this
depth of remission would be roughly equivalent to an
MR3 or MR4. BCR-ABL-positive MRD was evident in
all of 54 tested IFN-CCyR patients.92 This altogether sup-
ports the notion that TKI have a significantly higher
potency in inducing and maintaining sustained and deep
molecular remissions.
Quality 

A unique hallmark of IFN-based remissions is that IFN
can occasionally be successfully discontinued irrespective
of the detectability of Ph+ or BCR-ABL+ minimal residual
disease.7,79,92,93 However, chances of remaining relapse free
directly correlated with remission depth (e.g. BCR-
ABL/ABL ratio <0.045%) and CCyR duration. In con-
trast, none of the imatinib discontinuations that were car-
ried out in patients with detectable BCR-ABL mRNA, i.e.
MRD greater than MR4.5, have been successful.
Discontinuation of imatinib therapy in these patients
unequivocally led to relapse.94,95 Even the majority
(approx. 60%) of patients in whom imatinib is discontin-
ued after having obtained undetectable BCR-ABL mRNA
level subsequently relapse.36-39

In conclusion, imatinib treatment efficacy is strong, but
is strictly dependent on a permanent drug exposure. In
contrast, IFN induction of molecular remission is poor, but
such remissions can sometimes be maintained irrespective
of further IFN exposure if the MRD level is low. 

Supposed mechanisms of cooperativity between
IFN and imatinib

Three prospective trials have suggested that a combina-
tion of pegIFN and imatinib significantly increases rates
of deep molecular remission when compared to imatinib
alone.4,5,8

Furthermore, imatinib discontinuation trials37-39,89

revealed an association between a previous IFN therapy
and the chance of remaining relapse-free after stopping
imatinib. Neither the duration of UMRD before imatinib
cessation, nor the persistence of BCR-ABL DNA predict-
ed relapse.39 It was concluded that a superior, IFN-
induced, immunological control might be involved in pre-
venting relapse in these patients. This view reflects the
classical understanding of an IFN-mediated, immune
stimulatory anti-CML activity. Non-exclusive, alternative
mechanisms of IFN involve effects on CML cell prolifer-
ation, cell cycle, and differentiation (Figure 1). 
IFN-induced anti-leukemic immunity  

The physiological function of IFN is to elicit antiviral
immune responses. In CML, distinct immune-modulatory
effects such as NK- and gd+T-cell expansion have been
linked with sustained treatment responses to IFN.96

Moreover, there is evidence that IFN elicits anti-leukemic
cytotoxic T-cell (CTL) responses.67,97 These CTL specifi-
cally recognize various leukemia-associated antigens on
CML cells such as proteinase 3, WT-1, hTERT or
myeloperoxidase.98
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Evidence supporting a role for proteinase 3 specific
CTL in mediating anti-leukemic immune response is pro-
vided by the finding that only IFN responders harbor pro-
teinase 3-specific CTL.34,98-100 As exemplified by pro-
teinase 3-specific (PR1)-CTL in CML, the size and reper-
toire of anti-leukemic CTL clones underlies permanent
shaping.100 A main determinant of this process is the
leukemia mass. High and low avidity PR-1 CTL have been
found in CML patients. Only high avidity CTL kill target
cells very efficiently. They presumably emerge when the
circulating antigen load is low.100,101 This would predict
that TKI therapy, which dramatically reduces leukemia
mass, favors the emergence of high avidity CTL. TKI
would thus augment the potency of IFN to elicit highly
efficient CTL responses. 

On the contrary, shutting off BCR-ABL kinase activity
during TKI/IFN therapy may inhibit immunogenicity and
limit CTL responses.33,102 This would explain why ima-
tinib patients have lower numbers of circulating PR1-CTL
than IFN-treated patients.34 Consequently, a TKI/IFN
combination therapy should be followed by an IFN main-
tenance period in absence of BCR-ABL kinase inhibition
in order to boost target cell recognition. This is currently
tested in the ongoing CML-V study (EudraCT, n. 2010-
024262-22).
Immune-independent anti-leukemic effects of IFN on CML
progenitor and stem cells

First of all, data from the SPIRIT and Nordic pegIFN /
imatinib combination therapy trials4,5 support the exis-
tence of direct cytotoxic effects of IFN when given in the
context of imatinib. This conclusion is based on data from
the Nordic trial. The 12-month MMR rates were already
superior for pegIFN / imatinib if pegIFN was given for at
least three months. Surprisingly, a longer exposure (> 6
months) did not even further increase MMR rates at 52

weeks.5 Likewise, although 46% of the patients in the
SPIRIT study had stopped pegIFN within the first year,
MMR responses at the 12-month landmark were still sig-
nificantly more frequent in the pegIFN / imatinib cohort.
These data suggest that a short-term exposure to IFN is
sufficient to induce a treatment synergism with imatinib.
This does not evidently rule out that immune effects are
also involved. However, based on the rapid kinetics of
response and the low cumulative doses of IFN used, a
direct synergism between IFN and imatinib at the progen-
itor level seems to be more likely than an acute elicitation
of immune responses. This conclusion is also supported by
in vitro studies. IFN, but not imatinib preferentially
inhibits survival of primitive CML long-term culture initi-
ating cells (LTC-IC). In turn, imatinib, but to a lesser
extent IFN, inhibits colony formation of committed pro-
genitor cells.103 This would imply that the high speed of
molecular remission induction involves dual targeting of
CML hematopoiesis on the level of primitive CML stem,
but also more committed progenitor cells.
Inhibition of BCR-ABL may enable restoration of IFN signaling 

Constitutive BCR-ABL signaling interferes with multi-
ple, if not all, of the IFN signaling pathways104-111 (Figure
1). As a result, members of the IFN signaling cascade (e.g.
IFNAR, STAT5, CRKL, Rac1-p38, PI3K-AKT-mTOR
etc.) are constitutively exploited (inhibited or activated)
(Table 2) and the physiological IFN signaling outcome
such as growth inhibition, proliferation, differentiation, or
apoptosis53-56 is altered by BCR-ABL (Figure 1). This is
exemplified by the Rac1/p38MAPK pathway, a well doc-
umented IFN response pathway mediating anti-prolifera-
tive effects in normal54 and IFN-responsive CML cells.61

BCR-ABL inhibits p38 expression and activation and thus
blunts IFN responsiveness.110,111 BCR-ABL inhibition with
imatinib restores apoptosis sensitivity in a p38-kinase
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Table 2. Interference between BCR-ABL and IFN signaling pathways. Note: common signaling targets of IFN and BCR-ABL
are in part regulated by both IFN or BCR-ABL (activation), but frequently induce a divergent biological outcome. Inhibition
of BCR-ABL-signaling by TKI may restore the physiological IFN response, providing a rationale for synergism between TKI
and IFN treatment.

Upstream regulator BCR-ABL IFN 

Target molecule Biochemical Biological Biochemical Biological 
in CML cells effect consequence effect consequence

IFN receptor (IFNAR) IFNAR degradation105 loss of IFN responsiveness receptor and pathway activation56 growth arrest
differentiation
apoptosis53,54,56

BCR-ABL - -          mRNA suppression112 growth inhibition112

no mRNA regulation113 

CRKL- STAT-5 RKL-STAT5 complex transformation and apoptosis CRKL-STAT5 complex formation63,64 growth inhibition114 via ISGs
formation99 resistance via MYC and BCL-xL 106 

STAT-1 and STAT-3 inhibition of IFN-induced reversal of IFN dependent activation53,54,56 stem cell cycling119 

phosphorylation growth inhibition104 or growth arrest54

STAT1, 3, 5 activation107 transformation

C3G activation BCR-ABL oncogene addiction, transient activation54,62 anti-proliferative responses via p38?
RAP-1 proliferation, apoptosis resistance108,109

PI3K-Akt-mTor activation transformation and activation54,59 pro- and anti-
apoptosis resistance115,116 apoptotic responses54,117

Rac1-p38-MAPK inhibition of p38 loss of IFN response and apoptosis activation (phosphorylation) p38 dependent growth inhibition61,118 

expression and activity110,111 sensitivity to imatinib104,111



dependent manner.111

It has recently been shown that IFN induces cell cycle
entry of normal stem cells in mice119,120 thereby sensitiz-
ing them to undergo apoptosis in response to chemothera-
py.119 It was suggested that imatinib may also be able to
kill CML stem cells if IFN would induce cell cycle entry
of leukemic stem cells. However, the experimental evi-
dence to support this model in CML is still lacking.

Figure 1 summarizes the interference of BCR-ABL and
physiological IFN signaling on various signaling levels,
starting with the expression of the IFNAR. A restoration of
IFN signaling by BCR-ABL inhibition could explain in
part the synergism between imatinib and IFN therapy and
why in combination with imatinib only low doses of IFN
may be sufficient to achieve the therapeutic effects. 

Summary and Conclusions

Ever since the discovery of donor lymphocyte infusions
(DLI) as curative procedure in relapsing patients after
allogeneic stem cell transplantation,121 it became clear that
immune cells are capable of curing CML. IFN employs
and stimulates autologous immune effector cells, includ-
ing T cells, to elicit autologous anti-leukemic immune
responses in CML. 

In contrast, TKI rapidly kill Ph+ mature and primitive
hematopoietic cells, but leave behind a tiny (and poorly
characterized) fraction of “CML stem cells”. These cells
show BCR-ABL-independent long-term survival and are
perceived as the source of relapse in CML patients who
discontinue TKI therapy. 

Recent clinical studies have now demonstrated that
immune-modulatory and cell-signaling effects of IFN
potently synergize with TKI, which is reflected by the
achievement of a significantly superior molecular remis-
sion depth. Based on this and preliminary clinical observa-
tions, the IFN/TKI combination holds promise for increas-
ing the number of patients who can successfully discontin-
ue TKI therapy.

After 2000, most clinicians said “goodbye” to IFN
because the data with imatinib just looked so good. But
some “IFN people” (including our group) kept on looking
for a role for IFN even in the era of TKI. As a result, now,
12-13 years later, we are seeing some interesting and pre-
viously unpredictable data that really justify further study
of the combination. From a personal point of view, it
appears to be an ironic twist of fate that ‘dusty’ IFN, pre-
viously conquered by imatinib, currently returns to ‘fix’
the ‘stem cell weakness’ of imatinib itself. Indeed, if ongo-
ing and future IFN / TKI combination trials such as “Nilo-
Peg” in France or the big German “TIGER” study, which
are prospectively investigating the value of adding IFN to
nilotinib with regard to molecular remission and discon-
tinuation end points  turn out positive, not losing interest
on IFN in CML has definitively been worth its while.
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