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Adverse reactions:  
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JAKAVI  
Now approved for patients with myelofibrosis

What if you could
REDUCE their BURDEN

like NEVER
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Novartis Pharma AG

For more information, visit www.JAKAVI.com 

JAKAVI is indicated for the treatment of disease-related splenomegaly or symptoms in adult patients with primary 
myelo�brosis (also known as chronic idiopathic myelo�brosis), post-polycythemia vera myelo�brosis or post-essential 
thrombocythemia myelo�brosis.

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

VIAAVIKJA

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

w aoN

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

od fevorppw a

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

its wtneitar po

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

sorbifoleyh m

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

si

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 

 

 

 
 

 

 

 

 
 
 
 

  

 

   

 
 



H
e
m

a
to

lo
g
y
 E

d
u
ca

ti
o
n
: 

th
e
 e

d
u
ca

ti
o
n
 p

ro
g
ra

m
 f

o
r 

th
e
 a

n
n
u
a
l 
co

n
g
re

ss
 o

f 
th

e
 E

u
ro

p
e
a
n
 H

e
m

a
to

lo
g
y

A
ss

o
ci

a
ti
o
n

Ed
uc
at
io
n 
pr
og

ra
m
 fo

r t
he
 1
8th

Co
ng

re
ss
 o
f t
he
 E
ur
op

ea
n 
He

m
at
ol
og

y 
As

so
cia

tio
n,
 S
to
ck
ho

lm
, S

w
ed

en
, J
un

e 
13

-1
6,
 2
01

3



H
e

m
a

to
lo

g
y
 
E
d

u
c
a

ti
o

n

Education program for the 
18th Congress of the 
European Hematology 

Association

Stockholm, Sweden
June 13-16, 2013

th
e 

ed
uc

at
io

n 
pr

og
ra

m
 fo

r 
th

e 
an

nu
al

 c
on

gr
es

s 
of

 th
e 

Eu
ro

pe
an

 H
em

at
ol

og
y 

As
so

ci
at

io
n



Copyright Information

©2013 by European Hematology Association. All rights reserved.
ISSN 1872-5503

Hematology Education, the education program of the annual congress of the European Hematology
Association is published by the European Hematology Association (EHA) in one volume per year.

All business correspondence and purchase and reprint requests should be addressed to the European
Hematology Association, EHA Executive Office, Koninginnegracht 12b, 2514 AA The Hague, The
Netherlands; phone: +31 (0)70 345 55 63; fax: + 31 (0)70 392 36 63; e-mail: info@ehaweb.org.

Hematology Education 2013 is available on the internet at http://www.ehaweb.org

No part of this publication may be used (as hereinafter defined) in any form or by any means now or
hereafter known, electronic or mechanical, without permission in writing from the Owner, the European
Hematology Association. For purpose of this notice, the term “use” includes but is not limited to repro-
duction, photocopying, storage in a retrieval system, translation, and educational purposes such as
classroom instruction and clinical and residency training. This publication or any part thereof may be
used for educational purposes at conferences, continuing education courses, and other educational
activity, provided no fee or other compensation is charged therefore. All materials so used must
acknowledge the Owner’s copyright therein as “©2013 by the European Hematology Association.” When
requesting the Owner’s permission to use this publication or any part thereof, please contact the EHA
Executive Office, EHA Executive Office, Koninginnegracht 12b, 2514 AA The Hague, The Netherlands;
phone: +31 (0)70 345 55 63; fax: + 31 (0)70 392 36 63; e-mail: info@ehaweb.org.

Article Citations
Cite articles in this volume by listing Title, Author(s), Hematology Education, 2013, beginning page num-
ber-ending page number.

Hematology Education Rights and Permissions
For instructions on requesting permission to reprint or to order copies of Hematology Education man-
uscripts, figures or tables. Please follow the Right and Permission guidelines (http:// www.ehaweb.org).
Questions regarding permission for Hematology Education should be directed to Publication
(info@ehaweb.org).

The Owner disclaims responsibility for opinions expressed by the authors.



Word of Welcome

On behalf of the EHA Board and the Scientific Program Committee we are proud to introduce to you
the Education Program of the 18th Congress of EHA.  The Education Program covers the whole spec-
trum of basic, translational and clinical research in the broad range of hematologic disorders. We have
assembled a series of presentations from a distinguished cast of internationally recognized individuals.
Their presentations form the basis for the manuscripts in this book. 

To provide you, the congress delegate, with a program that better addresses your needs we asked the
authors to prepare for each manuscript a set of learning goals. These goals you can find in this book as
well as in the Final Program Book. We feel confident that these goals will provide more guidance for the
selection of sessions of interest for hematologists early and later in their career.

The program will provide the state-of-the-art and most recent developments in the biology, clinical
aspects and treatment of benign and neoplastic hematologic disorders, as well as in the field of hemo-
stasis, thrombosis, blood transfusion, transplantation and cell therapy. The impact of recent genetic dis-
coveries through next generation sequencing techniques; the research to identify cancer stem cells and
their interaction with the marrow niche; the relevance of neoplastic subclones; the efforts for identify-
ing novel biologic factors with impact on prognosis and the rationale and results of conventional and tar-
geted therapies will be highlighted in the next chapters. 

All authors, chairs and reviewers are required to disclose their affiliations with pharmaceutical com-
panies. The overview of disclosures can be found in the back of the book.

We trust that, in addition to the spoken presentations, you find the peer-reviewed manuscripts in the
Education Book a valuable source of information and references.

Jorge Sierra
Chair Scientific Program Committee
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The biology of T-cell acute lymphoblastic leukemia

NOTCH1

The NOTCH1 signaling pathway plays a
central role in normal T-cell development
where it is involved in the specification of T
cells and the proliferation and survival of com-
mitted T-cell progenitors.1 NOTCH1 is a trans-
membrane receptor protein that, when bound
by its ligand, undergoes a series of cleavage
events that ultimately leads to the g-secretase-
mediated cleavage and release of the intracel-
lular cytoplasmic domain (ICD). This ICD can
then travel to the cell nucleus where it acts as
a transcription factor to directly control the
expression of a number of genes including
HES1, MYC, IL7R, NFAT and NFkB sub-
units.1 It is now well established that in over
60% of T-ALL cases, NOTCH1 harbors muta-
tions that lead to either ligand independent
activation (HD domain mutations), or increase
its protein stability (PEST domain mutations),
both of which result in the sustained activation
of the NOTCH1 signaling pathway.2 This
ectopic activation of the NOTCH1 signaling
pathway results in uncontrolled regulation of
the downstream genes as listed above as well
as the inactivation of tumor suppressor genes
including p53 and PTEN. The importance of
NOTCH1 in the pathogenesis of T-ALL is fur-
ther demonstrated by the detection of muta-

tions in genes that affect the NOTCH1 signal-
ing pathway. An important example is the E3
ubiquitin ligase FBXW7. This protein normal-
ly acts as a negative regulator of the NOTCH1
pathway by targeting the ICD for ubiquitin-
mediated degradation. Loss-of-function muta-
tions in FBXW7 are present in 25% of T-ALL
samples, and to some extent overlap with the
presence of NOTCH1 mutations.3,4 In addition
to NOTCH1, FBXW7 also targets other
important oncogenes for degradation includ-
ing JUN, Cyclin E, MYC and MYB, indicat-
ing that its loss may have broad oncogenic
effects.5-8

NOTCH1 has previously been described to
be important for leukemia initiating cells
(LICs) in T-ALL, but a clear link between
NOTCH1 mutations and stem cell properties
is still to be resolved.9-13 Recently, two studies
have investigated the role of NOTCH1 in
leukemic stem cells. In the first, Giambra and
colleagues identify NOTCH1 as a repressor of
Protein Kinase C θ (PKC-θ) levels through a
RUNX3-RUNX1 transcriptional network.14

Here, low PKC-θ levels correlated with low
levels of reactive oxygen species (ROS) in
leukemia initiating T-ALL cells. This suggests
one of the functions of NOTCH1 mutations in
T-ALL is to maintain low ROS levels, thereby
maintaining the leukemia stem cell pool. This

Acute lymphoblastic leukemia 

A B S T R A C T

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature thymocytes.
Central to the pathogenesis of T-ALL is the acquisition of activating NOTCH1 mutations and chromo-
somal rearrangements leading to the aberrant expression of TAL, TLX, HOXA or NKX transcription fac-
tor family members. Additional mutations in transcription factors and tyrosine kinase signaling path-
ways have been identified, and the ability to carry out next-generation sequencing in conjunction with
functional screens has further increased our understanding of the genomic aberrations in T-ALL. In our
recent exome sequencing study, we identified on average 8 protein altering mutations in pediatric T-
ALL, while adult T-ALL cases harbored on average 21 mutations. A number of these mutations are likely
drivers of T-ALL initiation, whilst others may either contribute to the evolution of the leukemic clone(s)
or may just be passenger mutations. Here we provide an overview of some of the recent discoveries
that help us to understand how T-ALL can develop and how this information may aid decisions on
which novel treatment strategies could be explored for future therapeutic interventions.

Learning goals

On completion of this activity, participants should know that:
- NOTCH1 mutations are drivers of T-ALL development;
- additional mutations accumulate, making T-ALL a genetically complex and heterogeneous malig-

nancy;
- JAK kinase inhibitors should be explored for the treatment of T-ALL with JAK1, JAK3 or IL7R muta-

tions or JAK2 fusion genes.



finding is in agreement with previous studies demonstrat-
ing an important role for NOTCH1 in T-ALL initiating
cells, and with RUNX1 to be a tumor suppressor gene in
T-ALL.14 In another study, Chiang and co-workers showed
that NOTCH1-induced LIC activity was enriched within
immature T-cell populations, but even in that population
leukemia initiating cells were uncommon (approx. 1 in
1000 cells).15 The same study also demonstrated that
expression of NOTCH1 gain-of-function alleles abolished
long-term HSC activity by promoting T-cell differentia-
tion, thereby adding to the debate on whether NOTCH1
signaling has either a positive or negative effect on HSC
cells.

NOTCH1 may also aid cellular transformation by acting
at the epigenetic level. In this instance, NOTCH1 activa-
tion was shown to antagonize the activity of the polycomb
repressive complex 2 (PRC2) leading to the loss of the
repressive Lysine27 trimethylation of histone 3
(H3K27me3).16 Loss of PRC2 activity in T-ALL, by
knockdown of its essential component EZH2 increased the
in vivo tumorigenic potential of the leukemia cells, and
also in other models a co-operation between NOTCH1
activation and loss of PRC2 was observed. Moreover,
deletions and mutations of EZH2 and SUZ12, both crucial
proteins of the PRC2 complex, were found in 25% of T-
ALL samples, further demonstrating the tumor suppressor
role of PRC2. 

Taken together, these studies continue to reveal that acti-
vation of NOTCH1 results in the deregulation of several
important functions and downstream target genes, some of
which are themselves further modulated by mutations or
deletions. In this way, T-ALL cells escape the normal con-
trol mechanisms that would otherwise protect and guide
normal T-cell development. 

Chromosomal rearrangements affecting 
transcription factor expression

Historically, the identification and characterization of
chromosomal rearrangements has been extremely impor-
tant as these chromosomal defects were among the first
genomic lesions observed and characterized in T-ALL.
The majority of the chromosomal translocations in T-ALL
juxtapositions the promoter of T-cell receptor genes on
one chromosome with a transcription factor on another
chromosome (Table 1). Alternatively, chromosomal dele-
tions and duplications can target transcription factors such
as deletions generating the SIL-TAL1 fusion or duplica-
tions of MYB, respectively.17-19 Collectively, these genom-
ic aberrations lead to the overexpression of one particular
transcription factor that can then drive an entire transcrip-
tional program distinguished by gene expression
profiling.20-22 Clinically, the presence of these chromoso-
mal aberrations and the associated ectopic expression of
these transcription factors is used to classify T-ALL into
specific subgroups that can also be associated with specif-
ic stages of T-cell differentiation arrest (Figure 1). 

Work on the TLX1 and TLX3 transcription factors has
revealed a clear link between the overexpression of these
proteins and their effect on T-cell differentiation. Dadi and
colleagues have shown that TLX proteins interact with
ETS1 and suppress TCRα rearrangement.23 Normally,
TCRα rearrangement is a highly regulated process in
which the TCRα enhancer (Eα), as well as the transcrip-
tion factors LEF1, RUNX1 and ETS1, play an important
role. The work by Dadi et al. demonstrated that TLX1 and
TLX3 can bind ETS1 and thereby disturb Eα activity, pre-
venting TCRα (but not TCRβ) rearrangement. In agree-
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Table 1. T-cell receptor genes and their involvement in chromosomal aberrations in T-ALL.

T-cell receptor genes Partner gene
Gene Gene symbol Chromosome location Gene symbol Chromosome location

T-cell receptor α TRA@ 14q11 TLX1 10q24
TAL1 1p32
LMO1 11p15
LMO2 11p13
NKX2-1 14q13

T-cell receptor β TRB@ 7q34-35 TLX1 10q24 
HOXA@ cluster 7p15

LYL1 19p13
TAL2 9q32
LCK 1p34

NOTCH1 9q34
MYB 6q23

NKX2-1 14q13

T-cell receptor g TRG@ 7p15 No known chromosomal aberrations

T-cell receptor δ TRD@ 14q11 TLX1 10q24 
TLX3 5q34
TAL1 1p32 
LMO1 11p15
LMO2 11p13
NKX2-2 20p11

Note 1: TLX3 is implicated in a translocation with the T-cell receptor delta locus but more frequently also rearranged in translocations involving the BCL11B locus.Note 2: A complete list of all rearrangements involving
T-cell receptor genes is available from: http://atlasgeneticsoncology.org/Anomalies/TALLID1374.html



ment with this, downregulation of TLX1 or TLX3 in T-
ALL cell lines caused restoration of Vα-Jα rearrangement
and massive apoptosis.23 Other studies have also revealed
that RUNX1 and LEF1 are frequently mutated or deleted
in T-ALL cases.24,25 Taken together, these data suggest that
several mechanisms that interfere with proper TCRα
rearrangement are implicated in the differentiation defects
of T-ALL cells.

In addition to the well known TLX1, TLX3, TAL1 and
HOXA subgroups, new molecular subgroups of T-ALL
were recently defined through the use of gene expression
profiling. In this way, Meijerink and colleagues have been

able to identify two new subgroups based on transcription
factor expression.22 The first is based on NKX2-1 or
NKX2-2 expression, and the second is based on MEF2C
expression. In the majority of cases within these sub-
groups, the transcription factors were over-expressed as a
consequence of chromosomal rearrangements that had
been missed in the past due to the limitations of karyotyp-
ing and fluoresence in situ hybridization (FISH). The
expression of both NKX and MEF2C transcription factors
displayed oncogenic co-operation with RAS and MYC in
transformation assays in fibroblasts, whereas the expres-
sion of MEF2C transcription factor was also shown to up-
regulate genes found to be expressed in immature T-
ALL.22 This study demonstrates that additional subgroups
of T-ALL can be defined using combinations of gene
expression profiling and molecular analyses. Furthermore,
these additional subgroups will not only continue to be of
interest to study at the functional and molecular level, but
will also provide potential new prognostic markers or
identify potential targets for therapy for those specific sub-
groups. 

Tyrosine kinase and cytokine receptor signaling

In 6% of T-ALL cases, there is expression of an
NUP214-ABL1 fusion,26 which is similar to the BCR-
ABL1 fusion found so often in B-ALL but rarely found in
T-ALL. In T-ALL, the NUP214-ABL1 fusion gene is the
consequence of an unusual rearrangement that is often
detectable as an episomal amplification. In vitro experi-
ments confirmed that the NUP214-ABL1 fusion protein is
an activated tyrosine kinase, but with weaker kinase activ-
ity and different substrate specificity compared to BCR-
ABL1.26-28 Nevertheless, both within cell-based models
and within mouse models, expression of NUP214-ABL1
could transform hematopoietic cells to cytokine independ-
ent growth. In more recent work, we have observed that
the NUP214-ABL1 protein is localized at the nuclear
membrane where it interacts through the NUP214 moiety
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Figure 1. Overview of the major subgroups of T-ALL defined
by the ectopic expression of the transcription factors. The
transcription factors TLX1, TLX3, LMO1, LMO2, HOXA, TAL1
(including SIL-TAL1), chimeric MLL and PICALM-MLLT10
(CALM-AF10) are major oncogenic drivers of T-ALL.
Additional oncogenes and tumor suppressor genes con-
tributing to T-ALL development are also indicated.

Figure 2. Interleukin-7 receptor and TSLP receptor complexes. The normal interleukin-7 receptor is a heterodimer of the
IL7Rα and the common gamma chain (cγ; also named IL2Rγ). JAK1 and JAK3 are the cytosolic tyrosine kinases asso-
ciated with this receptor. In the mutant cases, the IL7Rα is mutated so that additional amino acids are inserted close to
or within its transmembrane region. In some cases, a cysteine residue can be inserted, which could lead to the formation
of disulfide bridges between two adjacent IL7Rα proteins. In other cases, no such cysteine is present, but the insertion
of additional amino acids is believed to change the conformation of the proteins allowing them to form heterodimers
(and kinase activation) in the absence of the ligand.



with other nuclear pore proteins such as NUP88, NUP358
(RANBP2), and this interaction is required for the activa-
tion of the NUP214-ABL1 kinase.27 The NUP214-ABL1
fusion has now also been identified in some cases of high-
risk B-ALL. Finally, in addition to the NUP214-ABL1
fusion, other ABL1 fusions have also been identified in T-
ALL, including EML1-ABL1.29

Recently, a variety of small insertion mutations have
been identified in the alpha chain of the interleukin-7
receptor, encoded by the IL7R gene.30-32 Most of these
mutations lead to the introduction of a cysteine amino acid
close to, or within, the transmembrane domain. These
amino acid insertions close to the transmembrane domain
are hypothesized to cause a conformational change in the
receptor enabling dimerization of the receptors in the
absence of ligand. The presence of the extra cysteine can
then lead to the formation of stable cysteine bridges
between two mutant IL7R proteins, resulting in the stable
homodimerization and activation of the associated JAK1
kinases (Figure 2).30,31 In a minority of cases, there are
mutations within the transmembrane domain of the IL7R
without cysteine insertion. It was hypothesized that such
mutations may lead to ligand independent heterodimeriza-
tion with the CRLF2 receptor or with the common gamma
chain.30 Again, this would lead to the constitutive activa-
tion of the JAK/STAT pathway through activation of
JAK1 and JAK2/JAK3 (Figure 2). In addition to muta-
tions in the IL7 receptors, activating mutations in the tyro-
sine kinase JAK1, JAK2, JAK3 have also been identified,
as well as rare fusion genes involving JAK2.32-36 Despite
the fact that all individual mutations are rare, the entire
group of T-ALL patients with either JAK kinase mutation
or IL7R mutation is estimated to be 20%-30% of all T-
ALL cases. 

Interestingly, several JAK kinase inhibitors are currently
under development for the treatment of myeloproliferative
neoplasms and auto-immune diseases.37-39 Ruxolitinib has
been approved by the US Food and Drug Administration
(FDA) for the treatment of myelofibrosis, and tofacitinib
has received approval for the treatment of rheumatoid
arthritis. Most of these inhibitors are not very specific, and
JAK2 inhibitors usually also target JAK1 and JAK3, and
so-called ‘selective JAK3 inhibitors’ often also target
JAK1. In addition to the JAK2 V617F mutation, ruxoli-
tinib was shown to have potent activity against JAK1
mutants in vitro.40 Similarly, tofacitinib was shown to
inhibit leukemia-specific JAK3 mutants at low nanomolar
concentrations.41 These findings suggest these and other
JAK inhibitors that are being developed for myeloprolifer-
ative neoplasms and autoimmune diseases may also be of
value for the treatment of ALL with JAK1, JAK3 or IL7R
mutations. It will be of interest to test the efficacy of these
inhibitors in T-ALL models, and to set up exploratory tri-
als, for example, for relapsed T-ALL patients.

The genomics (r)evolution and its implications
for T-ALL 

It is now possible to perform unbiased genome wide
searches for novel oncogenes and tumor suppressors in T-
ALL with the availability of novel genomics technologies.
High-resolution array comparative hybridization
(arrayCGH) has allowed the identification of copy number

alterations in the genome with an unprecedented resolu-
tion. Application of this technology in T-ALL has resulted
in the detection of previously unrecognized deletions in
tumor suppressors, such as PHF6,42 WT1,43 PTPN2,44

LEF145 and BCL11B,46 or in the detection of cryptic dele-
tions resulting in LMO2 expression47 or the generation of
the SET-NUP214 fusion.48 The research group of Jules
Meijerink, in collaboration with the research group of
Wouter de Laat, complemented arrayCGH approaches
with analysis of T-ALL gene expression profiles and with
the Chromosome Conformation Capture on Chip (4C)
technique49 to characterize chromosomal rearrangements,
allowing them to identify NKX2-1, NKX2-2 and MEF2C
as novel oncogenes in T-ALL.22,49

The recent introduction of massively parallel sequenc-
ing technologies (also referred to as ‘next generation
sequencing‘) has further improved our capacity to charac-
terize the mutational landscape of T-ALL. Pieter Van
Vlierberghe and colleagues used this technology for the
resequencing of the entire X-chromosome in T-ALL
patients, and in this way, identified mutations in PHF6.42

Similarly, the team of Charles Mullighan performed whole
genome sequencing of 12 T-ALL patients of the immature
early T-cell precursor (ETP) T-ALL subtype. This study
underscored the high incidence of cytokine and RAS sig-
naling mutations, and lesions in regulators of hematopoi-
etic development and in epigenetic regulators in respec-
tively 67%, 58% and 48% of ETP T-ALLs. In addition,
and in agreement with the observations made by Adolfo
Ferrando and colleagues,50 the immature ETP leukemias
have a transcriptional profile that resembles that of
myeloid leukemias and hematopoietic stem cells.
Moreover, the mutational profile of these immature T-
ALL tumors is highly enriched for defects in typical
myeloid leukemia oncogenes and tumor suppressors, such
as IDH1, IDH2, DNMT3A, FLT3, NRAS and ETV6. It
remains to be determined if these findings will have clini-
cal implications, and whether patients with immature T-
lineage leukemias could benefit from therapies developed
for myeloid malignancies. 

We used the power of next generation sequencing to fur-
ther characterize the genetics of both pediatric and adult T-
ALL. We performed exome sequencing on 67 T-ALL
cases representing all different molecular subgroups and
age groups.35 Interestingly, we found that the number of
somatic mutations in T-ALL samples increases with age.
This positive correlation between patient age and mutation
number has also been found previously in AML using
whole genome sequencing approaches.51 These observa-
tions are likely caused by the accumulation of random,
benign passenger mutations during the normal aging
process and underscore the need for thorough filtering
methods and functional follow-up experiments to distin-
guish random passenger mutations from cancer driving
mutations. Our study also identified CNOT3 as a novel
tumor suppressor gene that is mutated specifically in adult
T-ALL patients. The CNOT3 protein is part of the CCR4-
NOT complex regulating gene expression transcriptional-
ly and post-transcriptionally.52 In addition, CNOT3 medi-
ates self-renewal in mouse embryonic stem cells, where
CNOT3 shares many target genes with MYC,53 a known
oncogene in T-ALL. Another intriguing observation in our
study was the finding that 10% of pediatric T-ALL patients
carry mutations in RPL10 or RPL5, 2 genes encoding pro-
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teins of the large 60S ribosomal subunit. The exact role of
the RPL5 and RPL10 defects in leukemogenesis are still
unknown, but mutations in other genes encoding proteins
of the 60S ribosomal subunit have been confirmed by
other groups, including Rao and colleagues who inde-
pendently reported that RPL22 is deleted or mutated in
10% of T-ALL cases.54 In this study, they also found that
loss of RPL22 leads to the upregulation of the stemness
factor Lin28B in T-ALL and can accelerate tumor devel-
opment in an established T-ALL mouse cancer model.54

Additional layers of complexity: co-occurrence
of mutations and clonal evolution

The genomics studies described above illustrate the
complexity of mutations in T-ALL. However, yet another
layer of complexity is added by the multiplicity of geneti-
cally distinct leukemic subclones. Indeed, careful molecu-
lar analyses such as the mapping of genetic alterations by
multiplex FISH in individual cells of diagnostic ALL sam-
ples showed genetic heterogeneity in such samples with
the presence of multiple related leukemic subpopulations
carrying subclone specific lesions in addition to lesions
that are shared between subclones.55 In addition, studies in
which careful genetic characterization was performed on
paired diagnosis-relapse samples illustrated that the clonal
architecture of these leukemias is dynamic and is subject
to continuous changes based on Darwinian natural selec-
tion.55,56

Interestingly, evolution of leukemia cell clones with
selection and expansion of more aggressive malignant
cells also occurs during expansion of diagnostic leukemia
samples in immunodeficient mice (xenograft models).
This makes xenograft models very attractive as they reca-
pitulate the development of relapse clones as observed in
patients, thereby allowing the study of the Darwinian
clonal evolution process in several independent animals.
This led to interesting observations: the same diagnostic
leukemia sample, when injected in parallel into multiple
animals, could give rise to leukemias that showed distinct
genetic lesions targeting the same gene. One example was
the appearance of distinct deletions in the CDKN2A locus
in the different xenografts originating from injection of a
diagnostic tumor sample in which the bulk of the tumor
cells had an intact CDKN2A locus, indicating that the dis-
tinct CDKN2A lesions had been acquired independently
more than once.56 These observations suggest that the
presence of a particular lesion in a (pre-)leukemic cell can
put a high selective pressure on that cell to acquire a very
specific genomic lesion. The presence of such selective
pressure is likely to result from a synergistic co-operation
between the initiating lesion and the lesions that are
acquired later on. 

In the context of T-ALL, it is known that particular
lesions tend to co-occur together. For example, deletions
of the phosphatase gene PTPN2 are frequently found in T-
ALL cases with expression of either NUP214-ABL1 or
with JAK1 mutation, both of which are substrates of
PTPN2.44,57 In these cases, loss of the negative regulator
PTPN2 leads to increased activation of the JAK1 or
NUP214-ABL1 signaling pathways. However, for other
combinations, the mechanism of co-operation between co-
occurring lesions is currently unknown. These include var-

ious observations in T-ALL with RAS and JAK mutations
occurring frequently in ETP-ALL,32 WT1 mutations in
TLX1 and TLX3 T-ALL,43 IL7R mutations in TLX3,
TLX1 and HOXA T-ALL,31 and a higher incidence of
PTEN/AKT mutations in TAL/LMO positive T-ALL.58

Another example is the frequent co-occurrence of appar-
ently totally different lesions such as overexpression of the
TLX1 or TLX3 transcription factors and of NUP214-
ABL1.26

In addition to the use of xenograft models, the study of
clonal complexity and clonal evolution of T-ALL is also
obtaining benefit from massive parallel deep sequencing
approaches. Ideally, one would perform whole genome
sequencing on a significant number of single cells isolated
from different samples collected over time to determine
clonal composition and evolution of the tumor. Although
such analyses are for the moment expensive and technical-
ly challenging, the first examples of such studies have
been reported in the context of JAK2-negative myelopro-
liferative neoplasms.59 At this point, deep sequencing of
entire tumor cell populations followed by targeted deep
sequencing represents a more straightforward approach to
study clonal architecture.60 Similar analyses in the context
of T-ALL will provide more insight into the clonal evolu-
tion of T-ALL.

Conclusions

T-ALL is a genetically complex leukemia, not only
because so many different lesions contribute to the devel-
opment of this type of leukemia, but also because T-ALL
at diagnosis is a mixture of multiple leukemia clones with
slightly different genomes that are under constant evolu-
tion. Therefore, it is difficult to identify all the changes
that are important to transform a normal thymocyte to a
leukemic cell. Similarly, despite our increasing knowledge
of the various oncogenic drivers in T-ALL, it remains
extremely difficult to predict the development of resist-
ance mechanisms that allow leukemic cells to escape tar-
geted therapies. Nonetheless, improvements in chemother-
apy regimens over the past 30 years have steadily
increased the cure rates of childhood T-ALL and these are
now over 70%. However, the treatment of adult T-ALL
remains more difficult, and this, therefore, continues to be
an area of intensive research in order to provide improved
and targeted treatments, and, ultimately, a cure.
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The challenges of incorporating novel biomarkers 
in acute lymphoblastic leukemia 

The clinical need for informative 
biomarkers in ALL

The prognosis of ALL heavily relies on the
effective stratification of patients into risk-
adapted treatment regimens. This risk stratifi-
cation is based on clinical features such as pre-
senting white blood cell count and age, as well
as pathobiological features such as immuno -
phenotype and genotype of the leukemic cells.
Monitoring the response to treatment revealed
that the presence of residual cells at given time
points (e.g. Day 33 and Day 79 in children
with newly diagnosed ALL) was a strong and
independent predictor for unfavorable out-
come in both children and adults with ALL,
and therefore minimal residual disease (MRD)
status is used as risk factor in contemporary
treatment protocols.1-2 The current 5-year
event-free survival estimates for patients who
received risk-stratified treatment are 80% for
children (<18 years) and 30% for adults with
newly diagnosed ALL.3-4

These event-free survival rates reflect the
average of the total group of patients.
However, ALL is a hetereogeneous disease
that comprises different genetic abnormalities
contributing to the leukemogenic process
and/or to maintenance of the leukemia.

Identical genetic lesions are found in children
and adults, although the frequency of these
abnormalities widely differs. Adult ALL is
characterized by a higher frequency of BCR-
ABL1-positive B-cell precursor (BCP) ALL
whereas in children, ETV6-RUNX1 (formerly
known as TEL-AML1)-positive and hyper-
diploid (>50 chromosomes or a DNA-index
≥1.16) BCP-ALL are most prevalent (Figure
1).4-6 BCR-ABL1-positive ALL is linked to an
unfavorable prognosis and the higher inci-
dence in adults may, therefore, be one of the
explanations for the observed poorer clinical
outcome in adults compared to children with
ALL. Many relapses occur in the ‘apparent’
favorable risk groups like those with ETV6-
RUNX1-positive or hyperdiploid ALL, or
those with undefined genetic lesion (B-other).
For example, ETV6-RUNX1-positive and
hyperdiploid ALL accounts for approximately
50% of all pediatric ALL cases and approxi-
mately 10% of these cases relapse. Since both
types of ALL represent a large population in
size, the absolute number of patients who
relapse is high for this apparent good progno-
sis group (Table 1). Moreover, the highest
number of relapses occurs in the group of
BCP-ALL cases negative for BCR-ABL1 and
ETV6-RUNX1, being non-hyperdiploid as well

Acute lymphoblastic leukemia 

An effective treatment of acute lymphoblastic leukemia (ALL) starts with risk-stratification guided
by well-established risk factors and rationally designed and well-controlled treatment protocols. To
further improve clinical outcome, both the failure rate (approx. 20% in children and approx. 70% in
adults) as well as the side effects should be reduced. The currently applied chemotherapeutic drugs
were largely discovered decades ago (1950-1970s) and have improved the clinical outcome tremen-
dously. However, the event-free survival has reached a plateau in recent years whereas, with a few
exceptions, contemporary therapies still use the same drugs as decades ago. Meanwhile, the molecular
knowledge has exploded in this last decade mainly driven by deciphering the human genome, charac-
terization of the epigenetic landscape of gene regulation, and the acceleration in the development of
new and often high-throughput molecular biological techniques. Our knowledge of the biology of ALL
is now beyond its infancy, and more and more studies are emerging that discover new (genetic) abnor-
malities in leukemic cells. Some of these features may serve as new diagnostic and/or prognostic
markers and some as a target for new drugs. The challenge is to identify, validate and functionally
prove the importance of new (genetic) lesions in the pathobiology of ALL in order to guide personalized
medicine by more optimized risk stratification and targeted drugs.

Learning goals

At the conclusion of this activity, participants should have learnt about:
- the clinical need for informative biomarkers in ALL;
- the different types of biomarkers; 
- the challenges to discover and implement new biomarkers in the treatment of ALL.

A B S T R A C T



as MLL- and TCF3-wild type (defined here as B-other).
This exemplifies the need for more discriminative factors,
i.e. biomarkers, in the diagnosis and treatment of ALL.

Definition of a biomarker

A biomarker in the context of leukemia is a feature that
reflects a biological process that is predictive for the sus-
ceptibility to develop leukemia, the clinical manifestation
of disease (diagnosis), the subtype of disease, the re-
occurrence of disease (relapse), and the response to a
given treatment in an individual patient. Most ‘leukemic’
biomarkers are measured in blood, bone marrow and cere-
brospinal fluid samples taken from patients and can be
studied using a variety of sources such as specific cells,
DNA, protein-coding mRNAs, non-coding RNAs, (phos-
pho)proteins, lipids, hormones and other molecules (e.g.
drug metabolites). In medicine, both physiological bio-
markers (e.g. blood pressure, body temperature and white
blood cell count) and molecular biomarkers (e.g. gene
mutations, gene fusion products, change in phosphoryla-
tion state of proteins) are being used. In this educational
review, the emphasis will be on the challenge to incorpo-
rate molecular biomarkers in personalized medicine and
tailored therapies of ALL. Types of biomarkers commonly
used in leukemia are shown in Table 2.
Biomarkers related to the diagnosis and prognosis of the
disease in individual patients
Diagnostic biomarkers: are used to determine the pres-

ence and/or the subtype of leukemia. For example, ETV6-
RUNX1-positive ALL can be identified by fluorescence in
situ hybridization (FISH) assays with a green-labeled
ETV6 and a red-labeled RUNX1 probe using leukemic
cells captured on microscopic slides. Presence of a yellow
fusion signal indicates that the patient suffers from an
ETV6-RUNX1-positive leukemia. The information of this
diagnostic biomarker is taken forward to assign the patient
to the appropriate risk arm of a treatment protocol for
ALL, i.e. non-high risk treatment for an ETV6-RUNX1-
positive patient.
Prognostic biomarkers: are indicative for the risk of

patients to fail to respond to treatment (e.g. an induction
failure) or to develop a relapse. Prognostic biomarkers are

not 100% predictive for the occurrence of an event but
give an estimate of the risk for an event. Deletions in the
Ikaros gene (IKZF1) are predictive for an unfavorable out-
come in both childhood and adult ALL, but not all IKZF1-
deleted cases will suffer from a relapse, nor do 100% of
the wild-type cases survive without an event.

In ALL clinical practice, there is not a big difference
between diagnostic and prognostic biomarkers and most
often a lesion can be both diagnostic and prognostic.
Examples are BCR-ABL1 and ETV6-RUNX1 gene fusions
and genes affecting the biology of leukemic cells such as
IKZF1 deletions. In combination, these biomarkers may
further fine-tune the prediction for clinical outcome of
patients. Examples are the additive value of the IKZF1
deletion status to disseminate cases with highly favorable
and unfavorable prognosis among patients with BCR-
ABL1-positive ALL or the fact that IKZF1 deletions com-
bined with MRD status can identify more patients at high
risk of relapse than each of these features alone.9-10
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Figure 1. Distribution of (cytogenetic) subtypes in children
and adults with newly diagnosed ALL. Estimated frequen-
cies were based on Kamps et al.,3 Labar et al.,4 Moorman
et al.,6 Pui et al.,7 and Moricke et al.8 MLL-r: MLL-
rearranged; TCF3-r: TCF3-rearranged.

Table 1. Frequency of events in (cytogenetic) subtypes of ALL in children.

ALL subtype Frequency in children 5-year event-free survival Estimated absolute number 
(1-18 years) estimates in children of events in 1000 patients

BCR-ABL1 ~3% 25-30%* 20

MLL-rearranged ~2% 20-40% 15

ETV6-RUNX1 ~25% 90% 25

Hyperdiploid ~25% 90% 25

TCF3-rearranged ~4% 85% 5

B-other ~25% 70% 75

T-lineage ~15% 75% 35

ALL total 100% 80% 200

*Event-free survival estimate of BCR-ABL1-positive ALL in the pre-tyrosine kinase inhibitor era (e.g. imatinib, dasatinib). Events are defined as relapse, non-response, death due to leukemia.3,7-8



Biomarkers used to prioritize drugs and new drug 
development
Predictive biomarkers: are used to predict the response

to a particular drug or treatment in a patient. Positivity for
a predictive biomarker results in the use of a drug targeting
this feature to optimize treatment results for individual
patients (personalized medicine). Positivity for the BCR-
ABL1 gene fusion predicts that the patient may benefit
from ABL1-tyrosine kinase inhibitors like imatinib
(Gleevec) or dasatinib (Sprycel). Therefore, the BCR-
ABL1 fusion can, besides being diagnostic and prognostic,
also serve as predictive biomarker. In addition to BCR-
ABL1 positivity, the mutation status of this fusion gene is
indicative for the actual clinical response to ABL1-tyro-
sine kinase inhibitors. BCR-ABL1-positive cases harbor-
ing an ABL1 T315I mutation are resistant to imatinib and
dasatinib, but are still sensitive to ponatinib.11 Well-
defined predictive biomarkers are, therefore, essential for
prioritizing the most optimal type of drugs used to treat the
patient.
Pharmacodynamic biomarkers: are used to study what a

drug does to the leukemic cells. Pharmacodynamic studies
determine which proteins and signaling pathways are
affected by a drug (proof-of-mechanism) and determine
the phenotypic effect of exposure to this drug in leukemic
cells (proof-of-concept). Changes in expression levels or
activation status (e.g. phosphorylation status of kinases) of
targeted proteins are often dose-dependent and provide a
tool to optimize drug dosages in clinical studies including
phase I/II early clinical trials.
Pharmacokinetic biomarkers: are used to monitor the

kinetics of a drug in the human body. The active drug level
in plasma depends on the type of drug and the (genetic)

make up of individual patients, indicating the clinical need
for discriminative biomarkers. Genomic markers can be
used to identify patients who need pharmacokinetic mon-
itoring of achieved drug levels in plasma to enable dose-
reduction or increment. A classical example is the genetic
variation in thiopurine S-methyltransferase (TPMT) which
increases the bio-availability of thiopurine drugs (e.g. 6-
mercaptopurine), drugs frequently used in the treatment of
ALL. Polymorphisms in TPMT identify patients who may
benefit from a dose-reduction in order to avoid side-
effects caused by a prolonged presence of active thiop-
urine metabolites in the plasma.12

Surrogate response biomarkers: are dynamic biomarkers
used to monitor the effect of a given treatment. Surrogate
response biomarkers are used as alternative to a primary
end point of treatment that is undesired (death) or to avoid
repetitive invasive bone marrow punctures. A biomarker
can only serve as surrogate response marker if a change in
the biomarker also predicts the true clinical response to the
given therapy. A biomarker that only predicts prognosis at
the start of treatment without being dynamically affected
by the given treatment is not a surrogate response bio-
marker but a prognostic biomarker. An example of a sur-
rogate response marker in ALL is the monitoring of mini-
mal residual disease by patients’ unique T-cell receptor
and immunoglobulin-rearrangement signatures of
leukemic cells.13,14

Biomarkers can be both diagnostic, prognostic, predictive,
pharmacodynamic, pharmacokinetic and/or a surrogate
marker for response to one or to a cocktail of drugs. Most
importantly for personalized medicine, biomarkers can be
used to identify the presence of drug targets and/or drug
metabolizing enzymes to tailor treatment in individual
patients. The challenge is to pick the winner(s)!

Recently discovered molecular biomarkers
In essence, the features that are currently being used for
risk-stratification of patients – immunophenotype and
genotype, as well as white blood cell count and age – are
all diagnostic and/or prognostic biomarkers in ALL. As
discussed above, these clinical and biological features fail
to predict the majority of relapses in pediatric ALL and
similar observations are found in adult ALL. This means
that the prognosis of a substantial part of apparent non-
high risk patients may increase by more intensified or
more targeted therapy whereas the prognosis of other
patients may remain similar using a reduction in the given
treatment but with the benefit of less treatment-related
toxicity (e.g. by leaving out hematopoietic stem cell trans-
plantation). In the next part we will discuss the identifica-
tion of molecular features that are of high interest to use as
biomarkers to guide new clinical trials in ALL.

The pathobiology of ALL and the discovery of
new biomarkers

BCR-ABL1-positive and BCR-ABL1-like ALL
The BCR-ABL1 fusion is a key example of a biomarker
having diagnostic, prognostic and predictive value in both
childhood and adult ALL. The introduction of the tyrosine
kinase inhibitor imatinib (Gleevec/Glivec, STI571) in
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Table 2. Examples of molecular biomarkers in ALL.

Type of molecular biomarker Examples in ALL

Diagnostic and prognostic BCR-ABL1
ETV6-RUNX1
MLL-rearrangement
TCF3-rearrangement
IKZF1 deletions
BCR-ABL1-like gene expression signature
JAK2 mutations and translocations
deregulated CRLF2 expression

Surrogate response Minimal residual disease

Predictive BCR-ABL1 and mutation status
(for selecting drugs) (imatinib, dasatinib, nilotinib, ponatinib)

FLT3 expression levels and mutation status
(midostaurin, lestaurtinib, sunitinib)
JAK2 mutations and translocations
(ruxolitinib)

RAS-MEK pathway activating mutations
(selumetinib, trametinib)

Pharmacodynamic pABL1, pCRKL (ABL1 tyrosine kinase inhibitors)
(for monitoring response) pFLT3 (FLT3 inhibitors)

pSTAT5 (JAK inhibitors)
pERK (MEK inhibitors)

Pharmacokinetic TPMT

P: phosphorylated.



combination with conventional chemotherapy has
improved the event-free survival of BCR-ABL1-positive
patients significantly from 25%-30% in the pre-inhibitor
era to 50%-70% for children and from 10% to 35%-50%
for adults in contemporary protocols.15-18 However, pro-
longed exposure to imatinib resulted in resistance to this
inhibitor, often caused by acquired mutations in ABL1. A
key mutation is the T315I-mutation resulting in a confor-
mational change of the ABL1 kinase domain that results in
loss of effective binding of the inhibitor, but also other
inactivating mutations have been identified (e.g. Y253H
and F317L).19 The unfavorable long-term prognosis
despite the use of tyrosine kinase inhibitors, as well as the
acquired resistance to imatinib, indicate that other BCR-
ABL1-driven features and targeted drugs need to be
explored to cure these patients. New ABL1 kinase domain
directed drugs have been developed like dasatinib (BMS-
354825), nilotinib (AMN-107) and bosutinib (SKI-606).
These 2nd generation drugs face the same drawback of
acquired resistance of leukemic cells or outgrowth of
resistant subclones in time and, moreover, these drugs also
do not overcome resistance associated with the ABL1
T315I mutation.20-21 Recent studies show that ponatinib
(AP24534), a 3rd generation tyrosine kinase inhibitor, is
able to overcome resistance to many ABL1-kinase domain
mutations, including ABL1 T315I.22 This inhibitor may,
therefore, be used to salvage BCR-ABL1-positive patients
who are resistant to 1st and 2nd generation tyrosine kinase
inhibitors as recently shown for chronic myeloid leukemia
and ALL.11

In addition to drugs targeting BCR-ABL1 and its tyrosine
kinase domain, downstream activated genes may also
serve as candidates for new drugs. Intriguingly, BCR-
ABL1 activates divergent signaling pathways in ALL and
chronic myeloid leukemia, stressing the importance of
studying the pathobiology in the correct cellular context.
BCR-ABL1 in chronic myeloid leukemia triggers growth
factor-independent RAS-mediated proliferation and phos-
phoinositide 3-kinase (PI3K)/AKT-mediated survival

pathways.23 In contrast, BCR-ABL1 in ALL activates the
JAK/STAT pathway thereby deregulating the transcription
of genes involved in many different cellular processes.
This JAK/STAT pathway includes Janus kinase-family
members (JAKs) and signal transducer and activator of
transcription family members (STATs).24-26 Activating
mutations in JAK-family members (mainly JAK2) have
rarely been found in BCR-ABL1-positive ALL which
opposes the relative high frequency of approximately 10%
seen in other high-risk BCP-ALL patients.27-28 STAT5 acti-
vation seems important in both the initiation and prolon-
gation of BCR-ABL1-positive ALL, whereas STAT3 main-
ly contributes to the initiation of BCR-ABL1-positive
ALL.25 As shown in Figure 2, phosphorylated (and hence
activated) but not total STAT5 protein levels were signifi-
cantly raised in BCR-ABL1-positive ALL compared to
other precursor B-ALL cells taken from children with
newly diagnosed ALL. It is evident that STAT5 and its
associated JAK/STAT pathway need further exploration as
alternative strategy to circumvent resistance to tyrosine
kinase domain-directed inhibitors in ALL.
As mentioned in the introduction, there is especially a
need to improve outcome for those patients who are not
recognized as high-risk patients because their leukemic
cells do not harbor BCR-ABL1 or MLL-fusion genes.
Recent genomic studies have identified an unfavorable
prognostic subtype of precursor B-ALL with a gene
expression signature resembling that of BCR-ABL1-posi-
tive ALL. These so-called BCR-ABL1-like ALL cases are
negative for the BCR-ABL1-translocation but have, like
BCR-ABL1-positive ALL, a high frequency (>80%) of
genomic lesions in genes involved in B-cell commitment
(PAX5), B-cell differentiation and immunoglobulin
rearrangements (EBF1, TCF3, IKZF1) and pre-B cell
receptor formation (VPREB1).29-30 Intriguingly, RNA and
whole genome sequencing of 15 cases with BCR-ABL1-
like ALL revealed genomic lesions in cytokine receptors
genes (PDGFRB, EPOR, CRLF2, IL7R, FLT3) and non-
receptor effector genes (ABL1, JAK2, LNK) with deregu-
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Figure 2. Phosphorylated STAT5, but not total STAT5 protein levels, are higher in BCR-ABL1-positive leukemic cells com-
pared to a reference group of ETV6-RUNX1 positive cases (Den Boer et al., unpublished results, 2012)



lated CRLF2, ABL1- and JAK2-translocations being most
recurrent.31 In an independent validation cohort, deregulat-
ed CRLF2 and the EBF1-PDGFRB translocation were
found in 50% and 8% of BCR-ABL1-like ALL cases,
respectively. The other lesions as reported in the discovery
cohort were not or only in single cases present.31

Deregulated CRLF2 and concomitant JAK2 mutations
were reported in 50%-60% of BCR-ABL1-like cases (R8
cluster).32-33 JAK2 mutations and the EBF1-PDGFRB
fusion gene both induced interleukin 3 independent prolif-
eration of Ba/F3 cells, which illustrates their oncogenic
potential.28,31 In addition, the growth of leukemic cells
with JAK2 activity affected by mutations or translocations
as well as that of NUP214-ABL1-positive ALL could be
inhibited by ruxolitinib and dasatinib, respectively, in
xenograft models of ALL.31,34 Irrespective of the frequen-
cy of these individual genomic lesions, these findings
show the potential of these lesions as predictive biomark-
ers to identify BCR-ABL1-negative patients who may ben-
efit from inhibitors directed against JAK2 and ABL1.
Interestingly, lesions affecting JAK/STAT signaling not
only associate with BCR-ABL1-positive and BCR-ABL1-
like ALL, but are also found in other types of BCP-ALL,
most often together with deregulated expression of the
cytokine receptor-like factor 2 (CRLF2). The high expres-
sion level is mediated by the translocation of CRLF2 to the
IGH@ enhancer or by an interstitial deletion which posi-
tions CRLF2 next to the P2RY8 promoter, and, albeit
infrequently, by activating mutations.35-39 Deregulated
CRLF2 expression might serve as prognostic biomarker
predictive for an unfavorable outcome in pediatric and
adult BCP-ALL although controversy remains as to
whether deregulated CRLF2 is an independent prognostic
feature.27,40-42 Deregulated CRLF2 often co-occurs with
JAK-family gene mutations (primarily JAK2), IKZF1 dele-
tions and a BCR-ABL1-like gene expression signa-
ture.27,37,42-44 The inconsistent reports on the prognostic
value of deregulated CRLF2 may, therefore, largely rely
on the type(s) of genomic lesions affecting CRLF2 expres-
sion levels (P2RY8-CRLF2, IGH@-CRLF2, others) that
were included and differences in the composition of
patients with the aforementioned adverse features. In addi-
tion, deregulated CRLF2 and mutations in JAK-family
genes were more frequently found in patients of Hispanic
and Latino ethnicity, suggesting that demographical differ-
ences affect the prognostic value ascribed to deregulated
CRLF2.37 Another confounder in the discussion of dereg-
ulated CRLF2 as prognostic biomarker are Down syn-
drome patients with ALL who often have CRLF2-
rearrangements with concomitant JAK activating muta-
tions (primarily in JAK2) and deletions in IKZF1.27,36,45-47

Down syndrome ALL patients are at high risk of treat-
ment-related toxicity and, as such, inclusion/exclusion of
these patients will affect the prognostic value of deregulat-
ed CRLF2.48 Leukemic cells of patients with deregulated
CRLF2 expression were sensitive to the JAK1/2 inhibitor
ruxolitinib.34,49 This finding implies that JAK-inhibitors
may be effective in patients with deregulated CRLF2,
which would especially be of benefit to Down syndrome
patients to reduce the high morbidity caused by current
chemotherapeutic drugs.

IKZF1 deletions in precursor B-ALL
Deletions in the B-cell transcription factor Ikaros (IKZF1)
is one of the most frequently found genomic lesion in chil-
dren (approx.15%) and adults (approx. 50%) with BCP-
ALL, and is associated with a highly unfavorable progno-
sis across all ages.29,37,50-54 Deletions in IKZF1 were fre-
quently found in newly diagnosed children with BCP-
ALL at high risk for relapse based on unfavorable age at
presentation (≥10 years), gender (male), high white blood
cell count at presentation (≥50¥109/L), and presence of
extramedullary disease.29,37 The frequency of IKZF1 dele-
tions in the unfavorable prognostic group of pediatric
MLL-rearranged ALL was rather low. In contrast, IKZF1
deletions were detected in 60%-80% of children and adult
BCR-ABL1-positive ALL cases.52,54-57 Neonatal blood spot
analysis from BCR-ABL1-positive twins demonstrated that
deletions in IKZF1 are not the primary leukemogenic
event, but facilitate the outgrowth of a pre-leukemic
clone.58 In correspondence, IKZF1 deletions were shown
to trigger SRC kinase mediated proliferation at the
expense of cell cycle exit mediated by a normal activation
of pre-B cell receptors.59

The prognosis of BCR-ABL1-positive cases with concomi-
tant deletions in IKZF1 is highly unfavorable compared to
those with unaffected IKZF1, even upon treatment with
imatinib.9 Given the fact that deletions in IKZF1 trigger
SRC kinases, also in the context of BCR-ABL1-positive
ALL, one may propose including dual SRC/ABL1 kinase
inhibitors and more specific SRC kinase family inhibitors,
e.g. those targeting LYN, HCK or FGR.60 However, to
guide treatment more specifically, the biology of IKZF1-
deleted leukemic cells needs to be explored for drugable
genes downstream of an IKZF1 deletion. Wild-type Ikaros
has a pleiotrophic function in B-cell development since
studies in mice revealed a role for Ikaros in both pre B-cell
receptor signaling, cell cycle arrest/progression and
immunoglobulin V(D)J recombination processes.61,62

Recent gene expression studies revealed many genes with
increased expression levels in IKZF1-deleted BCP-ALL
patients (e.g. ETV6, YES1 and MCL1) that need further
functional studies to determine which may be suitable to
interfere with drugs in clinical practice.63

Mutations affecting MAPK/ERK-pathway 
in ALL

Activation of the mitogen-activated protein kinase
(MAPK) and extracellular signal-regulated kinase (ERK)
pathway induces proliferation and reduces apoptosis of
cells. Leukemia-specific mutations that constitutively acti-
vate this MAPK/ERK (MEK) pathway have been reported
in the membrane-bound FLT3-receptor and downstream
effector genes including KRAS, NRAS, PTPN11, NF11,
BRAF and CBL in 10%-35% of BCP-ALL cases.64-67

Mutations in these genes were most frequently found in
MLL-rearranged, hyperdiploid (>50 chromosomes) and
hypodiploid (<44 chromosomes) BCP-ALL.33,67-70

Mutations in RAS pathway genes were less frequently
found in BCR-ABL1-like ALL.33

RAS mutations itself are presumably not leukemogenic
and this is also underscored by the lack of RAS mutations
in neonatal blood spots and loss of some RAS mutations at

| 12 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



relapse; but they do facilitate growth factor and cytokine-
independent proliferation.71,72 Intriguingly, mutated RAS
can down-regulate the signaling from a tyrosine kinase
receptor like the epidermal growth factor receptor
(EGFR). Inhibition of mutated RAS (by RNA interference)
abolished this negative feedback loop and activated the
EGFR and wild-type RAS signaling pathway which
resulted in proliferation of cancer cells.73 This important
finding indicates that inhibition of activating mutations in
the RAS pathway needs to be combined with inhibition of
more upstream receptor tyrosine kinases to be effective in
clinical trials. An in vitro study nicely demonstrated this
proof-of-concept for chronic myeloid leukemia in which a
SRC/ABL1 kinase inhibitor (dasatinib) worked synergisti-
cally with a RAS-pathway MEK1/2 inhibitor (PD184352)
in inducing death of chronic myeloid leukemia cells.74 In
contrast to studies showing effective in vitro cell death
induced by MEK-inhibitors in chronic myeloid leukemia74

and diploid/hyperdiploid BCP-ALL,65,66 hypodiploid
BCP-ALL cells seem to be resistant to MEK inhibition but
are relatively sensitive to PI3K inhibitors.67

The aforementioned mutations in RAS/MAPK/ERK path-
way genes may serve as predictive biomarker to identify
patients who may benefit from targeted drugs such as the
MEK inhibitors selumetinib and trametinib or the RAF-
kinase inhibitor sorafenib. The challenge, however, is to
choose the right drug given the fact that the pathobiologi-
cal effect of such mutations may depend on the cell type
and/or co-occurrence of other deregulated genes. 

The challenge in biomarker discovery 
and clinical implementation

An informative biomarker is preferably a genomic lesion
because DNA is more stable and less vulnerable to break-
down by wrong shipment conditions than RNA and pro-
teins. These lesions include gene mutations, gene fusions,
and copy number alterations (losses and gains) that direct-
ly affect the activity of their corresponding proteins, and
are a driving force for the altered more downstream sig-
naling cascade. In practice, biomarkers with diagnostic,
prognostic, predictive (for choice of targeted drugs) and
pharmacodynamic (for target-specificity and efficacy test-
ing of a drug) potency are hard to find in ALL, and are cur-
rently limited to the BCR-ABL1 gene fusion. To optimize
treatment results for individual patients, predictive bio-
markers are needed to identify patients with a high likeli-
hood of responding to a selected drug. To predict progno-
sis and/or which drugs would be beneficial to a patient, the
technical procedure to detect biomarker-positive cells
needs to be highly sensitive. Moreover, the clonality of the
(genetic) lesion in the patient needs to be known. For
example, are all leukemic cells affected by the same
lesion, or is the mutation only present in a subclone of the
leukemic cell population? In the latter case, do we first
eradicate the bulk of leukemic cells and then target the
subclone more specifically with a targeted drug, or should
we perform an all-at-once strategy? The mutational land-
scape changes between initial diagnosis and relapse, some
mutations disappear (e.g. NRAS and NF1 mutations)
whereas others become more prominent at the time of
relapse (e.g. CREBBP and ERG mutations).72 The applica-
tion of mutated genes as biomarker, therefore, also largely

depends on the sensitivity of techniques to detect sub-
clones at presentation of disease. The development of
molecular techniques such as next generation sequencing
with a high number of reads per amplicon (high read
depth) allows mutations in small subclones to be detected.
Sequencing of a selected panel of genes in high-risk pedi-
atric BCP-ALL revealed a high frequency of mutations in
genes representing four signaling pathways, i.e. B-cell
development (68%), TP53/RB (54%), RAS (50%) and
JAK (11%) pathways.33 Despite the fact that these muta-
tions can be brought back to mutations affecting a few sig-
naling pathways, the identity of single genes that were
affected, as well as the site and functional consequence of
these mutations, varied per patient and per subtype of
ALL, illustrating the complexity of genomic lesions
underlying the pathobiology of ALL. The high frequency
of single gene mutations highlights another important
issue of biomarker discovery and drug development, i.e.
the fact that we need many well-established biomarkers
for the increasing number of genomic lesions that are
identified by genomics studies. The less frequently
patients are found positive for a given predictive biomark-
er, the more patients need to be screened for that biomark-
er, and the longer the accrual time before a study has suf-
ficient power to detect a difference in efficacy of a new
drug. Unfortunately, the speed with which new genomic
lesions are identified in the present “-omics” era, is not
reflected by an increased number of proof-of-concept pre-
clinical studies and subsequent early clinical trials. This is
mainly caused by the fact that the development of targeted
drugs lags behind and, moreover, by the limited number of
relapsed and refractory cases of the specific subtypes that
can be included in phase I/II clinical studies. High-quality
pre-clinical data of the pathobiology of leukemia subtypes
and identification of molecular biomarkers that predict
subtype, prognosis and/or responsiveness to (targeted)
drugs are, therefore, essential to re-design and optimize
treatment protocols for ALL. The challenge is to incorpo-
rate these biomarkers and (targeted) drugs not only at
relapse/refractory disease but also more upfront in thera-
pies for newly diagnosed patients.
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Novel treatment approaches for acute lymphoblastic
leukemia in childhood and adolescence

Prognostic factors in acute 
lymphoblastic leukemia of childhood
and adolescence: evolution 
and consequences for risk-adapted
treatment stratification

Risk-adapted stratification in acute lym-
phoblastic leukemia (ALL) is first of all an
issue that is in permanent evolution towards
new systems. This may be heralded as
progress, but obviously the complexity of new
stratification systems will seriously hamper
the comparability of clinical trials. Any risk-
adapted stratification will depend heavily on
the availability of diagnostic tools (which in
turn depends on availability of resources for
health care),1,2 on the precise characterization
of all clinical data including the analysis of
treatment response and outcome, treatment
realisation, treatment-related toxicity, and on a
comprehensive data platform on which all
these findings are registered and appropriately
stored. Most importantly, any risk-adapted
stratification depends heavily on appropriate
application of chemotherapy resulting in at
least 75% overall 5-year event-free survival
for unselected cohorts of patients with ALL
(up to 18 years of age) which has been

achieved in the last two decades by most con-
temporary pediatric ALL study groups.3

Standard risk ALL (and its exceptions)
Most study groups would consider the fol-

lowing pediatric ALL patient groups as stan-
dard risk even though there is probably no
consensus if patients with T-ALL should be
excluded per se: 

- WBC at diagnosis below 50¥109/L 
- age <10 years but > 1 year
- no central nervous system (CNS) involve-

ment
- ETV6/RUNX1 positivity
- MRD at Day 15 of induction therapy < 0.1%
- MRD at end of induction negative (if sensi-

tivity reaches at least 10-4)

There is some debate as to whether hyper-
diploid ALL can also be considered standard
risk as the exact definition of hyperdiploidy
varies between study groups. A large British
series underlined that patients with high-
hyperdiploidy (51-65 chromosomes) comprise
low-relapse risk and can be considered stan-
dard risk.4 A large prospective trial of the
AIEOP and BFM Study groups implemented

Acute lymphoblastic leukemia  

Systematic enrollment of children and adolescents with acute lymphoblastic leukemia (ALL) into
clinical trials has greatly widened our knowledge of clinical and biological prognostic parameters.
Clinical trials have significantly reduced the risk of both disease recurrence and also that of acute and
late side effects. Some distinct unfavorable subgroups were identified in which treatment success is
less prevalent while others have been shown to benefit from novel strategies. High tumor load (white
blood cell count, WBC), lack of response, age under one year, or over ten years (more pronounced over
15 years), and (rare) cytogenetic subtypes, such as t(9;22), t(4;11), or presence of IKZF1 may charac-
terize a significant proportion of children and adolescents with high risk (HR-) ALL. However, these will
miss the patients in the intermediate-risk group who will eventually relapse as they lack specific risk
parameters. Recently, genetic signatures were developed which may characterize these new high
relapse risk patients. Careful response assessment, preferably by detection of minimal residual disease
(MRD), is mandatory to identify patients at risk for relapse but also those who can be spared intensive
therapy. MRD monitoring may also facilitate the evaluation of novel therapies, such as functionally
targeted or immunotherapeutic strategies, and allogeneic hematopoietic stem cell transplantation. 

Learning goals

At completion of this activity, participants should know about:
- the clinical relevance of prognostic parameters to define risk-adapted treatment groups in child-

hood ALL;
- response to treatment. Exact and reproducible analysis is essential to define individual relapse risk;
- lack of treatment response or failure and possible alternative strategies. 

A B S T R A C T



MRD screening for all patients; it revealed that there are
high-risk patients (defined by high levels of MRD at end
of induction-consolidation which is approx. 12 weeks
from diagnosis) even among hyperdiploid cases as much
as among patients with ETV6/RUNX1 positivity due to
their slow response to treatment. They are characterized
by residual disease at a level of 10-3 or higher at 12 weeks
from diagnosis if treated on this regimen.5 The authors
concluded that patients harboring these genetic aberrations
should be considered high-risk if a slow MRD response
has been diagnosed.
Intermediate-risk ALL

The following subgroups as such (or any combination
of them) may be considered intermediate-risk as they do
not comprise standard risk features but also lack the prog-
nostically unfavorable high-risk features:

- T-precursor cell ALL6,7

- t(1;19)4,8

- iAMP219,10

- CNS involvement and/or traumatic lumbar puncture11,12

- WBC ≥50¥109/L13

- age ≥10 years
- age <1 year

Obviously, the prognostic relevance of high WBC as
much as for the two age groups listed here depends largely
on the response to treatment as measured early by the pred-
nisone response in peripheral blood,14,15 or in bone marrow
Day 15,16 and the presence of MRD at the end of induction
and later at the end of induction-consolidation.17-19 Even in
patients with intrachromosomal amplification of chromo-
some 21 (iAMP21) the response to treatment determines
the prognostic relevance of this genetic finding.20 The
prognosis in T-ALL depends on the subtype, additional
mutations, and the response to therapy.7,21,22 In particular,
the early T-precursor cell ALL  subtype (ETP-ALL) may
comprise a poor risk subtype23 with very specific genetic
lesions which may provide a rationale for modified treat-
ment approaches.24 It can be argued that those ETP-ALL
patients at high risk to relapse will be picked up by meas-
uring MRD at later time points.7

High-risk ALL
There is a rather large heterogeneity between study

groups on how to define high-risk patients. Some rely on
the NCI criteria (WBC ≥ 50¥109/L, or age ≥10 years), oth-
ers use combinations, in particular with response to treat-
ment, or focus on genetic aberrations to define this impor-
tant subgroup. In 2010, major study groups re-analyzed
their results using the same risk criteria.5,25-32 This type of
comparative analysis has its limitations but it facilitates
direct outcome comparisons with regard to major but also
minor patient subsets.3

The comprehensive description of new genetic aberra-
tions in the past few years make the general consensus on
who should be considered high-risk even more challeng-
ing. Usually, any subgroup with an expected event-free
survival (EFS) of less than 50% (without hematopoietic
stem cell transplantation, hSCT) would qualify, given that
appropriate intensive chemotherapy has been applied. The
lack of general agreement is partly due to the fact that the
transition from basic research (detection of new genetic

lesions) to clinical application (diagnostics) is demanding,
particularly in large multi-institutional study groups. In
addition, the approach to assess treatment response differs
between groups which implies that certain subsets of slow
responders (which are usually characterized by poor prog-
nosis) may be missed.33-36, 7,19

There is wide agreement that the following subgroups
qualify as high-risk ALL despite some remarkable hetero-
geneity in some, and large improvements in others:

- t(9;22) or BCR/ABL1 present37-40

- t(4;11) or MLL rearrangement present4,41,42

- hypodiploidy (modal chromosome number below 45
chromosomes)43

- induction failure44

- inadequate early response: 
‘prednisone poor response’ >1000 blasts in peripheral
blood at Day 8 of therapy26

M3 marrow at Day 7 or Day 14 of induction therapy16,45

by MRD detection on Day 8, Day 15, and Day 28-33
of induction therapy (this applies in particular for 
pcB-ALL)19,33,35,36,46,47

- slow response: persisting high levels of MRD at the end
of induction-consolidation (week 12) or even later 7,17

Intrinsically refractory ALL, as defined by the lack of
complete remission at the end of induction therapy, has
recently been found to be a very heterogeneous subgroup
of ALL. It comprises, on the one hand, patients with an
overall survival (OS) at ten years of 71%±6% but also
patients with an OS of less than 15%. The first group com-
prised patients with high-hyperdiploid ALL, whereas the
latter subgroup comprised patients who had MLL aberra-
tions or BCR/ABL1.44 Obviously, the classical risk features
such as age and WBC have been partly overcome by our
growing knowledge about genetic subtypes. One example
is infant ALL, in which the large proportion of patients
with MLL rearrangements is the main reason for the fre-
quent treatment failure in this age group.41 In an earlier
analysis of ALL patients with chromosomal 11q23 aberra-
tions, age and type of translocation were leading risk fac-
tors, but no clear benefit of treatment by allogeneic hSCT
could be demonstrated.42 In the context of the clinical trial
Interfant-99, the benefit of allogeneic hSCT for infants
with MLL positive ALL was shown.48

In Philadelphia chromosome positive (Ph+) ALL, two
findings were remarkable. First, this subtype of ALL in
childhood has been shown to be very heterogeneous with
regard to treatment response in the era before tyrosine
kinase inhibitors (TKIs) were used on a larger scale.19,37,49

The use of MRD monitoring in the AIEOP-BFM ALL
2000 trial revealed that there are Ph+ ALL patients who are
fast responders, and so have already cleared residual dis-
ease at the end of the 5-week induction therapy, and they
have an excellent outcome. Clinically, this may imply that,
apart from therapy with a TKI, such patients would not
qualify for allogeneic SCT in first complete remission.19

Secondly, a COG study demonstrated large improvement
in outcome by the intensive use of imatinib on top of very
intensive chemotherapy which was the first time that this
subgroup showed major improvement.39 A study by the
ESPhALL group used a different approach while introduc-
ing imatinib into the BFM-derived chemotherapy. It was
the first clinical trial in which a randomized evaluation of

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 17 |

Stockholm, Sweden, June 13-16, 2013



imatinib in pediatric ALL has been performed successful-
ly.40 More recent approaches to identify additional critical
subsets in pediatric ALL have produced several interesting
insights. In precursor B-cell ALL, a large number of genes
involved in lymphoid development, cell-cycle control and
tumor suppression, signaling pathways, or transcriptional
regulation are affected by deletions, translocations, and
sequence mutations.50-53 This research may decipher
important mechanisms of disease development but it will
also prove clinically useful as until recently it has been
difficult to characterize the significant number of disease
recurrences which mostly occur in the large group of so-
called intermediate-risk patients.15,19,54,55

Gene expression profiles in precursor B-cell ALL have
been described which are reminiscent of that in Ph+ ALL
and are associated with a poor prognosis.51,56-58 As it
appears that no single gene mutation or specific transloca-
tion is typical for this subset, however, it may be attractive
to define a robust genetic signature which is able to repro-
ducibly identify these patients. In a few of these so-called
Ph-like ALL genetic alterations activating kinase or
cytokine receptor signaling have been identified.59 Among
them are rearrangements involving ABL1, JAK2,
PDGFRB, CRLF2, EPOR, and mutations of IL7R and
FLT3, as well as deletions of SH2B3, a negative regulator
of JAK2. As shown in vitro, tyrosine phosphorylation was
reduced by treating leukemic cells with ABL1, PDGFRB,
and JAK2 rearrangements with tyrosine kinase or JAK2
inhibitors, respectively. Similar efficacy was demonstrated
in vivo in a xenograft model of BCR-JAK2 rearranged
ALL treated with the JAK2 inhibitor ruxolitinib, and in a
xenograft model of NUP214-ABL1ALL treated with dasa-
tinib. A patient with EBF1-PDGFRB rearranged ALL who
was refractory to induction therapy entered remission after
exposure to imatinib.59

Deletions and mutations of the transcription factor
IKZF1, and gene rearrangements involving CRLF2 are
recurrent alterations in pcB-ALL.51,60,61 Alterations of
CRLF2 are often associated with activating mutations in
the Janus kinase genes JAK1 and JAK2.53,60 The prognostic
impact may depend on some co-factors and the patient
population.57 Thus, the prognostic significance of CRLF2
rearrangements is being assessed differently.61-65 The find-
ing that the presence of the fusion gene P2RY8/CRLF2 is
associated with late relapses of intermediate risk pcB-ALL
(as determined by MRD) was the most striking finding.63

This appeared to prove that such late disease recurrences
cannot be predicted by analysis of MRD, or that the driv-
ing leukemic clone escapes such disease monitoring. A
direct comparison of 114 patients with CRLF2-rearrange-
ments treated in two European trials (AIEOP-BFM ALL
2000 and MRC ALL97) indicated that differences in treat-
ment may modulate the prognostic impact as shown for
the fusion gene IGH@-CRLF2: None of the 9 patients
with this rearrangement treated in the AIEOP-BFM series
relapsed, but 5 of 6 with the identical aberration treated in
the MRC ALL-97 trial. Remarkably, while the adverse
prognostic impact of P2RY8/CRLF2 on EFS was con-
firmed, it was shown that the overall survival at six years
in the two cohorts (81% and 83%, respectively) was sur-
prisingly favorable.66

The presence of IKZF1 alterations has been described to
be associated with poor prognosis.51 This is most evident
in BCR/ABL1 positive patients, where genetic alterations

of IKZF1 are found in approximately 70% of the cases.67

In unselected groups of patients, IKZF1 deletions are
found in 12% of cases, and the adverse prognostic impact
was less pronounced but still significant (5y-EFS 69% vs.
86%, respectively).68

The Ph-like ALL subgroup may comprise approximate-
ly 15% of all pcB-ALL cases, among these nearly 10%
present overexpression of CRLF2 and approximately 12%
present IL7R mutations.59 The authors investigated an uns-
elected cohort of high-risk pcB-ALL patients for
rearrangements involving ABL1, JAK2, PDGFRB, genetic
alterations that are primary targets for multikinase
inhibitors such as dasatinib, or for JAK2 inhibitors like
ruxolitinib. Unfortunately, they were found in less than
3% of the patients. While these genetic alterations are rare,
the therapeutic efforts for this unfavorable subgroup must
reach beyond these first identified targets.58

The clinical need for novel therapies

Most study groups that perform population-based clini-
cal trials for de novo ALL focus on the following general
aspects: 
i) to improve risk stratification for better adaptation of

treatment intensity; 
ii) to investigate if the previously established system of

early in vivo response analysis (by MRD detection)
can be further refined through panels of molecular
markers at time of diagnosis; 

iii) to improve outcome by additional potentially more tar-
geted interventions in selected subgroups while reduc-
ing the risk of long-term side effects; 

iv) to evaluate the therapeutic benefit of alternative
approaches such as immunotherapy and/or allogeneic
hematopoietic stem cell transplantation in patients
refractory to conventional treatment.

The first target group for new therapeutic interventions
is obviously high-risk ALL. If agents are used which have
not shown unique activity in other settings, it is most like-
ly that the first patients to be treated will be patients with
otherwise dismal prognosis, usually due to refractory or
relapsed ALL.69 If agents are available which have truly
selective activity and do not impose additional toxicity it
is attractive to introduce them in those patient subsets in
which current treatment cannot achieve EFS rates compa-
rable to those of the overall ALL population in childhood
and adolescence. This has been the case for Ph+ ALL.39,40

Unfortunately, there has been no attempt to replace toxic
chemotherapy elements with more targeted agents, as has
been shown for Ph+ ALL in elderly patients.70

A wide range of known agents in new applications (e.g.
vorinostat as histone deacetylase inhibitor) or new agents
in better characterized subsets of ALL patients (obatoclax
for BCL-2 positive ALL; ruxolitinib for ALL with JAK2
rearrangements or mutations; bortezomib as proteasome
inhibitor) may open new therapeutic opportunities.
Induction of autophagy-dependent necroptosis, in particu-
lar in glucocorticoid resistant ALL with the use of
rapamycin and obatoclax in vitro and in vivo, was an
important finding due to the fact that resistance to gluco-
corticoids is a strong indicator of high relapse risk.71

Activated Janus kinases as potential targets for ruxolitinib
have been described above and have been used in in vivo
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models of ALL as well.59,72 Development of bortezomib
for use in pediatric ALL has been ongoing for several
years, and the clinical activity in combination with cyto-
toxic agents is remarkable.73,74 Derivatives of nucleosid
analogs (clofabarine, nelarabine) have been successfully
used in refractory patients.69

Considering the heterogeneity of disease, the complexi-
ty of genetic alterations (see above), and the numerous
mechanisms of treatment resistance, it is very likely, how-
ever, that only combination therapies will result in sub-
stantial improvement in outcome. Refractory and maybe
even the slow responding leukemias may also be
approached by novel immunotherapeutic strategies. The
success story of the anti-CD20 antibody rituximab opened
a whole new area of activity.75 The efficacy in pediatric
non-Hodgkin’s lymphoma was also remarkable.76 The
anti-CD22 antibody epratuzumab showed activity in pedi-
atric ALL which triggered interest by several study
groups.77 The activation of patients’ T cells for anti-
leukemic response towards CD19 positive ALL cells by
using the bi-specific chimeric tool blinatumomab showed
remarkable clinical activity in adult and pediatric ALL
patients.78-80 While this approach was first planned to
bridge the time towards allogeneic hSCT in patients
refractory to chemotherapy (persistently MRD positive), it
was surprising to see that patients have also achieved
long-term remissions without hSCT.81 This may open up
interesting studies in which immunotherapy in addition to
allogeneic hSCT will fill the gap left by all patients who
are resistant to chemotherapy, or may even allow toxic ele-
ments to be replaced by agents which utilize different ther-
apeutic mechanisms. Certainly, all novel approaches must
be monitored for long-term activity towards disease recur-
rence in controlled prospective clinical trials. Importantly,
these new strategies must also be carefully monitored
towards any type of toxicity, which is a special responsi-
bility for anybody in charge for pediatric patients.82

Conclusion

Conventional methods of risk classification in child-
hood ALL including standard MRD analyses provide
excellent tools for clinical treatment stratification of child-
hood ALL. Both comprehensive molecular characteriza-
tion and early identification of these patients will be essen-
tial in future clinical trials to utilize the optimal therapy in
the first treatment cycles and, for those in need of it, to
secure the timely introduction of potential targeted treat-
ment based on individual molecular characteristics of
leukemic cells, and for allogeneic hematopoietic stem cell
transplantation. It is important that all future approaches
should be evaluated in the context of classical risk-adapted
treatment strategies and molecular monitoring of treat-
ment response.
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Subclonal architecture in acute myeloid leukemia

Introduction

The last decade of acute myeloid leukemia
(AML) study has resulted in an increased abil-
ity to detect pathogenic mutations and an
expanding pharmacopeia of agents that specif-
ically target many of these mutations. At the
same time, there is increased awareness that
cancer mutations are situated within a larger
genomic structure of branching evolution
(reviewed in1). 

Branching evolution was originally pro-
posed as a common oncogenic mechanism by
Peter Nowell, based on karyotypic evaluation
of diverse cancers.2 Testa et al.3 demonstrated
that metaphase karyotype could also identify
complex, branching evolution in select AML
cases. 

The application of technologies with
increasing resolution has demonstrated that
most, if not all, cases of AML emerge through
a process of branching evolution. Southern
blot, spectral karyotyping (SKY), fluorescence
in situ hybridization (FISH), comparative
genomic hybridization/single nucleotide poly-
morphism (CGH/SNP) arrays, polymerase
chain reaction (PCR), and now next-genera-
tion sequencing have all improved our ability
to detect subclones and to integrate mutations
into a clonal hierarchy.4-10

In order to fully integrate patient-specific
mutations and targeted agents into clinical

care, it will be imperative to understand each-
mutation on three axes: 1) is it a ‘driver’ versus
‘passenger’; 2) is it an ‘initiation’ versus ‘pro-
gression’ event; and 3) is it situated in a ‘found-
ing clone’ versus a ‘subclone’. Figure 1 models
the relationship of leukemia-associated muta-
tions and evolution following selection pres-
sure applied by chemotherapy: initiation muta-
tions exist within the founding clone and are
found in all AML cells. Progression mutations
emerge later in leukemic evolution, can be
found in subclones, and exist in only a fraction
of AML cells. Thus, selection pressure in the
form of chemotherapy can favor the elimina-
tion or outgrowth of different branches within
the AML evolutionary tree; mutations within
the founding clones will be present in all
branches, while mutations found in sub-clones
can emerge or be eliminate at progression.

Mutation evolutionary hierarchy can be
either directly measured or can be inferred
based on temporal changes. Mutations that
were present at diagnosis and lost at relapse
must have existed in a subclone that was elim-
inated by therapy (Figure 1A). Mutations that
are absent at diagnosis and present at relapse
must have existed in a resistant subclone not
detected at diagnosis or have been acquired by
a cell that randomly escaped chemotherapy
(the latter cannot be distinguished from the
former if the subclone exists below the level of
detection at diagnosis) (Figure 1B). Therapy
that eradicates all leukemia cells must target a

Acute myeloid leukemia

Increasing evidence suggests that acute myeloid leukemia (AML) develops through a process of
branching evolution. Using single cell analysis, quantitative sequencing, and temporal analysis it is pos-
sible to identify the leukemic evolutionary architecture of specific mutations in individual patients:
founding mutations exist in all leukemic cells, while subclonal mutations exist in only a fraction of the
leukemia. Review of the current literature suggests that the balanced translocations (t(15;17), t(8;21),
inv(16), and MLL rearrangements) and nucleotide variants in DNMT3A and TET2 most commonly occur
in the founding clone at diagnosis, and are neither gained nor lost at relapse. In contrast, +8, +22, -X, -
Y, and nucleotide variants in FLT3, NRAS/KRAS, WT1 and KIT frequently occur in subclones that either
emerge or are lost at relapse. Thus, understanding the subclonal architecture of individual patients will
be critical to predict individual response to therapy; drugs that target mutations that exist within a sub-
clone are unlikely to eliminate the founding clone, and will leave the patient at high risk of relapse.  

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the role of branching evolution in the acquisition of AML-associated mutations;
- describe the most common AML mutations that exist in founding clones versus in subclones; 
- predict response to targeted therapy based on an understanding of a patient’s subclonal architecture. 
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population of cells that share a set of susceptible mutations
(e.g. founding clone mutations) (Figure 1C). Thus, inter-
preting the outcomes of targeted therapies will require an
understanding of sequential mutations, evolution dynam-
ics, and selection pressures. This paper will review the
current understanding of AML mutations in the context of
subclonal architecture and of dynamic change at relapse,
with a focus on which mutations most frequently occur in
subclones versus in a founding clone.

Subclonal architecture assessed by karyotype     

Subclonal architecture can be determined through a
variety of mechanisms. Karyotype analysis provides a sin-
gle cell, low-resolution analysis of genome-wide structur-
al variants. Because karyotype analysis routinely assesses
only a small number of metaphases (usually 20), this
approach is inadequate to determine if a variant exists in
‘all’ leukemia cells. However, when two variants co-occur,
the subclonal architecture (as related to these two genetic
changes) can be determined as both mutations are simul-
taneously evaluated in single cells. 

The translocation t(15;17) occurs concurrently with +8
in 25-40% of cases.11-14 Combined data from t(15;17)-pos-
itive APL patients assessed in 6 separate studies identified
36 cases with concurrent +8 and information regarding the
frequency of these two mutations within the leukemia
cells.14-19 Of these, 16 cases presented with +8 in a sub-
clone (44%); in each case additional t(15;17) cells were
present that lacked +8, while all +8 positive cells carried
t(15;17). Loss of chromosome 7 co-occurs less frequently
with t(15;17), although this too is frequently observed in a
subclone, again suggesting the t(15;17) may be the found-
ing event.17 Consistent with these findings, APL patients
with additional cytogenetic abnormalities had similar out-
comes compared with patients presenting with isolated
t(15;17).11-13,19-22 Collectively, these data suggest that
t(15;17) is likely to be the founding mutation in APL and
that +8 and -7 are more likely to occur in subclones. This
may explain why chemosensitivity in APL is predomi-
nantly determined by the presence of t(15;17).

Trisomy 8 also co-occurs frequently with the core bind-
ing factor (CBF) translocations t(8;21), t(16;16), and
inv(16).23,24 Within the CBF leukemias, co-occurring
structural variants show distinct patterns: +13, and +22 co-
occur with inv(16), while -X and -Y co-occur almost
exclusively with t(8;21).24,25 Regardless of this, all of these
additional structural variants are typically observed in sub-
clones by karyotype.24,25 Also, the presence of additional
karyotypic abnormalities generally does not affect clinical
outcome26,27 (the exceptions being KIT mutations and sec-
ondary CBF AML),28-30 suggesting that the CBF transloca-
tion may be a critical sensitizer to high-dose cytarabine. 

Paired analysis at diagnosis and relapse permits identifi-
cation of structural variants that are stable over time (like-
ly founding variants) and variants that are gained or lost
(subclonal variants). Four studies evaluating pair-wise
samples by metaphase karyotype found that half of all
patients demonstrated genomic evolution at relapse, and
half of the patients who presented initially with a normal
karyotype retained a normal karyotype.3,31-33 This would
suggest that AML is fundamentally not a disease associat-
ed with an unstable genome, but it is rather a disease that

emerges through constrained clonal evolution. 
Few cases have been reported that show balanced

translocations gained at relapse.34-36 Some authors suggest
that gains at relapse were likely cases of false negatives, as
many were associated with M2 or M3 morphology at both
diagnosis and relapse, in t(8;21) and t(15;17)-positive
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Figure 1. Model of AML mutational evolution. AML cells
contain both ‘driver’ (colored circles), and ‘passenger’
(open circles) mutations. There are many more ‘passenger’
mutations than ‘driver’ mutations. ‘Initiation’ mutations
occur within the founding clone and are found in all AML
cells. Branching evolution occurs as ‘progression’ muta-
tions give rise to new subclones with growth advantages.
The extrinsic pressure of chemotherapy results in different
outcomes depending on the sensitivities of mutations with-
in the founding versus subclones. (A) Subclone lost follow-
ing chemotherapy: consistent with a mutation in the sub-
clone conferring sensitivity to the therapy. At relapse, muta-
tions in the subclone will no longer be identified. (B)
Subclone gained following chemotherapy: consistent with
a mutation in the subclone conferring resistance to
chemotherapy. At relapse, new mutations will be identified.
These mutations may have been detected at low levels at
diagnosis, or may have existed below the level of detection
at diagnosis. (C) Clearance of all AML cells, consistent with
sensitivity of mutations in the founding clone. No cells
relapse because the initiation mutation was in all AML
cells and was sensitive to therapy.



cases, respectively.31,32 Likewise, losses of the balanced
translocations are only rarely reported, but can recur at
relapse despite long remission intervals;37 those cases with
loss of a balanced translocation may include new RUNX1
and MLL translocations at diagnosis, suggesting that these
relapses were treatment-related malignancies that may
have emerged independently from the initial leukemia.38

Furthermore, in pediatric leukemias, these translocations
can occasionally be detected in Guthrie card smears
(although not as commonly as acute lymphocytic
leukemia balanced translocations), while other variants
(e.g. FLT3 mutations) are not detected.39-43

Other cytogenetic abnormalities are frequently gained
or lost at relapse. Trisomy 8 is the most frequently
observed chromosomal gain at relapse (22 of 236 separate
cases).3,32,33 This suggests that +8 is likely to be a co-oper-
ating event that tends to occur in subclones, rather than a
founding event. Likewise, the secondary structural vari-
ants that are observed in core binding factor (CBF)
leukemias are also more prevalent at relapse (+13, +22, -
X, and –Y).24,25 Additional variants associated with kary-
otypic evolution at relapse include gains of 11q, and 17q,
although the number of assessable cases was not always
stated.44-46 Interestingly, studies focused on leukemic evo-
lution following stem cell transplantation have observed
recurrent losses in immunologically active regions includ-
ing the HLA-locus (6p), as well as recurrent losses at 5q,
9q, 12p13, 13q12.2, and 17p13, and gains at 15q.44,47

Although it is possible for two independent karyotypic
clones to co-exist within the same patient, this has only
rarely been reported.8,31,46,48 The addition of spectral kary-
otyping was sufficient to identify a shared variant in what
otherwise appeared to be two independent leukemic
clones, suggesting that higher resolution analysis may be
able to identify shared founding variants in many such
cases, and that most of these cases are likely to represent
subclones of a founding clone associated with variants not
detected by standard karyotype, rather than two truly inde-
pendent clones.8

Subclonal architecture determined by
nucleotide variants

Nucleotide variants also have been assessed at diagnosis
and relapse. In addition to temporal analysis, two alterna-
tive approaches have been employed to determine the sub-
clonal architecture of individual cases at single time
points. First, digital sequencing quantifies the variant
allele frequency (VAF: how commonly a mutation occurs
within a population of cells); clusters of VAFs can then
identify mutations that occur in subclones versus in the
founding clone. However, mutations that occur in less than
5% of sampled cells are likely to be missed, and subclones
with overlapping average VAFs are indistinguishable.
Second, single cell analysis can be performed by FISH,
and recently by PCR.4,49 However, FISH studies are limit-
ed to structural abnormalities, and single cell multiplexed
PCR remains technically challenging. To increase DNA
yield, colonies can be grown from single AML cells,
which are subsequently analyzed. However, this approach
may be biased toward subclones with augmented ex vivo
growth potential.10,50

Temporal analysis of nucleotide variants has been per-

formed by many different groups, most of whom assessed
a single gene for gains and losses in paired samples at
diagnosis and at relapse.25,50-62 Meta-analysis of these
results is summarized in Figure 2. The mutations most
commonly gained at relapse were: FLT3, KIT,
NRAS/KRAS, WT1 and CEBPA (Figure 2A). In contrast,
several other genes do not appear to gain mutations at
relapse: NPM1, DNMT3A, IDH1/2 and TET2. Similarly,
loss of a mutation at relapse has been observed in FLT3,
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Figure 2. Meta-analysis of nucleotide variants gained at
relapse. Pubmed was searched for reported cases of
paired diagnosis and relapse samples that were analyzed
for AML mutations. (A) Frequency of mutations that are
gained at relapse. These mutations are absent in the diag-
nosis sample and present in the relapse sample and are
consistent with being in an evolving subclone. (B)
Frequency of mutations that are lost at relapse. These
mutations are present in the diagnosis sample and absent
in the relapse sample, and are consistent with being in a
subclone that was eliminated.



NRAS/KRAS, CEBPA, WT1 and NPM1 (Figure 2B).
Collectively, these data suggest that FLT3, KIT,
NRAS/KRAS and WT1 mutations frequently occur in sub-
clones (e.g. they are co-operating events) that may emerge
or disappear at relapse. These results are consistent with
the recent results of 440 paired AML cases, except that
loss of IDH1/2 was reported in 13 of 42 patients.36

Due to sampling limitations, it is impossible to know
whether a mutation that is gained at relapse existed below
the level of detection in a minor subclone at diagnosis or
whether the mutation was gained after therapy in a cell
that randomly survived chemotherapy (Figure 1B). Higher
sensitivity PCR-based platforms have detected KIT muta-
tions that were missed by Sanger sequencing.
Interestingly, in this analysis, Wakita et al. identified 3
patients with KIT mutations that were not detected at diag-
nosis by Sanger sequencing, but were detected at relapse
with this method. In all 3 cases, the mutation could be
detected at diagnosis by high sensitivity PCR methodolo-
gies, suggesting that these mutations pre-existed in rare
cells at diagnosis (e.g. minor subclones).25 Likewise,
patients with new FLT3 variants at relapse tend to relapse
more quickly than patients without new FLT3 mutations
(6.6 vs. 13.5 months).63 This short window of time from
treatment to relapse suggests that FLT3 mutations that are
‘gained’ at relapse are likely to have pre-existed in an
undetected subclone, rather than to have been acquired
later in a cell from the founding clone that survived.
Similar analysis of other mutations that are gained at

relapse has not yet been performed.
Our group has recently used deep-digital read-counts to

quantify somatic mutations in individual AML patients
identified during whole genome sequencing. We found
that half of the 24 cases of M1 and M3 AML had one or
more subclones, in addition to a founding clone.9 We iden-
tified cases with NRAS, FLT3, ETV6 and EWSR1 muta-
tions clustering within distinct subclones, while NPM1,
IDH1 and SMC1A variants were observed within the
founding clone of individual cases (Figure 3). This
approach remains expensive, and only a limited number of
cases have been studied. Subclonal architecture requires
multiple variants per subclone to accurately define the
subclone. Thus, exome sequencing is typically inadequate
in AML cases due to the small number of exome variants
per genome (typically 10-20). Furthermore, it remains
technically challenging to quantify the subclonal identity
of structural variants and indels (small insertions and dele-
tions) using this approach.

Paired whole genome sequencing at diagnosis and
relapse followed by deep digital sequencing improves
identification of variants within subclones. This approach
was applied to 7 cases of AML, and identified FLT3, IDH1
and ETV6 variants within leukemic subclones.64

Furthermore, variants in NPM1, DNMT3A, SMC3, WT1,
RUNX1 and IDH2 were identified in individual founding
clones at diagnosis and relapse. Similarly, paired analysis
of myelodysplastic syndromes (MDS) and subsequent sec-
ondary AML identified WT1, PTPN11, RUNX1 and SMC3
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Figure 3.  Subclonal architecture in 4 AML cases determined by whole-genome sequencing. The variant allele frequency
(VAF: the number of reads with a mutation divided by the total number of reads at that nucleotide position) and total
read counts for each validated variant in the 4 cases are indicated. Variants that are likely to be ‘driver’ mutations are
indicated in color. Mutations in these genes are either recurrently observed in AML or in the Cosmic database. Note the
subclonal occurrence of the mutations in NRAS, FLT3 and ETV6.



in subclones gained in at least one secondary AML case,
but absent in corresponding MDS sample.65 Mutations in
STAG2, TP53 and U2AF1 were observed in nearly all cells
in both the MDS cells and in the secondary AML cells in
3 separate patients, respectively, suggesting these muta-
tions existed in the founding MDS clone that gave rise to
the subsequent secondary AML. 

Jan et al. recently combined exome sequencing of
leukemic cells with flow sorting of residual ‘normal’
hematopoietic stem cells (HSCs) to identify evolutionarily
early versus late variants.10 Five FLT3-positive cases were
assessed; in all 5 cases, the FLT3 variant was identified in
the leukemic sample but not in the HSC samples. In con-
trast, variants in NPM1, TET2 and SMC1A were identified
in both the leukemic and HSC samples of at least one case
each, suggesting that these variants occurred early during
leukemic evolution and are likely to be founding events.

Two groups have looked at genetic changes associated
with mosaic hematopoiesis. X-inactivation ratios in
females have been known to develop age-associated skew-
ing, especially in the hematopoietic compartment.66,67

Furthermore, this phenomenon tends to be myeloid
biased.67 Laurie et al. retrospectively analyzed SNP arrays
obtained for non-hematologic genome-wide association
study (GWAS); since peripheral blood was used as the
source of genetic information in these cases, they could be
assessed for acquired, hematologic structural alterations if
these occurred in more that 5% of blood cells.68 They iden-
tified mosaic hematopoiesis in multiple cases, and noted
an increasing incidence that was proportional to age.
Furthermore, they observed recurrent deletions involving
DNMT3A, TET2 and RB1. Likewise, Busque et al.
sequenced TET2 in patients with X-inactivation skewing
and asymptomatic mosaic hematopoiesis.69 They identi-
fied 10 of 182 cases with clonal mutations in TET2.

Finally, single cells can be grown ex vivo in clonogenic
assays, and individual colonies can be assessed for muta-
tion combinations. Because each colony is derived from a
single cell, this permits effective clustering of co-occur-
ring variants. Price et al. derived 26 colonies from a single
patient and evaluated these for trisomy 8 and for an NRAS
mutation. They found +8 in 25 of 26 colonies and an
NRAS variant in only 19 of 26 colonies, consistent with
sequential acquisition of the NRAS variant in a subclone
that already carried +8.70

Further data involving more cases will be required to
better understand the frequency with which each variant
occurs in subclones versus the founding clone. However,
at this time variants in FLT3, NRAS/KRAS, WT1 and KIT
appear to be the most commonly occurring subclonal vari-
ants, with variants in NPM1, IDH1/2 and CEBPA occur-
ring less frequently, while mutations in DNMT3A, TET2
and cohesin genes rarely appear in subclones, and are
nearly always associated with the founding clone.

Mouse models

Diverse AML mutations and fusion genes have been
studied in mouse models using retroviral expression,
transgenic, and knock-in strategies (reviewed in71-73).
Naturally, these experiments are limited in their ability to
predict the common subclonal architecture of AML muta-
tions. However, it is worth noting that, consistent with

many of the findings in patients described above, several
models of t(15;17)/PML-RARA, t(8;21)/AML1-ETO,
inv(16)/CBF�-SMMHC, and t(11;19)/MLL-AF9 have
resulted in leukemia that phenocopies human AML. Many
of these have a long latency period (~8-15 months) which
can be decreased with N-ethyl-N-nitrosourea (ENU) treat-
ment, radiation treatment, or overexpression of additional
mutations, all consistent with the possibility that these
fusion genes act as founding mutations that require a sec-
ond hit. In contrast, models of FLT3-ITD, FLT3-TKD,
KIT and KRAS lead to myeloproliferation without overt
maturation arrest and leukemia, consistent with the possi-
bility that these mutations, typically commonly observed
in subclones, are more likely to be progression events
rather than founding events.

Subclonal architecture and therapy 
implications

As modeled in Figure 1A, application of a targeted drug
to a patient whose mutation of interest exists in a subclone
is unlikely to eradicate the founding leukemic clone. In
contrast, the most successful targeted drugs must affect an
initiating event for that tumor, which will always be in the
founding clone. Acute promyelocytic leukemia is an
example of such a strategy. As described above, t(15;17) is
likely the initiating event for this disease, and is almost
universally observed in the founding clone; all-trans
retinoic acid (ATRA) and arsenic both target the resultant
fusion oncoprotein PML-RARA. The efficacy of these
agents probably relates to the fact that they abrogate the
initiating event, which defines the founding clone (Figure
1C). Based on this model, one would predict that cases
with low FLT3 mutant allelic burden (e.g. cases where the
mutation is likely in a subclone) would be less susceptible
to FLT3 inhibitors, and that resistance would emerge
through the selection of the founding clone (or alternative
subclones). Preliminary evidence for both of these out-
comes has been observed. First, Pratz et al.74 correlated ex
vivo cytotoxicity to 6 different FLT3 inhibitors and
observed that samples with low allelic burden (which sug-
gests that the mutation is in a subclone) were less sensitive
to these inhibitors than were cases with high allelic burden
(which suggests that mutations are in founding clones).
Second, all 9 of the patients clinically treated with AC220
who relapsed after achieving a complete response had
acquired AC220-resistant FLT3 D835 or F691 mutations
within the pre-existing FLT3-ITD allele, and one-third of
the patients who discontinued therapy for any reason also
had such mutations.75,76 Because concurrent FLT3-ITD
and FLT3-TKD mutations have been observed sponta-
neously in 1-2% of patients,77-79 it is possible that these
variants pre-existed in a minor (undetected) subclone that
was then selected by cytotoxic pressure against sensitive
subclones.

Conclusions

Multiple lines of evidence now suggest that leukemoge-
nesis involves a process of branching evolution, and that
these branch points can be delineated based on shared
genomic mutations within each subclone. To date, the bal-
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anced translocations (e.g. t(15;17), t(8;21), t(16;16),
inv(16), and MLL rearrangements) and nucleotide variants
in DNMT3A, and TET2 appear almost universally in the
founding clone, and are likely to be initiation events. In
contrast, +8, +22, -X, -Y, and variants in FLT3,
NRAS/KRAS, WT1 and KIT appear frequently in subclones
and are, therefore, likely to be progression events. This
model of leukemogenesis, and the position of these muta-
tions within the AML subclonal architecture, has impor-
tant implications for the administration and interpretation
of response to targeted agents, especially because many of
the most promising small molecules in development target
mutations that may present in subclones rather than in the
founding clone. 
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Genetics guided therapeutic approaches in acute
myeloid leukemia

Introduction

Since cytogenetic markers have significant-
ly improved the risk stratification of acute
myeloid leukemia (AML),1 the development
of genomics technologies, such as single
nucleotide polymorphism (SNP) microarray
analysis2 and next generation sequencing
(NGS),3 has made a significant contribution to
deciphering the AML-associated genetic
changes. An increasing number of genomic
aberrations and gene mutations have been
identified that cause epigenetic changes and
lead to deregulated gene expression. For
example, small genomic losses pointed to a
relevant role of the TET2 gene4 and NGS
helped to identify IDH1 and DNMT3A muta-
tions in AML.5,6

These recent insights further highlighted the
molecular heterogeneity of AML and showed
that individual patients present with a distinct
and almost unique combination of somatically
acquired genetic aberrations. While some of

these are known to perturb a variety of cellular
processes of the hematopoietic progenitor
cells, including mechanisms of self-renewal,
proliferation, differentiation, epigenetic regu-
lation, DNA repair, and RNA splicing, others
most likely represent passenger mutations that
do not significantly contribute to the disease.
In recent years, this growing genetic informa-
tion has started to translate into the clinic. The
current World Health Organization (WHO)
classification categorizes more than half of
AML cases on the basis of the underlying
genetic defects, which in part define distinct
entities of clinical importance.7 First, cytoge-
netic and molecular genetic changes represent
powerful prognostic markers, and second
some genetic and epigenetic aberrations can
be targeted by novel therapeutic approaches,
such as tyrosine kinase inhibitors (TKIs) and
demethylating agents.8

However, there are still limitations regard-
ing the use of genomic biomarkers in clinical
practice as for many novel markers the prog-

Acute myeloid leukemia 

Over the past years the development of genomics technologies, such as single nucleotide polymor-
phism (SNP) microarray analysis and next generation sequencing (NGS), have made a significant con-
tribution to comprehensively deciphering the genetic changes underlying acute myeloid leukemia
(AML). An increasing number of genomic aberrations and gene mutations have been identified that
cause epigenetic changes and lead to deregulated gene expression. These recent insights further
unravel the enormous molecular heterogeneity of AML and show that each patient presents with a
distinct and almost individual combination of somatically acquired genetic alterations. While some of
these are known to perturb normal mechanisms of self-renewal, proliferation, and differentiation of
the hematopoietic progenitor cells, others most likely represent passenger mutations that do not sig-
nificantly contribute to the disease. Future challenges will be to not only discriminate driver from pas-
senger mutations, but also to evaluate the prognostic and predictive value of a specific mutation in
the concert of the various concurrent mutations. Nevertheless, first genetic markers started to trans-
late into the clinic and to impact treatment decisions, especially in case of availability of molecular
targeted therapies. To further improve the response to these drugs, that often do not show the expect-
ed effects as monotherapy, promising new compounds will need to be put into perspective of the
interplay of mutations and ultimately personalized combination treatment approaches might be able
to eradicate the disease.

Learning goals

At the completion of this activity, participants should be able to:  
- interpret the value of currently available genetic markers with regard to their predictive and prog-

nostic value;
- gain an overview of genetics guided treatment approaches that have already been translated into

the clinic.
- better understand future challenges that will have to consider the interplay of genomic aberrations

and the network of deregulated cancer relevant pathways in order to design optimal effective novel
treatment strategies.
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nostic impact so far has only been evaluated in retrospec-
tive studies. In addition, several new markers still need to
be interpreted cautiously as first studies did not take into
account interactions with other molecular markers, and
often the analysis was based on relatively low patient
numbers that might show a selection bias. Furthermore,
for improved clinical decision-making there is an unmet
need for predictive markers that can be attributed to the
clinical benefit of a specific treatment. This might con-
tribute significantly to an improvement in the treatment of
AML that has been slow over the past decade with a few
subgroups as exceptions, such as younger patients with
more favorable genetic disease.9 Not only novel targeted
therapies, but also dose escalation of daunorubicin, the use
of alternative nucleoside analogs, antibody-directed
chemotherapy as well as allogeneic transplant concepts
will benefit from a biomarker guided personalized treat-
ment approach. Finally, a more detailed molecular charac-
terization will provide also the opportunity to more pre-
cisely monitor minimal residual disease (MRD) in all
AML patients. 

In this review we will focus on genetic markers (dereg-
ulated gene expression and epigenetic changes will not be
discussed) that have already entered clinical practice and
affect diagnosis and guidance for therapeutic decisions in
adult AML. In addition, we will discuss the prognostic
value and potential clinical impact of novel markers that
remain investigational.

Established genomic biomarkers

Acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-
MYH11

Acute myeloid leukemia patients who present with a
translocation or inversion affecting the core-binding-fac-
tor (CBF) complex components RUNX1 or CBFB belong
to the genetic favorable-risk category.6,7 Characterized by
either a t(8;21)(q22;q22), leading to a RUNX1-RUNX1T1
fusion, or an inv(16)(p13.1q22) (or t(16;16)(p13.1;q22)),
leading to a CBFB-MYH11 fusion, CBF-AML shows
response rates of approximately 90% to standard ‘3+7’
anthracycline and cytarabine induction chemotherapy in
younger adult patients. In this cohort, consolidation thera-
py with repetitive cycles of high-dose cytarabine (3 g/m²
every 12 hours on Days 1, 3, and 5) results in 60%-70%
long-term survival probabilities in younger adult patients
and thus has become a widely accepted standard therapy
for CBF-AML. Therefore, older CBF-AML patients have
been shown to also benefit from dose intensification of
standard chemotherapy (Table 1).8,11

Recently, there has also been evidence from the British
Medical Research Council (MRC) AML15 trial that CBF-
AML patients might also benefit from an antibody-direct-
ed chemotherapeutic approach. In this large trial compris-
ing all cytogenetic subgroups, 1113 patients were random-
ly assigned to receive a single dose of the anti-CD33
immunoconjugate gemtuzumab ozogamicin (GO) at a
dose of 3 mg/m² in induction course 1 and the first consol-
idation course.12 In the overall trial population there was
no difference in response and survival, but a pre-defined
subgroup analysis showed a significant survival benefit
for patients with CBF-AML. Unfortunately, market with-
drawal of GO currently prevents the conduction of a con-

firmatory trial. However, other studies showing a similar
beneficial effect warrant reassessment of GO as front-line
therapy.13,14

Secondary genetic changes in CBF-AML, mutations in
the v-kit Hardy-Zuckerman 4 feline sarcoma viral onco-
gene homolog (KIT) and FMS-like tyrosine kinase 3
(FLT3), have been associated with inferior outcome.11,15-17

While activating KIT mutations are found in approximate-
ly one-third of cases, the KIT receptor is expressed at sig-
nificantly higher levels in CBF-AML compared with other
subgroups. Recent efforts by the German-Austrian AML
Study Group (AMLSG) (www.ClinicalTrials.gov
Identifier n. NCT00850382) and Cancer and Leukemia
Group B (CALGB) (www.ClinicalTrials.gov Identifier n.
NCT01238211) combining conventional induction and
consolidation therapy with dasatinib, a potent inhibitor of
mutated and wild-type KIT, followed by one year dasa-
tinib maintenance therapy, provided first promising
results. In the future, a more refined molecular characteri-
zation of CBF-AML based on whole genome approaches
might lead to additional molecular targeted approach-
es.18,19

Finally, MRD monitoring in CBF-AML showed that
persistence of molecular disease is a highly predictive fac-
tor for relapse-free survival (RFS) and overall survival
(OS).16,20-22 Therefore, fusion transcript copy ratios should
be monitored in all CBF-AML cases to evaluate whether
allogeneic hematopoietic stem cell transplantation
(HSCT) or investigational agents can improve outcome as
early intervention for molecular relapse.
Acute myeloid leukemia with MLL-fusions

Rearrangements of the mixed lineage leukemia (MLL)
gene are found in approximately 10% of adult AML, espe-
cially in secondary acute leukemias that occur following
treatment with topoisomerase II inhibitors. Except for the
translocation t(9;11)(p22;q23), leading to a MLLT3-MLL
fusion (also known as MLL-AF9), which is a unique WHO
classification entity,7 and the translocation
t(11;19)(q23;p13),23 the presence of an MLL rearrange-
ment generally confers a poorer prognosis, although the
analysis by MRC did not distinguish between the two dif-
ferent types of t(11;19), i.e. AML with t(11;19)(q23;p13.3)
(MLL-MLLT1) and AML with t(11;19)(q23;p13.1) (MLL-
ELL). While there are more than 60 known fusion partners
of MLL, MLL-rearranged leukemias display remarkable
genomic stability, with very few gains or losses of chro-
mosomal regions.24 Therefore, recent studies suggest that
MLL-rearranged leukemias are largely driven by epigenet-
ic deregulation as several epigenetic regulators that modi-
fy DNA or histones have been implicated in MLL-fusion
driven leukemogenesis.25

Given that MLL-fusion proteins transform cells via
aberrant epigenetic programs including aberrant DNA
methylation, modifying the DNA methylation state might
have therapeutic efficacy in MLL-rearranged leukemia.
Indeed, MLL-rearranged leukemia cell lines were shown
to be sensitive to hypomethylating agents.25 In addition,
epigenetic treatment approaches in MLL-rearranged
leukemia now also focus on the histone methyltransferase
DOT1L that recently has emerged as an important media-
tor of MLL-fusion mediated leukemic transformation via
the modification of histone H3 on lysine 79 (H3K79).26

There is a strong correlation between elevated H3K79
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Table 1. Prognostic value and impact on treatment decision of selected molecular markers in adult AML (adopted from Döhner
and Gaidzik).10 

Biomarker Prognostic significance Clinical relevance

AML with RUNX1-RUNX1T1 Favorable prognosis in younger and older patients ‘3 + 7’ induction followed by repetitive cycles
and CBFB-MYH11 [additional trisomy 22 predicts superior RFS of high-dose cytarabine is the widely 

in AML with inv(16)] accepted standard therapy (older patients with
High relapse probability in patients with molecular CBF-AML do also benefit from intensive
disease persistence conventional chemotherapy)

Secondary KIT and possibly also FLT3 mutations Allogeneic HSCT may be only considered
associated with inferior outcome in most in individual patients with high-risk factors  
but not all studies (e.g. elevated WBC counts, molecular disease 

persistence) and low transplantation-related mortality
KIT inhibitor dasatinib in combination with intensive 
induction and consolidation therapy in phase II clinical trials

Addition of GO significantly improved OS in the MRC15 trial

AML with MLL fusions Unfavorable prognosis, except for AML with t(9;11) Allogeneic HSCT appears to improve outcome in younger adult 
patients

Experimental therapeutic strategies within clinical trials (e.g. 
hypomethylating agents, DOT1L inhibitors)

NPM1 Genotype “mutated NPM1 without FLT3-ITD” Standard induction therapy followed by repetitive cycles
(in CN-AML) associated with favorable outcome of high-dose cytarabine is the reasonable first-line
NPM1 mutations in older patients associated with treatment option in patients with the genotype 
CR achievement and better outcome, “mutated NPM1 without FLT3-ITD” (CN-AML) 
even in patients over 70 years of age Favorable-risk “mutated NPM1 without FLT3-ITD”   

Impact of concurrent gene mutations e.g. in CN-AML may not benefit from allogeneic HSCT in first CR,
IDH1, IDH2, DNMT3A, and TET2 currently except in individual cases (e.g. those with molecular disease
under investigation persistence) with low transplantation-related risk

Older patients with NPM1-mutated AML benefit from intensive 
conventional chemotherapy

Concurrent gene mutations other than FLT3 (IDH1, IDH2, 
DNMT3A, etc.) should not yet be used for making treatment 
decisions 

CEBPA Only CEBPAdm cases define this AML entity  Standard induction and consolidation therapy 
CEBPAdm (CN-AML) associated with favorable outcome is the reasonable first-line treatment option
Impact in older patients under investigation Patients may not benefit from allogeneic HSCT in first CR

FLT3-ITD Unfavorable prognosis Allogeneic HSCT appears to improve outcome in younger
Particular poor outcome in AML with high burden adult patients (no data available for elderly patients)
of mutated FLT3-ITD allele (high mutant to wild-type Patients should be entered on clinical trials with
allelic ratio as assessed by DNA fragment analysis) FLT3 tyrosine kinase inhibitors whenever possible;

AML with FLT3-ITD located outside the JM (non-JM ITD, 1st-generation (e.g. midostaurin, lestaurtinib, sorafenib)
approximately 30% of cases) appear to do significantly and 2nd-generation TKI (quizartinib) are currently being
worse than those with AML with JM-ITD evaluated in phase II and III clinical trials

TP53 Unfavorable prognosis Allogeneic HSCT does not seem to improve outcome;
Mutations/deletions mostly in AML with complex experimental therapeutic approaches within clinical trials 
karyotype (56%-78%) warranted

WT1 Prognostic significance somewhat controversial; Unknown
most studies report a negative prognostic impact

Additional studies, preferentially large intra-individual 
patient meta-analyses, needed to explore the prognostic 
impact by different post-remission therapies 
WT1 SNP rs16754 located in mutational hot spot in exon 7 found 
to be associated with favorable prognosis in patients with CN-AML

RUNX1 Unfavorable prognosis; all studies showed an association Unknown
of RUNX1 mutations with lower CR rate and adverse outcome One study (AMLSG) suggested that allogeneic HSCT may 

improve outcome; finding needs to be confirmed
TET2 Prognostic significance unclear Unknown

CALGB study found a negative impact in the subset of molecular 
favorable-risk (mutated NPM1 without FLT3-ITD) AML; 
AMLSG study found no impact

IDH1 IDH1 mutations appear to confer higher risk of relapse and inferior Unknown
OS in CN-AML; however, the effect in the various molecular subsets IDH inhibitors in pre-clinical development
of CN-AML is controversial
IDH1 SNP rs11554137 (located in the same exon as the R132 mutation) 
in one study found to be associated with inferior outcome in molecular
high-risk CN-AML (either NPM1 wild-type or FLT3-ITD positive)

IDH2 IDH2R172 mutations are only rarely found in concert with other known (see above)
recurring gene mutations (i.e. NPM1, CEBPA, FLT3-ITD); 
they are associated with inferior CR rate; impact on outcome unclear

Prognostic impact of IDH2R140 mutations controversial, although some 
studies reported an association with a better prognosis

DNMT3A Associated with intermediate-risk cytogenetics (in particular CN-AML) Unknown
and with FLT3, NPM1, and IDH mutations

Prognostic significance under investigation
ASXL1 Unfavorable prognosis; Unknown

Mutation incidence increases with age



methylation and abnormal gene expression in human
MLL-rearranged leukemia samples on a genome-wide
basis,27 and DOT1L was shown to play an active role in
the maintenance of the MLL-fusion mediated gene expres-
sion programs important for transformation and leukemo-
genesis.26 This supported DOT1L as a potential therapeu-
tic target and a first specific small-molecule inhibitor of
DOT1L showed promising anti-proliferative activity that
was remarkably selective for cell lines bearing MLL
rearrangements.28 Therefore, DOT1L inhibitors are cur-
rently further developed as targeted therapeutics for MLL-
rearranged leukemias, and a first phase I trial testing the
DOT1L inhibitor EPZ-5676 was initiated in September
2012 (www.ClinicalTrials.gov Identifier n. NCT0168
4150).
Acute myeloid leukemia with NPM1 mutations
Nucleophosmin 1 (NPM1) mutations are the most fre-

quent mutations found in 25%-35% of adult AML, espe-
cially in cytogenetically normal (CN)-AML (45%-64%)
(Figure 1).8 While the role of NPM1 mutations in leuke-
mogenesis has largely remained elusive, in a mouse model
mutant Npm1 knock-in proved to be an AML-initiating
lesion leading to Hox gene overexpression, increased self-
renewal, and expanded myelopoiesis with one-third of
mice developing delayed-onset AML.29 In human AML,
NPM1 mutations were shown to be associated with FLT3
internal tandem duplications (FLT3-ITDs), and more
recently also with IDH and DNMT3A mutations.6,30-34

Patients with NPM1 mutation usually present with high-
er bone marrow (BM) blast percentages, lactate dehydro-
genase serum levels, and white blood cell counts, and blast
cells typically show high CD33-antigen, but low or absent
CD34-antigen expression.35 As NPM1 mutations without
concurrent FLT3-ITDs have been shown to confer a supe-
rior outcome,1,36 the genotype “mutated NPM1 without
FLT3-ITD” (CN-AML only) has been incorporated into
the genetic favorable-risk category of the current AML
recommendations.8 However, the prognostic value of the
NPM1mut/FLT3-ITDneg genotype has to be revisited in
the context of recently identified concomitant mutations,
such as IDH and DNMT3A mutations.37

As younger adult patients with NPM1mut/FLT3-
ITDneg AML have survival probabilities of approximately
60% following conventional induction and consolidation
treatment, this patient cohort might not benefit from allo-
geneic HSCT in first complete remission (CR).36 However,
allogeneic HSCT may be considered in patients with
molecular disease persistence,38 especially those with low
transplantation-related risk, or in case new transplantation
strategies are investigated within a clinical trial. As the
favorable prognostic impact of NPM1 mutations in the
absence of FLT3-ITD is also seen in older adults, even in
those over 70 years of age,39,40 NPM1 mutation screening
is clinically relevant in all age groups and helps to select
patients who might benefit from intensive conventional
chemotherapy.10

At present, there is no targeted molecular therapy avail-
able for NPM1 mutated AML, but there are ongoing
efforts to target NPM1 mutation-associated altered trans-
port mechanisms.35 However, based on high CD33 expres-
sion levels, the anti-CD33 antibody GO appears to be an
attractive therapeutic strategy. While an MRC AML15
trial subset analysis showed no significant survival benefit

for GO in NPM1 mutant AML,12 other trials showed a ben-
efit for GO in the low- and intermediate-risk groups.41

Thus, the GO impact needs to be revisited in the light of
concomitant mutations as well as SNPs in CD33 that
might impact treatment response.42 Similarly, based on
two controversial reports the potential benefit of all-trans
retinoic acid (ATRA) in NPM1mut/FLT3-ITDneg patients
remains elusive,40,43 but a recent AMLSG study in younger
AML patients confirms a beneficial effect.44

Acute myeloid leukemia with CEBPA mutations
CCAAT/enhancer binding protein alpha (CEBPA) muta-

tions are primarily found in CN-AML (10%-18%), and
can be divided into two subgroups: single mutation,
CEBPA

sm (one-third of cases), and double mutation cases,
CEBPA

dm (two-thirds of cases).1 Typically, in CEBPA
dm

AML both alleles are mutated, one showing a N-terminal
and one a C-terminal mutation. 

Previously, CEBPA
sm and CEBPA

dm were considered as
one group associated with a favorable outcome.7 However,
recent studies showed that only CEBPA

dm AML is an inde-
pendent prognostic factor for favorable outcome.45

Therefore, the pattern of concurrent gene mutations is dif-
ferent in CEBPA

sm (significantly higher frequency of
NPM1 mutations and FLT3-ITDs than in CEBPA

dm), and
global gene expression studies revealed only a distinct sig-
nature for CEBPA

dm AML cases.45,46 Consequently, only
AML with CEBPA

dm should be considered as a distinct
entity and prognostic category that can be associated with
additional genomic alterations such as GATA2 mutations.47

CEBPA
dm patients may also not benefit from allogeneic

HSCT based on the assumption that, in general, this
approach may not improve outcome in favorable-risk
AML.8 While no specific targeted therapies are yet avail-
able, molecular insights in CEBPA

dm pathomechanisms
including the deregulation of small non-coding RNAs,
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Figure 1. Incidence and prognostic impact of aberrant
gene mutations in CN-AML. (adopted from Marcucci et
al.).1



especially miR-181a, point to novel treatment strategies
such as lenalidomide.48

Acute myeloid leukemia with FLT3 mutations
As a member of the class III receptor tyrosine kinase

family, FLT3 plays an important role in proliferation, sur-
vival, and differentiation of hematopoietic progenitor
cells. FLT3 mutations are primarily located in the jux-
tamembrane (JM) domain and the activation loop of the
tyrosine kinase domain (TKD); however, other locations
are also possible.49 FLT3-ITDs are found in approximately
20% of all AML (CN-AML 28%-34%) and mainly cluster
in the JM domain.1 In CN-AML patients treated with con-
ventional chemotherapy, the presence of FLT3-ITDs con-
fers a significantly worse prognosis compared with ITD
negative cases.8 A high mutant-to-wild-type allelic ratio
points to an even worse outcome, as it often reflects wild-
type allele loss due to uniparental disomy.1 Occurring in
one-third of cases, non-JM ITD insertion is also associated
with a particularly poor outcome.50 In addition, the activa-
tion loop of the TKD is affected by point mutations in
11%-14% of CN-AML.1 However, the prognostic rele-
vance of FLT3-TKD mutations remains controversial.

This importance of FLT3-ITDs and the fact that the
FLT3 pathway is targetable have stimulated huge efforts to
develop therapeutic inhibitors of FLT3, e.g. midostaurin
(PKC412), lestaurtinib (CEP-701), sunitinib (SU-11248),
sorafenib (BAY-43-9006), and the 2nd generation com-
pound quizartinib (AC220).51 Although these inhibitors
have shown promising anti-leukemic activity, efficacy as
single agents was limited and thus requires a combination
with cytotoxic chemotherapy. A large randomized trial
combining chemotherapy with midostaurin for first-line
treatment of younger adult patients will hopefully soon
provide important answers (www.ClinicalTrials.gov
Identifier n. NCT00651261). Notably, the optimized FLT3
inhibitor quizartinib led to high response rates in relapsed
and refractory FLT3-ITD AML, even if given as a single
agent. A phase II trial for relapsed FLT3-ITD patients has
recently been completed (www.ClinicalTrials.gov identifi-
er n. NCT00989261).52,53 However, treatment resistance
due to acquired mutations is also seen for quizartinib,54 but
ponatinib and crenolanib might be good alternatives in
these cases.55,56

Besides TKI-based targeted treatment approaches, there
is increasing evidence that FLT3-ITD positive AML
patients might benefit from allogeneic HSCT, especially
CN-AML and unfavorable genotypes with FLT3-
ITD.36,57,58

Acute myeloid leukemia with TP53 mutations 
Recently, tumor protein p53 (TP53) mutation and/or

loss of the TP53 allele was detected in 69%-78% of AML
cases with a complex karyotype (CK-AML), whereas
TP53 mutations were very rare in non-complex karyotype
AML (2.1%).59 Based on an integrative TP53 mutational
screening analysis and array-based genomic profiling in
234 CK-AMLs, TP53 mutations were found in 60% and
TP53 losses in 40% of CK-AMLs with a total of 70%
TP53 altered cases.60

As TP53-altered CK-AMLs are characterized by a high-
er degree of genomic complexity, they more frequently
exhibit a monosomal karyotype (MK), which previously
was associated with poor AML outcome.61 TP53 alter-

ations are also associated with older age, specific DNA
copy number alterations, and dismal outcome.60 In multi-
variable analysis, TP53 alteration is the most important
prognostic factor in CK-AML, outweighing all other vari-
ables, including the MK category.60 This very unfavorable
prognosis of TP53 mutation was recently confirmed in an
independent study showing an overall survival (OS) at
three years of 0%.62

Therefore, treatment approaches aimed at early allo-
geneic HSCT in TP53 altered AML cases, but recent stud-
ies showed no improvement in survival for patients with
abnl(17p) AML as compared to other adverse cytogenetic
risk abnormalities.63 Thus, TP53 altered AML cases
should be treated within clinical trials evaluating novel
therapeutic approaches, e.g. combinations of hypomethy-
lating agents, mTOR (mammalian target of rapamycin)
inhibitors, and tosedostat, an orally available aminopepti-
dase inhibitor.64 The latter has recently demonstrated sig-
nificant clinical activity in relapsed or primary refractory
AML, including high-risk AML cases.65,66

Investigational genomic markers

Over the last years, novel gene mutations have been dis-
covered based on SNP array analysis in combination with
sequence analysis of candidate genes in commonly altered
regions,4,67 and NGS studies.3,68 These biomarkers include
mutations in transcription factors like WT1, RUNX1, and
GATA2, and in genes influencing transcriptional regula-
tion such as e.g. NRAS, KRAS, CBL, KIT, and RAD21 to
name some of the most recurrent ones. In addition, many
mutations were identified in genes impacting epigenetic
regulation, such as e.g. TET2, IDH1, IDH2, DNMT3A,
ASXL1, MLL, TET1, BCOR, NSD1, PHF6, DNMT1,
NSD1, EZH2, and MLL3.1,37,69 While most of these mark-
ers remain mainly investigational and are still a controver-
sial subject of debate, many studies are currently evaluat-
ing their prognostic and predictive impact on the back-
ground of other genomic aberrations. Here, we will focus
on mutations for which an important role in AML was sup-
ported by recent studies.

Gene mutations affecting transcription factors

WT1 mutations 
Wilms’ Tumor 1 (WT1) gene mutations were among the

first of acute leukemias to be reported.70 Since then, studies
of larger cohorts revealed mutations primarily in CN-AML
with a frequency of 10%-15%. However, the prognostic
impact of the mutation is still inconclusive as studies by the
MRC, CALGB, and Acute Leukemia French Association
(ALFA) groups showed a negative impact of the mutation
on OS, whereas no impact was found in a study of 617 CN-
AML by the AMLSG.70 Interestingly, located in the muta-
tional hot spot of WT1 in exon 7, a SNP rs16754 was shown
to be associated with favorable outcome in patients with
CN-AML.71 While future studies are warranted to validate
this finding, it will also be of interest to determine the mech-
anisms by which this SNP may alter WT1 function and con-
tribute to a more favorable prognosis. 

| 34 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



RUNX1 mutations 
In AML the runt-related transcription factor 1 (RUNX1)

is not only targeted by chromosomal translocation (see
above), but also by intragenic mutations that have been
associated with inferior outcome in all studies.72-75 For
example, in the largest study by the AMLSG that reported
only 6% RUNX1 mutations in 945 unselected younger
adult patients,72 RUNX1 mutations clustered in the inter-
mediate-risk cytogenetic group and predicted for resist-
ance to chemotherapy as well as inferior event-free sur-
vival (EFS), relapse-free survival (RFS), and OS. In mul-
tivariable analysis, RUNX1 mutation was an independent
prognostic marker for shorter EFS, and explorative sub-
group analysis suggested that allogeneic HSCT has a
favorable impact on RFS in RUNX1 mutated patients.72

Gene mutations impacting epigenetic regulation

TET2 mutations
The identification of microdeletion and copy number

neutral loss of heterozygosity affecting the tet oncogene
family member 2 (TET2) gene locus on 4q24 pointed to
heterogeneous TET2 mutations,4,76 that are found in 12%-
27% of patients with AML and in other myeloid diseases.1

Like TET1, the protein TET2 converts 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC). This α-
ketoglutarate (α-KG) dependent process plays an impor-
tant role in DNA demethylation.77,78 In accordance, TET2-
mutated AML was shown to display uniformly low levels
of 5hmC compared with normal controls. The functional
relevance of TET2 mutations was further supported by
mouse models demonstrating impaired hematopoietic dif-
ferentiation and increased self-renewal in vivo following
loss of Tet2.79-81 Concerning the prognostic impact of
TET2 mutations, results are still inconclusive. A first large
study reporting TET2 mutations in 23% of 427 CN-AML
cases (18-83 years of age) found an association with infe-
rior EFS and disease-free survival (DFS) in favorable-risk
CN-AML cases, i.e. FLT3-ITD negative AML with either
mutated CEBPA or NPM1.82 In contrast, TET2 mutations
had no prognostic impact on survival in an AMLSG study
analyzing 783 AML cases, neither in the whole cohort, nor
in CN-AML or in AML with mutated NPM1 without
FLT3-ITDs.83 However, a recent Eastern Cooperative
Oncology Group (ECOG) trial studying 398 AML cases
found that TET2 mutations were associated with reduced
OS among patients with intermediate-risk AML.84

IDH1 and IDH2 mutations 
First whole-genome sequencing efforts revealed recur-

rent isocitrate dehydrogenase 1 (IDH1) mutations in
AML,5 and later candidate gene screens identified IDH2 to
be recurrently mutated.30,32,85 The combined frequency of
IDH mutations in unselected cohorts of AML varies
between 15% and 22%, and mutations typically affect
IDH1 at codon R132 and IDH2 at codons R140 or R172.1

Notably, both mutant IDH1 and IDH2 proteins acquire a
neomorphic enzymatic activity that converts α-ketoglu-
tarate (α-KG) to 2-hydroxyglutarate (2-HG). This putative
oncogenic metabolite 2-HG has been characterized as a
competitive inhibitor of α-KG-dependent dioxygenases,
including histone demethylases and TET family 5-methyl-
cytosine hydroxylases.86 Therefore, there is a mutual

exclusivity between IDH and TET2 mutations in AML and
consistent with a convergent mechanism of leukemic
transformation, expression of IDH mutants causes
increased expansion of hematopoietic stem cells and
impaired hematopoietic differentiation.87

The prognostic impact of IDH mutations seems to
depend both on the context of concurrent mutations and
the IDH mutation type.1 For example, R132 IDH1 and
R140 IDH2 mutations are often associated with CN-AML
with NPM1 mutations,30-32 whereas R172 IDH2 mutations
show no significant association with other known recur-
rent gene mutations.32,85 Furthermore, similar to TET2
mutations, the prognostic effect of IDH mutations in CN-
AML is still controversial. CALGB85 and AMLSG32 stud-
ies showed IDH1 mutations to predict for inferior outcome
in favorable-risk (NPM1mut/FLT3-ITDneg) AML, where-
as MRC31 and Dutch-Belgian Hemato-Oncology
Cooperative Group (HOVON)30 studies revealed inferior
outcome in FLT3-ITDneg and FLT3-ITDneg/NPM1 wild-
type AML, respectively. Similarly, AML with R172 IDH2
mutations have been associated with inferior survival,85

and R140 IDH2 mutations predicted for inferior outcome
in molecular favorable-risk CN-AML.32 However, a recent
MRC study showed R140 IDH2 mutations to be an inde-
pendent favorable prognostic factor for RFS and OS,88 and
in accordance with this, a recent ECOG study found R140
IDH2 mutations, but not R172 IDH2 mutations or IDH1
mutations, associated with improved overall survival.84

These findings further highlight that cohort size, age, and
treatment approach have significant effects on prognosti-
cation in AML, and thus individual patient data meta-
analyses are needed to resolve these controversies and to
identify specific treatment effects. 
DNMT3A mutations 

Using targeted NGS somatic DNA (cytosine-5-)-methyl-
transferase 3 alpha (DNMT3A) mutations were first iden-
tified in the highly conserved R882 residue,89 and genome-
wide NGS approaches in AML then identified DNMT3A
mutations targeting the entire open reading frame.6,90

DNMT3A encodes for a de novo methyltransferase that
methylates cytosines in CpG dinucleotides, thereby point-
ing to altered epigenetic patterns in DNMT3A mutant
AML. However, first analyses did not identify characteris-
tic methylation pattern alterations in DNMT3A mutant
AML,6 although more recent studies reported distinct
changes suggesting that DNMT3A mutation effects might
be site and context specific.90,91 Functional studies in mice
proved an important pathogenic role as Dnmt3a deficiency
resulted in impaired hematopoietic cell differentiation,
increased self-renewal, and expansion of the hematopoiet-
ic stem cell pool.92

A first analysis in 281 AMLs detected DNMT3A muta-
tions in 22% of cases and found an association with FLT3-
ITD, NPM1, and IDH mutations.6 A second study con-
firmed mutations in 21% of cases and reported an associ-
ation with inferior survival.90 Recently, a large study in
489 younger adult patients showed a mutation frequency
of 18% that was associated with NPM1, IDH1, and FLT3-
ITD mutations.33 While DNMT3A mutations in this study
predicted for inferior OS, analysis of 1770 younger
AMLSG AML patients confirmed DNMT3A mutations in
21% of cases with a significant association with CN-AML
(Gaidzik et al., Blood in press, 2013). In the entire cohort,
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DNMT3A mutations showed no correlation with outcome;
however, exploratory subset analyses showed a negative
prognostic effect in the European LeukemiaNet (ELN)
unfavorable CN-AML group. In contrast to other studies,
only R882 mutations had an unfavorable prognosis,
whereas non-R882 mutations showed a favorable impact
on OS. While selection bias in other studies might in part
explain these differences, alternative treatment strategies
might also impact the observation. A recent study showed
that in DNMT3A mutated patients high-dose daunorubicin
can improve outcome.84 In line with this, a recent study
suggested that DNMT3A mutant patients had improved
overall survival when treated with 12 mg/m² of
idarubicin,93 which has been shown to be nearly equiva-
lent to high-dose daunorubicin, and which was also used
in the AMLSG trial.
ASXL1 mutations 

Somatic nonsense or frameshift mutations of the poly-
comb family gene additional sex combs like 1 (ASXL1),
that result in loss of ASXL1 function, are found in a spec-
trum of myeloid malignancies including AML.69 ASXL1
mutations result in impaired polycomb repressive complex
2 (PRC2)-mediated histone H3 lysine 27 tri-methylation
(H3K27me3), which regulates the expression of the
HOXA gene cluster including HOXA9 that plays a known
role in myeloid transformation.94 Notably, impaired PRC2
function seems to be a common theme in myeloid patho-
genesis reflected by additional loss-of-function mutations
in other PRC2 complex members EZH2, SUZ12, EED and
JARID2.69 While ASXL1 mutations are relatively uncom-
mon in younger AML patients, their prevalence increases
with age and confers a poor impact on OS independent of
age, thereby showing that ASXL1 mutations mark a subset
of AML patients with adverse outcome.84,95-97 Further stud-
ies are needed to better understand the mechanisms under-
lying the different epigenetic regulator mutations, includ-
ing those less common found in PHF6, TET1, BCOR,
NSD1, DNMT1, and MLL3, in order to develop novel ther-
apeutic strategies to restore epigenetic regulation in AML.

Conclusions

Recent progress in the molecular characterization of
AML has greatly improved our understanding of the dis-
ease and has started to translate into the clinical setting.
However, the growing number of molecular markers iden-
tified by genomics and NGS-based approaches provides a
considerable challenge to establish the prognostic signifi-
cance of particular constellations of mutations, thereby
demanding analysis of large numbers of homogeneously
treated patients in whom the effects of treatment on out-
come can be controlled and investigated. International col-
laborations of study groups are warranted to accelerate
this progress, and it will be of prime importance to study
these markers in the context of novel therapies, which
might impact predictive and prognostic relevance. 

In addition, to further ‘personalize’ treatment approach-
es, we will not only have to consider the complex geno-
types, in which the presence and/or absence of other dis-
ease alleles have different effects on outcome, but we will
also have to examine the evolution and impact of subclon-
al mutations. These might contribute to the variations

observed in response to therapy and risk of relapse,98,99

especially subclonal driver mutations such as TP53 muta-
tions.100 Thus, it will be important to study how treatment
affects clonal evolution, as this information may help to
select therapies preventing the expansion of highly fit sub-
clones. Then, we will not only be able to target the most
prevalent drivers, but also the evolutionary landscape.

Finally, individual tailoring of AML treatment will also
depend on the next wave of clinical trials, which will need
to establish the most informative molecular markers to
guide therapy and to determine their clinical usefulness for
comprehensive MRD monitoring. Furthermore, personal-
ized combination therapies should be the goal, which will
require changing the paradigm for drug development and
study design. Today, many scientifically interesting and
potentially useful agents are discontinued early in devel-
opment because they fail to demonstrate efficacy as
monotherapy. Thus, pre-set efficacy benchmarks will have
to be redefined, and faster and better trial designs need to
be developed in order to accelerate drug development that
ultimately will lead to meaningful improvements in
patient survival.
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Acute myeloid leukemia in older patients: conventional
and new therapies

Introduction

Acute myeloid leukemia (AML), a disease
affecting primarily older adults with a median
age at presentation of approximately 68 years,
continues to pose significant treatment chal-
lenges.1 Although there have been improve-
ments in treatment outcomes for AML in recent
years, these have mostly benefited younger
patients under the age of 60 years.2 Advanced
age is considered an adverse prognostic indica-
tor resulting from both a more aggressive
underlying disease biology and a decreased
capacity of patients to tolerate chemotherapy
due to the frequent presence of significant co-
morbidities and poor organ reserve. In clinical
trials, which typically exclude patients with
severe co-morbidities, complete remissions are
observed in 40-65% of patients treated inten-
sively, of whom almost 90% relapse within
three years.3,4 Age continuously affects treat-
ment results, as do other independent prognos-
tic factors including performance status, organ
dysfunction, white blood cell count, cytogenet-
ics, molecular abnormalities, overexpression of
multidrug resistance proteins, and secondary
leukemia. Because of this, it is difficult to rec-

ommend precise age cut offs for clinical deci-
sion-making.5-7 Much interest is currently being
directed at the development of multifactorial
risk scores to more accurately predict the out-
come for patients who may then be given the
choice of intensive or alternative treatment
approaches, including less intensive therapy,
investigational therapy or palliative care.8-11 The
importance of patient selection is apparent in a
review of 2657 elderly patients with AML col-
lected by Medicare and the Surveillance,
Epidemiology, and End Results (SEER).12 Only
approximately 30% of patients underwent
induction chemotherapy and the median sur-
vival across all study population was 2.4
months with a 2-year survival of 6%. However,
the analysis also showed that patients who did
receive chemotherapy had a survival benefit,
even though this was modest. As the general
population lives longer, the number of patients
in this age group will increase. Therefore, there
is an urgent need to find new treatments that are
more effective and less toxic for these patients
who are traditionally not catered for in most tri-
als. In this review, we provide an outline of the
current and developing treatments for older
patients with newly diagnosed AML.

Acute myeloid leukemia

Acute myeloid leukemia (AML) in older patients continues to pose significant treatment challenges.
In this age group, the benefit associated with intensive chemotherapy remains marginal and the
chance for cure continues to be below 10% overall. While treatment outcome is compromised by a
higher prevalence of comorbidities, it is now clear that AML in older patients is a biologically distinct
disease that is intrinsically less responsive to chemotherapy. Improving risk-assessment tools is critical
to identify those patients who are most likely to benefit from intensive chemotherapy, but optimal
induction and post-remission therapies have yet to be determined in this population. New strategies
and treatments are emerging and under current assessment. In particular, investigations of monoclon-
al antibodies, hypomethylating agents, signal transduction inhibitors, and novel cytotoxics hold prom-
ise for improving the outcome for older patients with AML, including those for whom traditional
chemotherapy is not considered appropriate, either because of anticipated lack of efficacy or unac-
ceptable mortality. Further progress in the care of elderly AML is largely dependent upon building a
critical mass of patients and physicians willing to participate in clinical trials.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe current and emerging therapies for older patients with newly diagnosed AML;
- select appropriate up-front therapy based upon patient and disease characteristics;
- discuss treatment options for older patients who may or may not be candidates for intensive

chemotherapy;
- understand the importance of encouraging older patients to participate in clinical trials for AML.

A B S T R A C T



Choice of treatment

Despite the reluctance to treat older patients with inten-
sive chemotherapy because of toxicity concerns, induction
of a complete remission (CR), even if short-lived, is an
appropriate goal for most AML patients over 60 years of
age. This concept was established in the late 1980s based
on the results of the EORTC AML-7 trial which prospec-
tively compared induction therapy with daunorubicin, vin-
cristine and cytarabine versus supportive care with pallia-
tive chemotherapy (hydroxyurea or low-dose cytarabine)
in patients over 65 years of age.13 The patients who
received induction chemotherapy had a higher CR rate
(58% vs. 0%), lower incidence of early mortality (3 of 31
vs. 18 of 29), longer median survival (21 vs. 11 weeks) and
greater chance of survival at 2.5 years (13% vs. 0%).
Importantly, there was no difference in the number of days
that patients were hospitalized. Furthermore, registry data
from nearly 3000 unselected older patients in Sweden
showed reduced rates of early mortality for those who
received intensive chemotherapy versus palliative care, as
well as improved long-term survival in geographical
regions where the use of intensive treatment approaches
was more common.14 Thus, achieving CR is a requisite
end point for better survival and improved quality of life
in elderly AML, and data from large population-based
studies have validated the use of intensive chemotherapy
over less intensive treatment approaches in patients up to
the age of 80 years.

Although it is clear that intensive chemotherapy pro-
duces the highest response and survival rates in selected
elderly patients with AML, it is ineffective and highly
toxic in many others. The challenge is to appropriately

identify which patients, based on their disease biology and
clinical characteristics, are likely to benefit more from
intensive chemotherapy and which require alternative
treatment approaches. Several risk scores are available
that account for age, performance status, cytogenetics,
secondary AML and other covariates to arrive at a progno-
sis for patients over 60 years of age treated with intensive
chemotherapy (Table 1). Despite the differences in vari-
ables and end points and methods used, these tools can be
used to more accurately individualize the treatment
prospects. Patients with the expectation of a low early
mortality, high CR rate, and a reasonable long-term sur-
vival should be treated with intensive chemotherapy,
while those with the expectation of a high risk of early
mortality or a poor chance of long-term survival should be
offered low-intensity investigational therapy.

Conventional remission induction therapy

For over 30 years, the “3+7” regimen combining
daunorubicin (45-50 mg/m2 for 3 days) and cytarabine
(100-200 mg/m2 by continuous infusion for 7 days) has
been the mainstay of induction therapy for older patients
with AML.1 On average, this regimen offers older patients
a CR rate of 40-65% with an attendant treatment-related
mortality of 15-20%, a median survival of 8-12 months,
and a less than 15% probability of sustained remission for
three years. Multiple attempts have been made to improve
outcome by substituting newer anthracyclines (idarubicin
or mitoxantrone) for daunorubicin, escalating the dose of
cytarabine, adding other cytotoxic drugs, and priming with
growth factors, but none of these strategies has emerged as
convincingly superior to “3+7”.4 However, a recent com-
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Table 1. Selected prognostic risk scores in elderly AML.

Prognostic factors CR rate (%) Early death rate (%) Overall survival (%)

ALFA-98038 Poor cytogenetics (1-year)
(n=416) Age ≥75 P-CG or 2/3 factors: 19

PS ≥2 Others: 58
WBC ≥50x109/L

MRC AML11/149 Cytogenetics (1-year)
(n=1071) Age

WBC Good: 53
PS Standard: 43

De novo vs. sAML Poor: 16

(2-year)
MDACC10 Age ≥80 # 0: 57 # 0: 16 # 0: 30
(n=446) Complex karyotype # 1: 52 # 1: 31 # 1: 15

PS ≥2 # 2: 29 # 2: 55 # 2: 7
Creatinine >1.3 # ≥ 3: 16 # ≥ 3: 71 # ≥ 3: 0

SAL AML-9611 Cytogenetics (3-years)
(n=909) Age >65

WBC > 20x109/L F-CG: 39.5
LDH >700 I-CG (good): 30
CD34 >10% I-CG-(adverse): 10.6

NPM1 mutation P-CG: 3.3

P-CG: poor-risk cytogenetics; F-CG: favorable-risk cytogenetics; I-CG: intermediate-risk cytogenetics.



bined analysis of two randomized ALFA trials (9801 and
9803), enrolling a total of 727 AML patients age 50 years
and over (median 67 years) showed a somewhat superior
long-term outcome with idarubicin compared to daunoru-
bicin (cure rate 16.6% vs. 9.8%; P=0.018). Interestingly,
the long-term impact of idarubicin was also evident in the
cohort of patients under 65 years of age, although all of the
younger patients in the control arm received daunorubicin
at higher doses (80 mg/m2 ¥ 3).15

Options for improvement
Most recently, efforts to improve the complete remis-

sion rate and long-term outcome beyond that which is
achieved with the traditional “3+7” regimen, have concen-
trated on anthracycline dose escalation, the addition of
novel agents, and alternatives to cytarabine. Lowenberg et
al. showed a higher CR rate when 813 patients over 60
years of age with newly diagnosed AML were randomized
to receive three days of daunorubicin 90 mg/m2 versus 45
mg/m2 in combination with cytarabine 200 mg/m2 daily
for seven days (64% vs. 54%; P=0.002).16 The early death
rate was similar between the two groups. Although, over-
all, there was no difference in survival between patients
treated with the standard-dose versus the escalated-dose
regimen, patients aged 60-65 years gained advantage from
daunorubicin intensification with regards to all the major
clinical end points. In this subgroup, substantial improve-
ments in CR rate, event-free and overall survival were
observed, while patients with core binding factor abnor-
malities appeared to benefit from high-dose daunorubicin
irrespective of age. On the other hand, a randomized trial
by the French ALFA group failed to show any clinically
relevant superiority of high-dose daunorubicin (80 mg/m2

x 3 days) over three or four days of idarubicin (12 mg/m2)
when combined with cytarabine for remission induction in
468 patients aged 50-70 years, suggesting therapeutic
equivalence between these two drugs at these doses.17

Whether these studies justify a higher anthracycline dose
as the standard of care for older patients with AML is not
clear, but they do convincingly demonstrate that there is
no increase in toxicity with these regimens.

Other agents with novel mechanisms of action and with
non-overlapping toxicity can potentially improve the out-
come when added to standard chemotherapy. One option
to improve the remission rate and overall outcome could
be to incorporate gemtuzumab ozogamicin (GO), an
immunoconjugate consisting of a humanized anti-CD33
monoclonal antibody linked to the toxin calicheamicin,
into treatment. This strategy has been investigated in three
large European studies, two of which show a significant
improvement in survival (Table 2). The French ALFA
group randomized 280 patients aged 50-70 years (median
62 years) with newly diagnosed AML to standard induc-
tion therapy (“3+7”) with or without GO given in a frac-
tionated schedule of 3 mg/m2 on Days 1, 4 and 7.18

Although remission rates were much the same in the two
groups, patients given GO had lower relapse rates and sig-
nificantly longer event-free (40.8% vs. 17.1%; P=0.0003)
and overall survival (53.2% vs. 41.9%; P=0.03) at two
years than did controls. This benefit was mainly seen in
patients with better-risk disease, but not in those with
poor-risk cytogenetics. A more recent study reported by
Burnett and colleagues came to the same conclusion as the
previous trial.19 The United Kingdom NCRI AML16 trial

randomly assigned 1115 patients (median age 67 years)
with newly diagnosed AML to receive induction therapy
with daunorubicin and either cytarabine or clofarabine,
with or without a single dose of GO 3 mg/m2. While there
was no difference in the rate of response between the two
arms, the cumulative incidence of relapse at three years
was significantly reduced with GO (68% vs. 76%;
P=0.007) and overall survival was improved (25% vs.
20%; P=0.05). Again, the benefit was more evident in
those subsets with favorable and intermediate-risk cytoge-
netics. Importantly, in none of these two trials was the
addition of GO associated with excess toxicity. Contrary
to the design of these two trials, a sequential rather than
concomitant administration of GO and chemotherapy was
investigated in a study reported by the EORTC/GIMEMA
consortium.20 This randomized trial compared pre-treat-
ment with GO (6 mg/m2 on Days 1 and 15) before initiat-
ing induction chemotherapy with the MICE regimen
(mitoxantrone, etoposide and cytarabine) in 472 patients
aged 61-75 years with previously untreated AML.
However, when used in this way, there was no overall ben-
efit, but induction response and survival rates were signif-
icantly compromised with GO in patients aged 70 years or
older due to excess early mortality. A randomized study
from the Ulm group evaluated the effect of all-trans
retinoic acid (ATRA) administered in combination with
standard induction and consolidation therapy to 242 elder-
ly patients with AML. They showed that addition of ATRA
significantly improved CR rate, and event-free and overall
survival in these patients.21 A retrospective analysis of
three trials by the French GOELAMS group suggested
better response and survival outcomes when lomustine, an
alkylating agent, was added to conventional chemotherapy
for first-line treatment in older patients with de novo
AML.22 A confirmatory randomized study of lomustine in
elderly AML is currently ongoing. The already mentioned
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Table 2. Randomized trials of gemtuzumab ozogamicin (GO)
in combination with conventional chemotherapy in older
patients with previously untreated AML.

Trial N. of patients GO dose/ Results
(age range schedule
in years)

ALFA-070118 278 (50-70) 3 mg/m2 Similar response rate
Day 1/4/7 Longer EFS, RFS, OS
with D + A No benefit 

in pts with P-CG

NCRI AML1619 1.115 (51-84) 3 mg/m2 Similar response rate
Day 1 Longer RFS, OS
with D + Less benefit in pts 
A or Clo + A with P-CG

EORTC/GIMEMA 472 (61-75) 6 mg/m2 Similar response rate
AML-1720 Day 1/15 Higher induction mortality

with sequential No benefit in OS, EFS, DFS
MICE Too toxic for pts aged > 70 years

D: daunorubicin; A: cytarabine; Clo: clofarabine; MICE: mitoxantrone+cytarabine+
etoposide; OS: overall survival; EFS: event-free survival; DFS: disease-free survival; P-CG:
poor-risk cytogenetics; pts: patients.



NCRI AML16 trial also compared the purine nucleoside
analog clofarabine (20 mg/m2 x 5 days) against cytarabine,
both in combination with standard-dose daunorubicin, in
806 patients age 56-84 years (median 67 years), but there
was no evidence of clinical benefit in any risk subgroup.23

Postremission therapy

It is generally accepted that the ability to prolong remis-
sion and cure patients with AML depends heavily on the
administration of some form of postremission therapy.2

Standard approaches in older patients typically involve
cytarabine, either alone or in combination with anthracy-
clines, for 1-2 cycles. However, there are no randomized
trials confirming the benefit of postremission therapy in
older patients. Studies of dose-escalated cytarabine in the
postremission setting did not produce therapeutic benefits
in these patients, and toxicity was prominent.24,25 Some tri-
als have also failed to show a clinical benefit with
increased numbers of consolidation cycles.26,27 Indeed,
there is evidence from the French ALFA-9803 study that
multiple less intensive cycles delivered on an outpatient
basis may improve survival as compared to a single inten-
sive consolidation course.28 Randomized trials of postrem-
ission maintenance therapy with low-dose cytarabine or
attenuated multi-agent chemotherapy have produced
improvement of disease-free survival but not overall sur-
vival.29,30 Recent studies of gemtuzumab ozogamicin or
interleukin-2 failed to show a benefit in favor of postrem-
ission therapy.31,32

Allogeneic stem cell transplantation is a curative treat-
ment option for patients with AML, but its application to
the elderly population had previously been limited by
high rates of transplant-related mortality caused by toxic-
ities from traditional myeloablative conditioning regi-
mens. However, with the use of reduced-intensity condi-
tioning (RIC-SCT) regimens, allogeneic transplantation
has become a plausible option to consider for older
patients in first complete remission. As suggested by
recent reports, these transplants are feasible in selected
patients up to 75 years of age and may yield better out-
comes than consolidative chemotherapy, but prospective
trials are necessary.33-35

Alternative treatment approaches

Given the limited success of intensive chemotherapy in
providing short- and long-term disease control, and in
consideration of the fact that a substantial proportion of
patients are deemed unlikely to benefit from traditional
regimens based on their disease and clinical characteris-
tics, more contemporary trials have focused on less inten-
sive treatment approaches that may have the potential of
preserving efficacy while reducing toxicity in older
patients with AML. Low-intensity chemotherapy, investi-
gational new agents, and palliative care represent the spec-
trum of current alternatives for these patients.
Low-intensity chemotherapy

Subcutaneous administration of low-dose cytarabine
(LDAC) is a practical treatment for older patients with
AML, and many uncontrolled trials have shown that use-

ful responses, including complete remissions, are achiev-
able with various dose schedules in approximately 15-
30% of patients.36 As part of the United Kingdom NCRI
AML14 trial, 217 patients (median age 74 years) who
were felt to be unfit for intensive chemotherapy were ran-
domized to either 20 mg cytarabine twice daily subcuta-
neously for ten days every 4-6 weeks or hydroxyurea.37

Treatment with LDAC did not increase toxicity and pro-
duced a higher CR rate (18% vs. 1%; P=0.00006) and bet-
ter overall survival (P=0.0009). This was accounted for by
the achievement of CR (median survival 19 months com-
pared with 2 months in non-responders). However,
patients with adverse cytogenetics did not benefit from
LDAC. While the overall survival in patients receiving
LDAC was still poor (median 5 months), this trial does
provide a simple and tolerable low-intensity regimen that
could be used as the standard comparator for randomized
trials of novel agents in this group of patients. Combining
LDAC with either arsenic trioxide, gemtuzumab ozogam-
icin, or the farnesyl transferase inhibitor tipifarnib pro-
duced no survival benefit in older patients unfit for inten-
sive chemotherapy entered into the randomized NCRI
AML16 trial (“Pick a Winner” design), although the
remission rate was almost doubled with the addition of
GO to LDAC (30% vs. 17%; P=0.006).38-40

Clofarabine, a 2nd generation purine nucleoside analog,
has been shown to have activity in elderly AML as a single
agent or in combination with cytarabine. A multicenter
phase II study of clofarabine monotherapy (30 mg/m2 daily
for 5 days) in 112 previously untreated AML patients aged
60 years and over with at least one adverse prognostic fea-
ture (aged 70 years or over, performance status 2,
antecedent hematologic disorder, or non-favorable cytoge-
netics) showed an overall response rate (ORR) of 46%, with
a CR rate of 38% and a 30-day all cause mortality of 10%.41

Interestingly, the ORR was 42% among patients with poor-
risk cytogenetics and 38% for patients presenting with mul-
tiple risk factors. Median disease-free survival was 37
weeks, and median survival was 41 weeks for all patients.
In two consecutive European studies of 106 untreated older
patients considered unfit for intensive chemotherapy,
patients were given four to six 5-day courses of single agent
clofarabine (30 mg/m2 per day).42 Median age was 71 years
(range 60-84 years), 30% had adverse-risk cytogenetics,
36% had a WHO performance score of 2 or higher, and 46%
had Wheatley poor-risk disease. The ORR was 48% (32%
CR, 16% CRi) and 18% died within 30 days. The median
survival was 19 weeks for all and 45 weeks for those who
achieved a CR or a CRi. Importantly, the ORR was consis-
tently high in patients with adverse cytogenetics (44%),
patients with secondary AML (31%), and in patients over 70
years of age (49%). While these results suggest encouraging
activity in older patients with poor-risk AML, in a recently
reported randomized trial of 406 newly diagnosed older
patients considered unsuitable for intensive treatment, clo-
farabine (20 mg/m2 daily for 5 days) has been shown to sig-
nificantly improve the response rate compared to LDAC
(CR+CRi 38% vs. 20%; P<0.0001). However, disappoint-
ingly, it did not result in a survival benefit overall, or iden-
tify any demographic or risk subgroup.43 Since clofarabine
can potentiate the intracellular metabolism of cytarabine, a
study of low-intensity therapy compared treatment with clo-
farabine (30 mg/m2 daily for 5 days) with or without LDAC
in 70 patients aged over 60 years with untreated AML.44 The
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CR rate was significantly higher in the combination therapy
group (63% vs. 31%; P=0.025), with a non-significant dif-
ference in induction mortality (19% vs. 31%). However,
there was no difference in overall survival. An alternative
approach is to take advantage of inhibiting the hypermethy-
lation of tumor suppressor genes thought to play a critical
role in the pathobiology of AML. Two hypomethylating
agents, azacitidine and decitabine, have been investigated in
older patients with AML who are considered not to be can-
didates for intensive chemotherapy. In a phase III interna-
tional trial (AZA-001) comparing azacitidine (75 mg/m2

subcutaneously for 7 days of each 28-day cycle) to conven-
tional care regimens (CCR: doctor’s choice of LDAC,
intensive chemotherapy or supportive care alone) in
patients with intermediate-2 and high-risk myelodysplasia,
113 patients (median age 70 years) had bone marrow blast
percentages of 20-29%, which reclassified them as having
AML according to the WHO criteria.45 Although CR rates
were similar for azacitidine compared to CCR (18% vs.
16%), azacitidine was better tolerated and resulted in a sig-
nificant survival benefit (median 24.5 vs. 16.0 months;
P=0.005), including higher 2-year survival (38% vs. 0%) in
patients with adverse cytogenetics. In a phase II study of 55
older patients with untreated AML, intravenous decitabine
(20 mg/m2 daily) was administered for five days monthly
until disease progression.46 An overall response rate of 24%
was reported with a 30-day mortality of 7% and a median
survival duration of 7.7 months. Notably, responses were
seen in all cytogenetic risk groups as well as in patients with
prior myelodysplasia. In another study, decitabine was
administered at a more myelosuppressive dose schedule (20
mg/m2 daily for 10 days) to 53 patients (median age 74
years) who were unsuitable for standard chemotherapy.47

The overall response rate was 64% (CR 47%, CRi 17%),
with a 30- and 60-day mortality of 2% and 15%, respective-
ly. Median overall and disease-free survival were 55 and 46
weeks, respectively. Responses occurred in all subgroups,
regardless of age, cytogenetics, leukocyte count, and prior
myelodysplasia. Recently, decitabine 20 mg/m2 daily for
five days per cycle was compared with conventional care
(doctor’s choice of supportive care or LDAC) in a large
phase III trial of 485 AML patients aged 65 years or older
who were unfit for intensive chemotherapy.48 Treatment
with decitabine resulted in a higher response rate (CR+CRp
17.8% vs. 7.8%; P=0.001) and a non-significant improve-
ment in overall survival (7.7 months vs. 5 months) which,
however, became significant (P=0.03) when more mature
survival data were analyzed. Combining decitabine and
azacitidine with other epigenetic modulators has been eval-
uated in several trials.49-51 Generally, combined epigenetic
therapy appears safe and promising, but randomized trials
will be required to establish the incremental benefit of this
approach on response rates and duration of survival in older
patients with AML. Another strategy that is being explored
is the integration of epigenetic therapy with low-intensity
chemotherapy. Recently, a trial evaluating the combination
of clofarabine plus LDAC followed by a prolonged consol-
idation alternating with decitabine reported an overall
response rate of 66% including a CR rate of 58% with few
early relapses (median relapse-free survival 14.1 months,
median overall survival 12.7 months) in 59 older patients
(median age 70 years) with newly diagnosed AML.52 Based
on these promising results, strategies of improving survival
with epigenetic therapies without necessarily improving

remission rates may be particularly suitable for older
patients, but larger studies and long-term follow up are
needed to better define the role of this treatment modality in
this challenging patient population.
Novel agents

A number of investigational agents that represent alter-
natives to conventional chemotherapy have shown prom-
ise as first-line treatment in older patients with AML. The
novel alkylating agent laromustine was reported to have
significant single agent activity in 85 previously untreated
older patients (median age 72 years) with poor-risk AML,
showing an ORR of 32% (CR 23%, CRp 9%) and a 30-
day mortality rate of 14%, following a single intravenous
infusion at 600 mg/m2. Response rates were consistent
across a spectrum of poor-risk features. The median over-
all survival was 3.2 months (12.4 months in responders),
with a 1-year survival of 21% (52% in responders).53

CPX-351 is a liposomal formulation of a 5:1 fixed molar
ratio of daunorubicin and cytarabine. Among 125 previ-
ously untreated patients aged 60-75 years who were ran-
domized between CPX-351 (100 units/m2 on Days 1, 3
and 5) and standard daurorubicin plus cytarabine induc-
tion chemotherapy, the rate of response was increased with
CPX-351 (CR+CRp 66.7% vs. 51.2%), largely due to a
higher CRp rate. The 60-day mortality rate was reduced
compared to “3+7” regimen (4.7% vs. 14.6%).
Interestingly, the trend towards higher response rates was
observed particularly for patients with adverse cytogenet-
ics, aged over 70 years, and secondary AML.54 High-dose
lenalidomide (50 mg/day for 28 days for two cycles) for
remission induction followed by a lower dose (10 mg/day
for 28 days for 12 months) as maintenance was adminis-
tered to 33 untreated AML patients (median age 71 years)
with intermediate- or poor-risk cytogenetics. Responses
(CR/CRi) occurred rapidly in 30% of patients, and in 53%
of those completing the two induction courses.
Importantly, a cytogenetic remission was achieved in 4 of
the 5 patients with clonal cytogenetic abnormalities at
diagnosis and, similar to the experience with hypomethy-
lating agents, no responses were noted in patients with
rapidly progressing, hyperproliferative AML.55 Sapaci -
tabine, a novel oral cytosine nucleoside analog, has been
investigated in a randomized phase II study of three differ-
ent dose schedules in 105 patients over 70 years of age
with AML (86 were previously untreated).56 The dose
schedule with the best efficacy profile was 400 mg twice
daily for three days each week for two weeks (cycles
repeated every 28 days). Among the 20 patients allocated
to receive this schedule, responses were observed in 45%
(6 patients had CR or CRi and 3 hematologic improve-
ment), the 30-day mortality was 10%, and the 1-year over-
all survival was 30%. Randomized trials assessing sapac-
itabine against LDAC or decitabine are ongoing in elderly
AML.

New evidence of the pathobiology and molecular back-
ground of the disease has led to the development of a num-
ber of targeted agents, and their use, either as single agents
or in combination with cytotoxics, may provide us with
more effective, less toxic strategies for treating older
patients with AML. Tipifarnib, an orally active farnesyl
transferase inhibitor, has been assessed in elderly AML,
with one phase II study showing good tolerance and an
overall response rate of 23% (CR rate 14%) in 158 older
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patients (median age 74 years) with newly diagnosed,
poor-risk AML.57 However, in a randomized study that
compared tipifarnib (600 mg twice a day for the first 21
days, in 28-day cycles) with best supportive care (BSC)
for 457 older patients, there was no difference in overall
survival (median of 107 days for tipifarnib and 103 days
for BSC). In addition, the CR rate for tipifarnib was lower
than that previously reported at 8%.58 Activating muta-
tions of the receptor tyrosine kinase FLT3, in particular
internal tandem duplication, are identified in 20-30% of
all AML patients and are associated with poor outcome.59

Despite a strong biological rationale, studies targeting the
FLT3 mutations with a number of small-molecule
inhibitors (lestaurtinib, midostaurin, sorafenib) have
shown modest clinical activity as monotherapy, but trials
in combination with chemotherapy are underway.60,61

Whether more selective and potent 2nd generation
inhibitors will have better efficacy in FLT3 mutated AML
remains to be seen, but a recently reported phase II trial of
quizartinib (AC220) monotherapy in 132 patients aged 60
years or older with first relapse or primary refractory AML
showed a high degree of activity in FLT3 mutated patients
(n=90: CR+CRp+CRi 53%), suggesting activity also in
non-mutated patients (n=42: CR+CRp+CRi 36%).62

Further studies of quizartinib as monotherapy and in com-
bination with other agents are ongoing or being planned in
elderly AML. Volasertib is an inhibitor of Polo-like kinase
1 (Plk1) which is involved in spindle assembly during
mitosis. Preliminary results from a phase II study in which
87 newly diagnosed AML patients (median age 75 years)
ineligible for intensive chemotherapy were randomized to
treatment with LDAC alone or LDAC plus volasertib,
showed an improved complete remission rate with the
combination regimen compared to controls (CR+CRi 31%
vs. 11%; P=0.02). Responses with LDAC plus volasertib
were observed across genetic subgroups, including
patients with adverse cytogenetics.63 A randomized phase
III trial is about to start. A number of other agents that tar-
get various aspects of the leukemia cell machinery are cur-

rently under investigation, including tosedostat (an
aminopeptidase inhibitor), vosaroxin (a novel topoiso-
merase II inhibitor), bortezomib (a NF-kB inhibitor),
ganetespib (a Hsp90 inhibitor), PI3K/AKT/mTOR
inhibitors, and hedgehog inhibitors (Table 3).

Conclusion

Treatment of AML in the elderly remains a challenge. A
higher frequency of unfavorable biological and clinical
prognostic factors, rather than age per se, is the major
determinant for the poor outcome in this patient popula-
tion. Conventional intensive chemotherapy is frequently
inappropriate and unsuccessful for older patients with this
disease. Therefore, treatment approaches should be per-
sonalized to the individual patient. It is becoming critical-
ly important to appropriately define and select patients
who will benefit from intensive chemotherapy, and recent-
ly developed prognostic risk models can be used by physi-
cians to guide treatment decisions. Intensive chemothera-
py with curative intent should be offered to older patients
who are otherwise healthy and without adverse prognostic
factors, but current induction and postremission strategies
need to be optimized. Patients who are unlikely to benefit
from intensive chemotherapy should enter investigational
trials of lower intensity or targeted therapies. After so
many years of therapeutic nihilism, the development of
risk-adapted and more targeted treatment approaches has
introduced an era of personalized antileukemia therapy
that may bring new hope to older patients with AML. In
order to ensure progress continues, it is imperative that all
patients be offered the opportunity to participate in clinical
trials.
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PML/RARA as the master driver of acute promyelocytic
leukemia pathogenesis and basis for therapy response

PML/RARA: the sole APL driver 

APL was identified as a separate clinical
entity over 50 years ago.1 One of the key steps
in unraveling the disease genetics was the
identification of the t(15,17) translocation
present in most patients.2 The latter was char-
acterized at the molecular level in 1990, either
through chromosome walking3 or by direct
exploration of the structure of the RARA gene,4
based on the observation of the disease sensi-
tivity to retinoic acid (RA), the ligand of
RARA.5 More than 98% of APLs are associat-
ed with the fusion of the promyelocytic gene
(PML) with RARA6-8 resulting from the
t(15,17) translocation (Figure 1). Others are
APL patients who harbor alternative transloca-
tions involving RARA, the most common
being t(11;17) that involves the promyelocytic
leukemia zinc finger (PLZF) gene.9,10 The con-
stant implication of RARA in these transloca-
tions points to a central role of the deregula-
tion of RARA (and nuclear receptor) signaling
in APL pathogenesis. 

Cancers arise from the accumulation of
multiple genetic and epigenetic lesions co-
operating to enforce cellular transformation.11

Leukemias or sarcomas associated with (or

defined by) specific translocations may con-
stitute an exception to this model. Indeed, in
APL, only rare lesions, often shared with
other leukemias or malignancies, have been
implicated in progression, such as MYC
amplification, Fms-like tyrosine kinase 3 acti-
vation, or RAS mutations,12,13 findings recent-
ly confirmed by pan-genomic approaches in
patients or APL mice.14,15 These do not radi-
cally change the presentation of the disease,
although activating FLT3 mutations are more
often observed in the APLs with hyper-leuko-
cytosis and are associated with a less favor-
able outcome.16 The possibility of obtaining
transplantable mouse models faithfully reca-
pitulating the human disease, by the mere
expression of the PML/RARA transgene in
myeloid precursors, provides additional evi-
dence that the fusion protein is the master
driver of APL leukemogenesis.17,18 Human
APL has an almost constant incidence with
age, suggesting that it arises from a single
rate-limiting genetic event.19 Similarly, stud-
ies in APL that develop following chemother-
apy have all demonstrated a short (less than a
year) time interval between DNA-damaging
chemotherapy and disease onset.20 APL can
thus be considered as a quasi-monogenic,
X/RARA-driven, disease.21

Acute promyelocytic leukemia

Acute promyelocytic leukemia (APL) is caused by a chromosomic translocation that always impli-
cates the retinoic acid receptor alpha (RARA) gene. The PML/RARA fusion is by far the most frequent,
present in 98% of patients. Over the past 20 years, multiple studies have outlined how PML/RARA
interferes with transcriptional regulation and also with assembly of PML nuclear bodies, domains
implicated in control of senescence and stem cell self-renewal. However, the respective contribution
of each of those defects to APL pathogenesis remains poorly characterized. APL is the model disease
for targeted cure of leukemia. Indeed, soon after the demonstration of their clinical activity, retinoic
acid (RA) and arsenic trioxide were found to directly target PML/RARA, RA through its RARA moiety,
arsenic through the PML one. Analysis of murine APL models has given us an unprecedented level of
understanding of the basis for therapy response, highlighting the key role of PML/RARA degradation
in the loss of APL self-renewal. Consequently, therapeutic strategies combining RA and arsenic have
shown an extraordinary potency in mice and were successfully transposed to patients. While the
molecular basis for loss of APL self-renewal remains under study, cure of most patients without any
chemotherapy is now clinically achievable.   

Learning goals

At the conclusion of this activity, participants should know that: 
- PML/RARA is the single APL driver;
- arsenic cures 70% of patients, and its front-line association with retinoic acid cures almost all 

of them; 
- PML/RARA degradation is closely associated with loss of self-renewal and definitive cures.

A B S T R A C T



RARA and PML: the constant and major 
partners of the fusions

Retinoic acid is involved in a variety of physiological
regulatory mechanisms, in particular morphogenesis and
stem cell self-renewal or myeloid differentiation.22,23

RARA is a nuclear receptor for RA that exhibits a highly
conserved zinc finger-containing, sequence-specific,
DNA-binding domain and a complex ligand-binding
domain that enable heterodimerization and transcriptional
activation.24 Two other RA receptors have been character-
ized: RARB and RARG. But surprisingly these have never
been implicated in leukemia-associated oncogenic
fusions, although RARB was implicated in development
of an HBV-driven hepatocellular carcinoma.25

RARA is bound to a member of the RXR family of
nuclear receptors as an obligatory heterodimer (Figure 1).
The RAR and RXR DNA-binding domains each recog-
nize an AGGTCA core motif, in a direct repeat orientation
and separated by a spacing of 2 or 5 nucleotides.26 RARs
are versatile transcriptional switches that can either

repress or activate transcription. RAR/RXR complexes
bind co-repressors in their unliganded state and recruit
co-activators in the presence of ligands. Interestingly,
RARA appears to be a stronger binder for co-repressors
than other RARs.27

PML protein initiates the formation of nuclear bodies
(NBs), sub-nuclear spherical structures involved in the
fine-tuning of several biological processes, such as senes-
cence or stem cell self-renewal, at least in part through the
control of P53 signaling.28 A specific posttranslational
modification of PML, sumoylation, controls the recruit-
ment onto NBs of a wide variety of proteins. NBs then
modulate the posttranslational modification of these PML
partners, resulting in their sequestration or activation28

(Figure 1). Apart from senescence and stem cell self-
renewal, these partner proteins have been implicated in a
number of biological and biochemical processes, includ-
ing DNA repair, apoptosis, or more recently, lipid metab-
olism (Figure 2).29,30 Importantly, PML loss is associated
with changes in the self-renewal of tissue stem cells,
reduced apopotosis and senescence, as well as changes in
metabolism. 28,29,31-33
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Figure 1. The PML/RARA fusion is a transcriptional repressor that also disrupts PML nuclear bodies. PML/RARA (P/A)
binds RXR (X), PML and is sumoylated (S). PML/RARA represses target genes through the recruitment of co-repressors.
This blocks RARA (A) targets that are implicated in myeloid differentiation. This also blocks the assembly of PML nuclear
bodies, domains that recruit a large number of partner proteins to promote their posttranslational modifications, allowing
their activation or sequestration. Defective nuclear bodies were associated to defects in apoptosis control or stem cell
self-renewal. 



PML/RARA: from a dominant negative to a
gain of function oncoprotein

PML/RARA behaves as an altered transcription factor
repressing its targets6 (Figure 1).  It was proposed that this
results from the ability of PML to impose homo-dimeriza-
tion to RARA, enhancing its binding to co-repressors and
hence the repression of its targets. Interestingly, this
capacity of the oncoprotein to self-dimerize is shared by
all RARA fusions.34 In the specific case of PLZF, the most
studied RARA fusion partner apart from PML, an addi-
tional repression domain was identified in the N-terminus
and proposed to explain RA-resistance of this specific
subtype of APL.35 Repression was primarily attributed to
recruitment of histone deacetylases, a proposal that was
supported by some pharmacological evidence.36,37 Thus, a
simple textbook model emerged whereby PML/RARA
behaves as a super-repressor explaining the differentiation
block. RA treatment could then release both the transcrip-
tional and differentiation blocks, yielding remissions
through induction of differentiation.38 

Yet, other properties were also demonstrated for
PML/RARA, including the ability to sequester PML,
RXR, or to regulate transcription from novel DNA-bind-
ing sites39,40 (Figure 1). Further studies shifting from cell
lines to in vivo models, progressively strengthened the
hypothesis that these properties were also important, if not
essential, to APL pathogenesis. First, PML/RARA dimer-
izes with PML, leading to the replacement of the normal
speckled nuclear distribution of PML by a micro-speckled
one.41,42 This alteration in nuclear architecture could par-
ticipate in APL pathogenesis, notably by fostering aberrant
self-renewal. Second, in APL cells, PML/RARA is con-
stantly bound to RXRA and RXR-binding is required for
in vivo transformation.40,43-45 This PML/RARA//RXRA
hetero-tetramer recognizes a wide range of DNA binding
sites consisting of 2-3 AGGTCA sites, in any orientation
and/or spacing, exemplifying a major gain of function of
this oncoprotein.45,46 Importantly, some of the recognized
sequences are targets of other nuclear receptors (VDR,
TR, PPAR) controlling myeloid differentiation or stem
cell self-renewal. Relaxed binding site specificity through
dimerization is a common feature in deregulated onco-

genic transcription factors, in particular in myeloid
leukemias.47 

Clarification of the respective contribution of all these
features to actual oncogenesis is ongoing. Yet, it should be
noted that while in cell lines forced RARA dimerization is
sufficient to confer strong repressive ability on RARA sig-
naling and some inhibition of differentiation, attempts to
induce APL in vivo with RARA dimers were largely
unsuccessful.48 These only succeeded when using the
PML dimerization domain,49 suggesting a key contribution
to interference with PML function beyond providing a
dimerization interface. Finally, some studies found that the
PML moiety itself contributes to transcriptional repression
by PML/RARA, through its conjugation by SUMO, a
posttranscriptional modification that confers repression
ability to transcription factors.43,50,51 Collectively, while it
is evident that deregulation of RARA transcriptional con-
trol is a key central feature of APL pathogenesis, the
molecular details and respective contributions of the mul-
tiple mechanisms proposed remain to be clarified. 

Two drugs for one disease 

The introduction of RA for APL treatment in 19855 con-
stituted the first example of differentiation therapy.52 Ex
vivo and in vivo, RA triggers rapid APL cell differentiation
into granulocytes, which correlates with patient remis-
sions. With single-agent RA therapy, remissions are usual-
ly transient,53,54 suggesting that differentiation alone can-
not abolish cancer cell self-renewal.21,55 Yet, it should be
noted that single agent liposomal RA cured some patients,
implying that RA-triggered cure is possible under favor-
able dosage/pharmacokinetic conditions,56 in line with
mouse models57 (see below).

The other potent anti-APL agent, arsenic, is consider-
ably more efficient than RA as single agent.58-61

Interestingly, while arsenic is primarily apoptotic ex vivo62

it induces both apoptosis and terminal differentiation in
vivo, in striking similarity to RA.21,59 Actually, both agents
trigger the so-called differentiation syndrome. As for RA,
clinical trials in non-APL cancer patients have been large-
ly disappointing, demonstrating that these compounds
exhibit a great specificity for APL cells.59,63 Such exquisite
sensitivity for APL of two completely unrelated agents
was puzzling, in particular because arsenic does not con-
trol RARA-mediated transcription! 

Retinoic acid and arsenic are both
PML/RARA-targeted therapies!

Molecular studies performed after demonstration of
their clinical efficacy have revealed that both RA and
arsenic directly trigger the degradation of the PML/RARA
oncoprotein.21,64-68 In a remarkable and unexpected sym-
metry, RA targets the RARA part of PML/RARA, while
arsenic directly targets its PML part64 (Figure 3). Thus,
these two empirically discovered agents hit PML/RARA
through its two constitutive moieties, making them a pos-
teriori targeted therapies. This strongly suggested an
important, if not essential, contribution of PML/RARA
degradation to therapy response.55,59 
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Figure 2. PML nuclear bodies control multiple pathways
through modifications of partner proteins. Functions and
PML partner proteins associated with them are indicated. 



With respect to RA activity, this proposal raised two key
issues. What are the molecular mechanisms involved and
what are the respective contributions of RA-induced tran-
scriptional activation and degradation to clinical responses.
Mechanistically, RA: 1) releases co-repressor binding
from PML/RARA; 2) induces AF2-dependent transactiva-
tion through the PML/RARA-mediated recruitment of co-
activators; 3) induces proteasome-enforced PML/RARA
degradation (Figures 3 and 4). In contrast to transcription-
al activation, which is already very significant at 10-8M,
full degradation requires high RA concentration, presum-
ably because it constitutes a normal feedback mechanism
on activation.67 Accordingly, the therapeutic concentra-
tions of RA required for APL regression are several orders
of magnitudes higher than its physiological concentra-
tions, an important observation that was long overlooked.
With respect to arsenic, PML/RARA targeting is enforced
both by direct binding and by arsenic-induced reactive
oxygen species that elicit PML oxidation through the for-
mation of disulfide bridges.21,70,71 Arsenic targets both
PML and PML/RARA. Since these are tightly bound to
one another,39 this dual targeting could enhance response.70

Therefore, the mechanistic analysis of arsenic activity on
APL was intimately linked to the analysis of nuclear body
biogenesis. Reformation of NBs and PML degradation
occur sequentially.67,72 As extensively reviewed elsewhere,
arsenic-binding and arsenic-triggered oxidation initiate
formation of a PML mesh, its hyper-sumoylation, then
allowing recruitment of the SUMO-dependent ubiquitin
ligase RNF4, which subsequently triggers PML or
PML/RARA degradation72-75 (Figure 3). The role of
PML/RARA degradation in arsenic-based therapy is sup-
ported by significant genetic evidence. Mutation of the
arsenic-binding or arsenic-sensitive sumoylation site in
PML/RARA impairs degradation and ex vivo response to
treatment.50,70,72 Mutations immediately adjacent to the
arsenic-binding site of PML/RARA were observed in
arsenic-resistant patients.76 Finally, vitamin E derivatives
with mitochondrial toxicity which, like arsenic, generate
oxidative stress, also induce prolonged remissions in
murine models of AP.77 Importantly, arsenic does not
induce PLZF/RARA degradation and is accordingly inef-
ficient in PLZF/RARA APL models.70,78 

Analysis of therapy resistant patients strongly supported
these findings. Primary RA-resistance often reflects insuf-
ficient levels of RA in the blood, as the result of RA-
induced activation of the cytochrome that catabolizes the
hormone.79,80 Then patient cells remain susceptible to RA-
induced differentiation ex vivo.  Some cases of secondary
resistance were also linked to mutations in the RA-binding
domain in the RARA moiety of PML/RARA.81,82 They
exhibit resistance to RA ex vivo. These PML/RARA muta-
tions impede transcriptional activation and degradation,
precluding clarification of their respective contributions to
therapy response (Figures 2 and 4). Upregulation of cellu-
lar export or RA-trapping mechanisms, were proposed to
further contribute to decreased RA intra-cellular concen-
trations. That only pharmacological levels of RA elicit
therapy response and full PML/RARA degradation sup-
ports an important role for the latter in long-term disease
response.65 With respect to arsenic, mutations adjacent to
the arsenic-binding site in the PML moiety of PML/RARA
were observed in 2 therapy-resistant patients,76 although
other mechanisms, notably pharmacogenomics, have not

been fully explored.83 Deciphering the respective roles of
PML/RARA degradation and transcriptional activation, in
an attempt to unify the modes of action of arsenic and RA,
was only possible through in vivo modeling in mice. 

Differentiation and/or self-renewal?

At the cellular level, the concept of differentiation-based
therapy in APL primarily relies on the correlation between
clinical remissions and morphological maturation of
leukemia blasts.52 However, this cannot explain why only
few patients are cured by RA alone, nor why arsenic cures
70% of APL patients, although it does not induce differenti-
ation ex vivo. Accordingly, there have been recent controver-
sies as to the exact contribution of cell differentiation to APL
cure.55,84 Studies have addressed this issue by exhaustively
examining the effect of therapy, not only on tumor clearance
and leukemia cell differentiation, but also on the loss of self-
renewal,55,57 which can only be assessed in transplantation
experiments. While it was considered that the first two cel-
lular responses were tightly coupled, recent evidence has
dissociated these two end points, and only loss of self-
renewal predicts disease eradication in vivo.55,57,84,85 Indeed,
in PML/RARA-driven APL, terminal differentiation of the
leukemia is achieved even at low RA doses, but complete
APL clearance only appears with treatments at the highest
concentrations.57 Similarly, complete loss of clonogenic
activity in vivo was observed in APL mice treated with the
RA/arsenic combination, although the combination actually
delays morphological differentiation.57,78,86,87 Careful exami-
nation of PLZF/RARA-driven APLs revealed that they fully
differentiate upon RA treatment, while the latter has only
modest effects on self-renewal, explaining their clinical RA-
resistance and providing the most striking dissociation
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Figure 3. Schematic representation of retinoic acid- and
arsenic-triggered PML/RARA catabolism. Note that retinoic
acid degrades RARA and arsenic degrades PML. 



between APL differentiation and eradication.57 The fortu-
itous identification of retinoids that activate RARA-depen-
dent transcription but fail to degrade RARA has provided
evidence that only PML/RARA degradation entails loss of
self-renewal ex vivo or in vivo, whereas transcriptional regu-
lation correlates with induction of differentiation85 (Figure
4). In primary resistance, insufficient RA levels allow differ-
entiation, but not loss of clonogenic activity, resulting in con-
tinued APL development. While these observations unify the
molecular bases for the antileukemic activity of RA and
arsenic (and also explain the potency of their combination,
see below), they raise the issue of how arsenic, which does
not affect transcriptional regulation, actually induces in vivo
differentiation. Unpublished evidence from our laboratory
has demonstrated that excision of RXRA in APL cells elicits
ex vivo or in vivo differentiation, in the absence of any posi-
tive inducer of retinoid signaling. This unexpected result
suggests that transcriptional derepression is actually suffi-
cient to trigger differentiation (J Halftermeyer, unpublished
observations, 2012). It in turn explains the differentiating
effect of arsenic, which clears PML/RARA from promoters,
allowing RARA to perform its physiological action.88

Similarly, the artificial downregulation of PML/RARA (J
Ablain, unpublished observations, 2012) or the reversal of
histone deacetylation may restore cell maturation processes
through mere transcriptional derepression.89 

What is the basis for loss of clonogenic activity?

PML/RARA degradation entails loss of self-renewal.85 In
principle, full PML/RARA loss should revert all of the pro-
posed effects of the fusion on survival or self-renewal path-
ways. One of these deserves a particular mention: interfer-
ence with PML nuclear bodies. Indeed, in normal progeni-
tors or in the context of other leukemic fusion proteins, PML
controls self-renewal,31,32 consistent with the proposal that
NBs tune several critical pathways involved in ‘stemness’
and self-renewal (Figures 2 and 4), such as P53,
AKT/PTEN, HIF1A. 90,91

The triumph of combined approaches

Initial studies performed ex vivo demonstrated that RA and
arsenic failed to synergize, and even actually antagonize, for
APL cell differentiation.62,86 Yet, as argued above, differenti-
ation is not the most relevant end point to predict clinical
efficacy.55,84,85 Studies performed in vivo using genetically
defined mouse models or human xenograft, all demonstrated
dramatic synergy between these two drugs for survival,
through the immediate (3-4 days) loss of self-renewal and
clonogenic activity.57,78,87,92 In retrospect, this can now be
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Figure 4. Uncoupling differentiation and cure. (Right) RA activates PML/RARA repressed genes, initiating myeloid differ-
entiation. AF2-mediated degradation also indirectly yields NB reformation. (Left) Arsenic enforces NB reformation,
through direct binding and oxidation. NB reformation is tightly linked to loss of self-renewal and apoptosis, correlating
with APL eradication. PML/RARA degradation by arsenic also clears promoter and could thus indirectly explain differen-
tiation through promoter clearance. Collectively, through their shared ability to degrade PML/RARA via different mecha-
nisms (Figure 3), both drugs clear target promoters and restore PML nuclear bodies, promoting in vivo differentiation and
varying degrees of APL clearance. 



attributed to the fact that RA and arsenic induce PML/RARA
degradation by different mechanisms, predicting accelerated
degradation and absence of cross-resistance in vivo. In addi-
tion, assuming that NB-reformation plays a role in loss of
‘stemness’, the direct targeting of the normal PML allele by
arsenic70,71 to enforce reformation of NBs may be found to be
critical in the eradication process. Front-line combined regi-
mens were successfully transposed to patients, with over
95% of them definitively cured by the association of RA and
arsenic21,54,93-95 (F Lo-Coco, personal communication, 2012),
providing a spectacular illustration of the power of mouse
models to optimize treatments in patients.18

What are the specificities of APL that ensured
the success of targeted therapies?

As a paradigm for targeted therapies, APL underscores the
superiority of proteolysis over enzymatic inhibition. Indeed,
complete degradation abolishes all of the functions of onco-
proteins, including those linked to protein/protein interac-
tions, which may be very important in controlling self-
renewal. 

In APL, the extraordinary clinical potency of RA and
arsenic reflects the fact that RARA and PML are both dis-
pensable (in mice), while APL cells are addicted to the con-
tinuous expression of PML/RARA. Thus, agents that fully
degrade RARA, PML and PML/RARA, exert maximal effi-
cacy on APL cells without any toxicity on normal cells,
explaining the high therapeutic index of these agents or their
association.18,21,96 Another reason for the curative activity of
these drugs is the great stability of the APL genome, as
assessed by next generation sequencing studies.14,15 Indeed,
the APL genome does not seem to be globally instable, con-
trasting with chronic myeloid leukemias, where resistance to
kinase inhibitors gradually occurs as time progresses.97

Because RA and arsenic degrade PML/RARA by non-over-
lapping mechanisms, combining RA and arsenic front line
reduces the risk of cross-resistance in APL patients.
Collectively, the stability of the APL genome, together with
rapid tumor debulking by differentiation and the immediate
abrogation of all properties of PML/RARA, particularly
self-renewal, all contributed to the success of the only exam-
ple of cancer cure without DNA-damaging therapies. 

Diagnosis and monitoring

With the efficiency of the current treatment, the biggest
remaining challenge is to reverse the coagulation disorders
as early as possible to avoid sudden death through hemor-
rhage before or in the course of induction. Apart from
molecular typing (see below), diagnosis may also be
achieved through observation of the disruption of PML
NBs.41,98 This highly efficient and straightforward proce-
dure is now used in many centers, as treatment with RA
and arsenic can then be started immediately. As in other
leukemias driven by fusion genes, PCR on the gene junc-
tion has allowed rapid molecular diagnosis, but also the
follow up of minimal residual disease. Pioneering studies
demonstrated that molecular relapses preceded clinical
ones, offering the possibility to re-treat the disease while
the leukemic clone remained small. Today, for

PML/RARA-driven APLs, the rates of complete remission
achieved with current treatments actually question the
clinical utility of monitoring the fusion during treatment.
This remains an option in the variant APLs for which tools
have been recently obtained that have clarified the issue of
RA-induced APL clearance in these conditions.99

The differentiation syndrome also remains an issue,
both with respect to its actual physiopathology and treat-
ment.100-102 In particular, it is not currently known whether
the front-line association of RA and arsenic will decrease
its incidence or severity. Intriguingly, how RA reverses the
disorders of hemostasis remains to be understood.103

Finally, the specific issue of hyperleukocytosis at presen-
tation, which still indicates an unfavorable prognosis,
should be further evaluated.104
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Management of special situations in acute 
promyelocytic leukemia

Introduction

The introduction of all-trans retinoic acid
(ATRA) and, more recently, arsenic trioxide
(ATO) into the therapy of acute promyelocytic
leukemia (APL) has revolutionized the man-
agement and outcome of this disease. Several
treatment strategies using these agents, usually
in combination with chemotherapy, have pro-
vided excellent therapeutic results. These
strategies are generally designed for patients
whose clinical situation does not generate spe-
cial difficulty for the administration of con-
ventional therapy. However, when a patient
with APL presents a special situation, and by
this we mean clinical circumstances that pre-
vent partially or completely the administration
of ATRA, ATO or chemotherapy, the manage-
ment of these patients is a bigger challenge
and has to be analyzed separately. 

The present article aims to review some of
these clinical situations that differ from the
standard patient with APL. We will discuss the
management of APL in children, elderly
patients and pregnant women.

Management of special situations

Older patients
APL has a median age of around forty years

and is relatively uncommon in older patients,
in contrast to most cases of acute myeloid

leukemia (AML). The outcome in these
patients has been proven to be more favorable
if we compare it with other subtypes of AML.
Older patients with APL seem at least as
responsive to therapy as do younger patients,
maybe due to the fact that they are more likely
to present with low-risk features when com-
pared to younger patients.1 This fact may, to
some extent, explain the relatively low relapse
rate observed in patients over 70 years of age
receiving ATRA and moderately reduced
anthracycline-based chemotherapy.1,2 A poten-
tial selection bias due to a higher proportion of
non-eligible patients among those of an older
age has been ruled out in a large series of
patients registered in the PETHEMA database
(M. Sanz et al., unpublished data, 2013).   

On the other hand, it should be taken into
account that older patients are more vulnerable
to therapy-related toxicity, with higher rates of
neutropenic sepsis and increased treatment-
related mortality. Zhang et al.3 found a signif-
icantly higher mortality in comparison with
younger patients during consolidation therapy,
mainly due to infections following chemother-
apy-induced myelosuppression. The reported
mortality rate in complete remission (CR)
ranges from less than 1% in patients under 60
years of age to 19% in patients over 70 years.1

Therefore, it seems reasonable to design less
intensive therapeutic strategies aiming to
reduce morbidity and mortality in this last
group. It should be taken into account that this
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population has a high rate of non-eligibility for treatment;4

this means that even though conventional treatment is
highly effective in this age group, only a small number of
patients will satisfy the rigorous selection criteria. 

For those frail patients who are considered unfit for
chemotherapy, less toxic treatment approaches are needed
to allow a broader applicability. Today, ATO with or with-
out ATRA appears to be one of the best alternatives to the
standard ATRA plus chemotherapy approach, although
current supporting scientific data are still limited.5 The
results reported by Zhang et al.3 indicate that a single-
agent ATO regimen is safe and effective with long-term
durable remission. Based on these results, ATO may be
considered to be an option for first-line treatment in elder-
ly patients with APL. Nevertheless, more data are needed
on this subject to turn it into the standard of care for
patients unfit for conventional therapy.
Patients with severe comorbidities

Similar to the outlined approach for older and frail
patients, in younger patients who are not candidates for
first-line intensive chemotherapy due to certain comor-
bidities (severe cardiac impairment or other organ dys-
function), there are several alternative treatment approach-
es to minimize the use of cytotoxic agents. These would be
based on the use of ATRA, ATO, and gemtuzumab
ozogamicin, with minimal or no chemotherapy.5

The outcome in this particular setting is not sufficiently
documented. It should be noted that any therapeutic strat-
egy used in these patients should aim to achieve molecular
remission, and guide the need for additional therapy with
monitoring of minimal residual disease (MRD). 
Children

Compared with adults, children with APL have a higher
incidence of hyperleukocytosis (roughly 40% vs. 20-25%)
and M3v morphology.1 It has been suggested that the dif-
ference in WBC count is mainly observed in children
under the age of 12 years.6

Apart from two relatively small pediatric series from the
German-Austrian-Swiss group7 and the European APL
group,8 as well as two larger series from the GIMEMA9

and PETHEMA10 groups, a recent analysis from the
European APL group6 reports the outcome in different age
groups of children and adolescents. In this analysis, chil-
dren under 4 years of age presented the highest relapse
rate (52% vs. 18% in children aged 5-12 years old); this is
a new finding given the lack of studies of children in dif-
ferent age groups. This observation was not attributed to a
higher WBC count or other high-risk features.

Given the long life span in children cured from this dis-
ease, there is a wide concern about the potential cardiac
toxicity that high-dose anthracyclines can produce in the
long term. Therefore, there have been some attempts to
simply reduce the exposure to these agents without any
additional treatment modification. This therapeutic strate-
gy reported worse results in a clinical trial carried out by
the US Intergroup.11 Just as with older patients, other ther-
apeutic strategies are being sought after to reduce the dose
of cytotoxic agents; ATO is one of the new possibilities.
ATO appears to be effective in pediatric APL,12,13 just like
in adults, but as yet very limited data are available.

To reduce the frequency of some side effects associated
with induction therapy that appear more frequently in chil-

dren, particularly severe headache and pseudotumor cere-
bri (PTC), most trials use a reduced dose of ATRA (e.g. 25
mg/m2 instead of 45 mg/m2) in the pediatric age group.7-10

The study by Castaigne et al.14 showed no difference in
terms of pharmacokinetics, therapeutic efficacy, triggering
of hyperleukocytosis, or retinoic acid syndrome with
ATRA at 25 mg/m2/d as compared to the standard dose of
45 mg/m2/d. The apparently lower incidence of PTC and
headache, together with the excellent therapeutic results
obtained with this reduced dose has led to a recommended
25 mg/m2 per day as the standard dose in children and ado-
lescents. Headache is a common complication during
ATRA therapy and it is, therefore, important to rule out
PTC, CNS leukemia or bleeding. The diagnosis of PTC is
based on increased intracranial pressure with normal cere-
brospinal fluid (CSF) composition and negative cerebral
imaging studies. It is usually accompanied by papillede-
ma, but this is not a requirement for the diagnosis of
PTC.15 In this situation, sustained elevations in CSF pres-
sure should be documented through successive lumbar
punctures or by intracranial pressure monitoring, if neces-
sary.16 Sometimes, the symptoms of PTC resolve with the
initial ‘diagnostic’ lumbar puncture. If this occurs, no fur-
ther medical treatment is required. If symptoms persist,
temporary discontinuation or dose reduction of ATRA,
analgesics, and administration of steroids and acetazo-
lamide are the mainstays of the medical treatment of this
neurological complication. Acetazolamide is administered
in an initial dose of 25 mg/kg/day and progressively
increased until clinical response is achieved (maximum
dose 100 mg/kg/day). Electrolytes must be monitored to
allow early detection of hypokalemia and acidosis (com-
mon side effects during acetazolamide treatment). If this
diuretic treatment is ineffective, then prednisone can be
given at a dose of 2 mg/kg/day for two weeks followed by
a 2-week taper.17

Pregnant women
The diagnosis of APL during pregnancy is not frequent

and most reports are based on individual cases or very
small series. This is a challenging situation in which deci-
sion-making must be carried out with a multidisciplinary
perspective, involving the patient, hematologist, obstetri-
cian and neonatologist. With this approach, there is a high-
er chance of a successful outcome for both mother and
baby, as was highlighted in the guidelines on the manage-
ment of AML in the United Kingdom.18

As with any other patient with APL, the start of treat-
ment should not be delayed or the chance of a successful
remission could be compromised; it must be considered a
medical emergency. The key problem in this special situa-
tion is the teratogenic potential of chemotherapy, ATRA
and arsenic trioxide on the fetus; the most important fac-
tors at the moment of taking a decision are the gestational
age and the attitude of the patient towards the risk to both
mother and fetus. 

Management during the first trimester deserves a differ-
ent approach to that adopted for the second and third
trimesters of pregnancy. Both periods will, therefore, be
addressed separately. 
Management of APL during the first trimester of pregnancy

The possibility of a conventional therapeutic approach
is not possible during the first trimester of pregnancy, due
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to the highly teratogenic side effects of ATRA.19 During
this period, the only option is anthracycline-based
chemotherapy. The use of daunorubicin is usually pre-
ferred over idarubicin. This is probably due to a wider
experience with the former drug, and because idarubicin
is more lipophilic and can favor an increased placental
transfer.20

It has to be taken into account that even with only
chemotherapy there is an increased risk of fetal malforma-
tions, abortion, and low birth weight.21 This is why the
first decision that should take place when APL is diag-
nosed in the first trimester is whether or not to continue
with the pregnancy. If the pregnancy is not interrupted, the
mother would receive anthracycline chemotherapy alone.
In the case of terminating the pregnancy, she would be
able to receive conventional treatment with ATRA and
cytotoxic agents. Using chemotherapy alone involves an
increased risk of hemorrhage due to release of procoagu-
lants and plasminogen activators from malignant promye-
locytes. If remission is achieved with chemotherapy and
the pregnancy is progressing normally, treatment with
ATRA could be administered during the second and third
trimesters. 

Although ATO is an alternative treatment in other
groups of patients, it is not an option during pregnancy.
This agent has a high potential embryotoxicity and cannot
be recommended at any stage of pregnancy. Human data
are very limited and restricted to people exposed to arsenic
from drinking water, or working in or living near metal
smelters. Low birthweight, spontaneous abortion, and
stillbirth were reported in this population.22

Taking all this into account, female patients with APL
treated conventionally should be routinely advised against
conceiving while exposed to ATRA or ATO for consolida-
tion and maintenance therapy. 
Management of APL during the second and third
trimesters of pregnancy

During the second and third trimester of pregnancy, con-
ventional treatment with ATRA and chemotherapy is a rea-
sonable option, although scientific literature on this sub-
ject is limited. The maternal outcome seems to be the same
as in non-pregnant women when conventional therapy is
used. If we analyze the therapeutic components separately,
ATRA does not seem to cause embryotoxicity past the first
trimester.21 This agent can be safely administered,
although it is advisable to monitor cardiac function, given
that there have been some reports of reversible fetal
arrhythmias and other cardiac complications at birth. On
the other hand, although chemotherapy does not seem to
cause congenital malformation, in some cases it increases
the risk of abortion, premature delivery, low birthweight,
neonatal neutropenia, and sepsis. This has recently been
reviewed by Culligan et al.21 and leads to two different
possible approaches. 
1) Sequential use of ATRA and chemotherapy. This

implies the administration of ATRA alone until CR, delay-
ing the administration of chemotherapy until elective
delivery is possible. A gestational age of at least 32 weeks
is considered relatively safe when appropriate neonatal
care is provided.23 For deliveries before 36 weeks of ges-
tation, antenatal corticosteroids are recommended to
reduce the risk of respiratory distress syndrome.24 

Regarding maternal outcome, the expected response

rate with ATRA alone is not significantly different to
ATRA plus chemotherapy in terms of CR rate, but it can
have an unfavorable impact on the risk of relapse.25 This
theoretical disadvantage could be counteracted later with a
reinforcement of post-remission therapy. If this strategy is
followed, the administration of chemotherapy should not
be delayed excessively to avoid resistance and disease
recurrence. It has been suggested that molecular assess-
ment of response and subsequent RQ-PCR monitoring can
be used to indicate the need for chemotherapy.21 It should
also be noted that when using ATRA alone there is an
increased (approximately 25%) risk of APL differentiation
syndrome.26

2) Simultaneous administration of ATRA and
chemotherapy. This approach provides the best chances of
cure for the mother and is a clear option for high-risk
patients with hyperleukocytosis and for those in whom
appropriate RQ-PCR monitoring is not possible. In this
case, daunorubicin is also preferred to idarubicin; this is
not so clear for patients with advanced gestational age
pregnancy.

Vaginal delivery is preferred due to its association with
a reduced risk of bleeding. Caesarean section should only
be performed if it is required for other reasons.21 After
delivery, breast-feeding is contraindicated if chemothera-
py or ATO is needed. Other aspects of management do not
differ from non-pregnant women with APL.

Therapy-related APL

There is little information available on the true inci-
dence of therapy-related APL (tAPL) since these patients
are less likely to be entered into clinical trials. In addition,
available estimates are subject to important methodologi-
cal limitations, being based on retrospective series27,28 or
the experience of single referral centers.29,30 In these stud-
ies, tAPL cases ranged from less than 5% to 22% of all
APL cases. A growing incidence of tAPL has been report-
ed over the last few years paralleling the increased use of
topoisomerase II-targeted drugs in both malignant and
non-malignant diseases. Breast carcinoma is the most fre-
quent previous cancer, followed by lymphoma, with a
large predominance of non-Hodgkin’s lymphoma, where-
as other tumor types were found with lower incidence.28

The drugs most commonly implicated in tAPL are epiru-
bicin and mitoxantrone, but a number of cases have been
reported to follow exposure to radiotherapy alone.31-34 It
has also been reported that some cases of secondary APL
(sAPL) have arisen in patients whose primary tumor was
treated by surgery, without chemotherapy or radiotherapy
exposure.27,28 Typically, the latency period between
chemotherapy exposure and onset of tAPL is relatively
short (<3 years) and occurs without a preceding myelodys-
plastic phase. Hematologic findings do not seem to differ
from those observed in de novo APL, as previously report-
ed for other tAML with specific karyotype.35,36

Regarding tAPL arising in patients treated for non-
malignant diseases, it should be noted that cases of t-APL
were increasingly reported during the period of time in
which mitoxantrone was approved for treating aggressive
forms of multiple sclerosis.37 The risk of developing this
complication was estimated to be approximately 1 in 400
patients with multiple sclerosis treated with

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 59 |

Stockholm, Sweden, June 13-16, 2013



mitoxantrone.38

Although current data would suggest that patients with
tAPL have a relatively favorable prognosis, a higher inci-
dence of early death during treatment has been reported.28

However, a more precise knowledge of the outcome of
patients with tAPL treated with state-of-the-art therapy
should be prospectively established; at present, there is no
clear reason to manage these patients in a different manner
to those with de novoAPL. However, in a significant num-
ber of patients with tAPL, the use of anthracycline-based
regimens is limited by previous exposure to topoisomerase
II inhibitors. In such situations, ATO in combination with
ATRA provides an option for consolidation following
standard induction therapy or as first-line treatment using
schedules such as those published by the MD Anderson
group.5,39

Genetic variants of APL

There are no specific guidelines for rare genetic variants
of APL because the available evidence is mostly based on
single case reports. Nevertheless, it is a general rule that
patients with ATRA-sensitive variants (NuMA-RARA,
NPM1-RARA and FIP1L1-RARA) should be treated with
standard protocols involving ATRA combined with anthra-
cycline-based chemotherapy, while those with ATRA-
resistant variants (STAT5b-RARA) should be managed
with AML-like approaches. For those relatively ATRA
resistant (PLZF-RARA), or with unknown sensitivity to
ATRA (PRKAR1A-RARA), it is reasonable to combine
ATRA with AML-like chemotherapy.  Sensitivity to ATO
has not been documented outside PML-RARA positive
APL, except for PLZF-RARA positive APL that has been
shown to be resistant.40

Central nervous system and other
extramedullary relapses

Central nervous system (CNS) and other extramedullary
relapses are uncommon in APL. CNS involvement can
occur as an isolated event or associated with bone marrow
involvement as a first relapse, but also after one or more
hematologic relapses. The majority of CNS relapses occur
in patients with hyperleukocytosis at presentation, and the
optimal management of such patients is still controversial. 

Even though the contemporary literature on the subject
is scarce, it seems pragmatic to pursue an approach
derived from experience of the management of
extramedullary relapse in acute lymphoblastic leukemia
and other subtypes of AML. In this regard, induction treat-
ment of CNS relapse would consist of weekly triple
intrathecal therapy (ITT) with methotrexate, hydrocorti-
sone, and cytarabine until complete clearance of blasts in
the CSF, followed by 6-10 more spaced out ITT treatments
as consolidation. Since CNS disease is almost invariably
accompanied by hematologic or molecular relapse in the
marrow, systemic treatment should also be given. The tim-
ing of this may be dictated by clinical circumstances. One
approach could be to give ATO and ATRA as a non-mye-
loablative treatment approach whilst ITT is being deliv-
ered. Chemotherapy regimens with high CNS penetrance
(e.g. high-dose cytarabine) have been used in this situa-

tion, and in patients responding to treatment, allogeneic or
autologous transplant should be the consolidation
approach of choice with appropriate craniospinal irradia-
tion. In case of granulocytic sarcoma, wherever it is local-
ized, radiation and intensive systemic therapy may be con-
sidered.

References

1. Sanz MA, Vellenga E, Rayon C, et al. All-trans retinoic acid
and anthracycline monochemotherapy for the treatment of eld-
erly patients with acute promyelocytic leukemia. Blood.
2004;104(12):3490-3.

2. Mandelli F, Latagliata R, Avvisati G, et al. Treatment of elder-
ly patients (> or =60 years) with newly diagnosed acute
promyelocytic leukemia. Results of the Italian multicenter
group GIMEMA with ATRA and idarubicin (AIDA) proto-
cols. Leukemia. 2003;17(6):1085-90.

3. Zhang Y, Zhang Z, Li J, et al. Long-term efficacy and safety
of arsenic trioxide for first-line treatment of elderly patients
with newly diagnosed acute promyelocytic leukemia. Cancer.
2013;119(1):115-25.

4. Lengfelder E, Hanfstein B, Haferlach C, et al. Outcome of eld-
erly patients with acute promyelocytic leukemia: results of the
German Acute Myeloid Leukemia Cooperative Group. Ann
Hematol. 2013;92(1):41-52.

5. Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans
retinoic acid plus arsenic trioxide as an alternative to
chemotherapy in untreated acute promyelocytic leukemia.
Blood. 2006;107(9):3469-73.

6. Bally C, Fadlallah J, Leverger G, et al. Outcome of acute
promyelocytic leukemia (APL) in children and adolescents: an
analysis in two consecutive trials of the European APL Group.
J Clin Oncol. 2012;30(14): 1641-6.

7. Mann G, Reinhardt D, Ritter J, et al. Treatment with all-trans
retinoic acid in acute promyelocytic leukemia reduces early
deaths in children. Ann Hematol. 2001;80(7):417-22.

8. de Botton S, Coiteux V, Chevret S, et al. Outcome of child-
hood acute promyelocytic leukemia with all-trans-retinoic
acid and chemotherapy. J Clin Oncol. 2004;22(8):1404-12.

9. Testi AM, Biondi A, Lo Coco F, et al. GIMEMA-AIEOPAIDA
protocol for the treatment of newly diagnosed acute promye-
locytic leukemia (APL) in children. Blood. 2005;106(2):447-
53.

10. Ortega JJ, Madero L, Martin G, et al. Treatment with all-trans
retinoic acid and anthracycline monochemotherapy for chil-
dren with acute promyelocytic leukemia: a multicenter study
by the PETHEMA Group. J Clin Oncol. 2005;23(30):7632-40.

11. Powell BL MB, Stock B, et al. Arsenic trioxide improves sur-
vival in first line APL consolidation treatment: the
NCI/CALGB study results. ASCO meeting, Chicago, USA,
2007.

12. Fox E, Razzouk BI, Widemann BC, et al. Phase 1 trial and
pharmacokinetic study of arsenic trioxide in children and ado-
lescents with refractory or relapsed acute leukemia, including
acute promyelocytic leukemia or lymphoma. Blood.
2008;111(2):566-73.

13. George B, Mathews V, Poonkuzhali B, Shaji RV, Srivastava A,
Chandy M. Treatment of children with newly diagnosed acute
promyelocytic leukemia with arsenic trioxide: a single center
experience. Leukemia. 2004;18(10):1587-90.

14. Castaigne S, Lefebvre P, Chomienne C, et al. Effectiveness
and pharmacokinetics of low-dose all-trans retinoic acid (25
mg/m2) in acute promyelocytic leukemia. Blood.
1993;82(12):3560-3.

15. Wang SJ, Silberstein SD, Patterson S, Young WB. Idiopathic
intracranial hypertension without papilledema: a case-control
study in a headache center. Neurology. 1998;51(1):245-9.

16. Spence JD, Amacher AL, Willis NR. Benign intracranial
hypertension without papilledema: role of 24-hour cere-
brospinal fluid pressure monitoring in diagnosis and manage-
ment. Neurosurgery. 1980;7(4):326-36.

17. Robertson WC Jr, Wilson M-CB, Baker MJ. Pseudotumor
Cerebri: Pediatric Perspective. In: Sheth RD, Talavera F, Mack
KJ, Benbadis SR, Lorenzo NY, (eds.) eMedicine.  Available
from: http://www.emedicine.com/neuro/topic537.htm.
Accessed February 14 2008.

18. Milligan DW, Grimwade D, Cullis JO, et al. Guidelines on the
management of acute myeloid leukaemia in adults. Br J

| 60 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



Haematol. 2006;135(4):450-74.
19. Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embry-

opathy. N Engl J Med. 1985;313(14):837-41.
20. Cardonick E, Iacobucci A. Use of chemotherapy during

human pregnancy. Lancet Oncol. 2004;5(5):283-91.
21. Culligan DJ ML, Kell J, et al. The management of acute

promyelocytic leucemia presenting during pregnancy. Clinical
Leukemia. 2007;1:183-91.

22. US Environmental Protection Agency. Arsenic compounds.
Available from: http://www.epa.gov. Accessed Jan 8 2008.

23. Slattery MM, Morrison JJ. Preterm delivery. Lancet. 2002;360
(9344):1489-97.

24. Royal College of Obstetricians and Gynecologists. Antenatal
corticosteroids to reduce respiratory distress syndrome.
Guideline No. 7. Available from: http://www.rcog.org.uk/
resources/Public/pdf/Antenatal_corticosteroids_No7.pdf.
Accessed April 1 2007.

25. Fenaux P, Chastang C, Chevret S, et al. A randomized compar-
ison of all transretinoic acid (ATRA) followed by chemother-
apy and ATRA plus chemotherapy and the role of maintenance
therapy in newly diagnosed acute promyelocytic leukemia.
The European APL Group. Blood. 1999;94(4):1192-200.

26. Tallman MS, Andersen JW, Schiffer CA, et al. All-trans-
retinoic acid in acute promyelocytic leukemia. N Engl J Med.
1997;337(15):1021-8.

27. Pulsoni A, Pagano L, Lo Coco F, et al. Clinicobiological fea-
tures and outcome of acute promyelocytic leukemia occurring
as a second tumor: the GIMEMA experience. Blood.
2002;100(6):1972-6.

28. Beaumont M, Sanz M, Carli PM, et al. Therapy-related acute
promyelocytic leukemia. J Clin Oncol. 2003;21(11):2123-37.

29. Mattson JC. Acute promyelocytic leukemia. From morpholo-
gy to molecular lesions. Clin Lab Med. 2000;20(1):83-103.

30. Pollicardo N, O’Brien S, Estey EH, et al. Secondary acute
promyelocytic leukemia. Characteristics and prognosis of 14
patients from a single institution. Leukemia. 1996;10(1):27-
31.

31. Mistry AR, Felix CA, Whitmarsh RJ, et al. DNA topoiso-

merase II in therapy-related acute promyelocytic leukemia. N
Engl J Med. 2005;352(15):1529-38.

32. Andersen MK, Pedersen-Bjergaard J. Therapy-related MDS
and AML in acute promyelocytic leukemia. Blood.
2002;100(5):1928-9.

33. Pedersen-Bjergaard J. Insights into leukemogenesis from ther-
apy-related leukemia. N Engl J Med. 2005;352(15):1591-4.

34. Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic
associations in 306 patients with therapy-related myelodyspla-
sia and myeloid leukemia: the University of Chicago series.
Blood. 2003;102(1):43-52.

35. Pedersen-Bjergaard J, Philip P, Larsen SO, Jensen G, Byrsting
K. Chromosome aberrations and prognostic factors in therapy-
related myelodysplasia and acute nonlymphocytic leukemia.
Blood. 1990;76(6):1083-91.

36. Quesnel B, Kantarjian H, Bjergaard JP, et al. Therapy-related
acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a
report on 25 cases and review of the literature. J Clin Oncol.
1993;11(12):2370-9.

37. Ledda A, Caocci G, Spinicci G, Cocco E, Mamusa E, La Nasa
G. Two new cases of acute promyelocytic leukemia following
mitoxantrone treatment in patients with multiple sclerosis.
Leukemia. 2006;20(12):2217-8.

38. Ghalie RG, Mauch E, Edan G, et al. A study of therapy-related
acute leukaemia after mitoxantrone therapy for multiple scle-
rosis. Mult Scler. 2002;8(5):441-5.

39. Lo-Coco F, Avvisati G, Orlando SM, et al. ATRA and Arsenic
Trioxide (ATO) Versus ATRA and Idarubicin (AIDA) for
Newly Diagnosed, Non High-Risk Acute Promyelocytic
Leukemia (APL): Results of the Phase III, Prospective,
Randomized, Intergroup APL0406 Study by the Italian-
German Cooperative Groups Gimema-SAL-AMLSG. ASH
meeting, Atlanta, USA,2012.

40. Koken MH, Daniel MT, Gianni M, et al. Retinoic acid, but not
arsenic trioxide, degrades the PLZF/RARalpha fusion protein,
without inducing terminal differentiation or apoptosis, in a
RA-therapy resistant t(11;17)(q23;q21) APL patient.
Oncogene. 1999;18(4):1113-8.

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 61 |

Stockholm, Sweden, June 13-16, 2013



Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 62 |

S.M. Ramadan1,2 
L. Cicconi1
F. Lo-Coco1,3

1Department of Biomedicine and
Prevention, University Tor Vergata; 
2NCI-Cairo University; 3Santa Lucia
Foundation, Rome, Italy

Correspondence:
Francesco Lo-Coco
E-mail: francesco.lo.coco@uniro-
ma2.it

Hematology Education:
the education program for the 
annual congress of the European
Hematology Association

2013;7:62-66

The evolving role of stem cell transplantation in acute
promyelocytic leukemia 

APL, from highly fatal to highly curable

Over the past two decades, modern treat-
ment with simultaneous all-trans-retinoic acid
(ATRA) and anthracycline-based chemothera-
py (CHT) has transformed acute promyelocyt-
ic leukemia (APL) from a rapidly fatal into a
highly curable disease. In fact, more than 80%
of patients receiving this combination have
been reported to become long-term survivors
in large multicenter studies.1 In addition,
excellent outcome results have been reported
in APL using arsenic trioxide (ATO) combined
or not with ATRA and CHT. Initially shown to
be very active in patients relapsing after
ATRA-containing regimens, ATO has been
tested in several pilot studies in the front-line
management of the disease with promising
results.2-5 Moreover, very recent results of a
prospective randomized study indicated that
combined ATO and ATRA is at least as effec-
tive as ATRA and CHT for patients with non-
high risk disease (commonly defined as those
with WBC at diagnosis <10x109/L, and
accounting for approximately 75% of cases).6
While the latter trial results will likely change
the standard of care in front-line therapy (i.e.
favoring the use of ATO+ATRA instead of
ATRA+CHT), they also help reinforce the

concept that APL is a highly curable disease in
which targeted drugs and/or limited use of
conventional CHT are likely to eradicate the
disease. 

No role for stem cell transplantation
in APL patients in first remission

Based on the availability of the aforemen-
tioned highly effective agents in the front-line
management, there is a general expert consen-
sus on recommending the use of stem cell
transplantation (SCT) in APL only after sec-
ond or subsequent remission.1 In this respect,
it is worth emphasizing that no particular sin-
gle (or even combined) features associated to
slightly inferior prognosis in patients treated
with standard ATRA and CHT should justify
the use of SCT in first remission. In fact, out-
comes in patients showing these reportedly
unfavorable features, including elevated WBC
counts at diagnosis.7 CD56 expression,8 or
FLT3-ITD mutation,9 still remain considerably
good. In addition, the chances of achieving
second remission with ATO in relapsed APL
are extremely high (approximately 85-90%)
and repeated ATO given for re-induction and
consolidation is able to induce molecular

Acute promyelocytic leukemia

The availability of several highly effective agents in acute promyelocytic leukemia (APL) including
all-trans retinoic acid (ATRA), arsenic trioxide (ATO) and anthracyclines, has transformed this once
highly fatal disease into the most frequently curable acute leukemia. While it is firmly established that
neither autologous nor allogeneic stem cell transplantation (SCT) are indicated in first remission of the
disease, and that patients relapsing after ATRA-containing regimens should be treated with ATO, con-
troversy remains on the selection of the most appropriate consolidation therapy, and in particular on
indications for transplantation after second remission. Owing to the lack of randomized comparative
studies and the very limited number of relapses, consolidation strategies should be based on several
clinical and biological criteria and rely on both available reported experience and published recom-
mendations. These criteria include age and performance status, first remission duration, donor avail-
ability, and minimal residual disease status. In this article, we review current recommendations and
controversial issues related to use of SCT in APL.    

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the available treatment options for patients with acute promyelocytic leukemia in first

relapse;
- define the clinical and biological criteria for selecting autologous or allogeneic stem cell transplan-

tation in APL in second remission or beyond;
- describe the available therapeutic consolidation options for patients in second remission or beyond

who are ineligible for transplantation.
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remission in almost 80% of patients treated at relapse.10,11

Based on these considerations, it should be firmly restated
that neither allogeneic SCT (ASCT) nor autologous SCT
(AuSCT) have any role in APL in first remission. In the
following paragraphs, we will review the current recom-
mendations for transplantation as a consolidation strategy
for APL patients in second remission or beyond.

Consolidation options for APL patients 
in second complete remission

Although most patients relapsing after front-line therapy
reported to date had received the standard ATRA and CHT,
it is likely that this scenario will change in the near future.
In fact, an increasing number of relapses are expected to
be reported in patients treated with CHT-free approaches
such as ATO +/- ATRA. This is due to a growing interest
in the use of the latter approach. In principle, relapsing
patients who have never been exposed to CHT should
receive the standard ATRA plus CHT for re-induction and
consolidation, in parallel with investigating their trans-
plantation options. However, data on the outcome of
patients relapsing after ATO who are rescued with ATRA-
CHT followed by SCT are not currently available. For
patients who relapse after the standard front-line treatment
of ATRA plus chemotherapy, re-induction with ATO is
recommended followed by one consolidation cycle of the
same agent combined with ATRA.1,11,12 There is no current
consensus on the best option to further consolidate remis-
sion after ATO. The very low number of relapsing patients
treated with the current standard treatment has made ran-
domized studies comparing different strategies including
ASCT, AuSCT, prolonged ATO with or without ATRA or
chemotherapy unfeasible. In addition, patients in most
reported studies were not systematically monitored for
molecular status pre- and post-SCT. Consequently, it is
difficult to establish recommendations based on the
impact of SCT and other consolidation options in patients
included in these studies. 

Selection of the successive consolidation strategy after
ATO and ATRA will depend on a number of variables
including patient’s age and performance status, duration of
first remission, donor availability and minimal residual
disease (MRD) status after salvage therapy.1,11,12 It is wide-
ly recognized that AuSCT is considered for patients
achieving second molecular remission, i.e. those who test
PCR-negative for the disease-specific PML/RARA fusion
gene in their marrow after consolidation, with such tests
being performed in highly specialized reference laborato-
ries. Autologous SCT is notoriously associated with lower
morbidity and mortality as compared to ASCT and can
represent a convenient and effective option for patients
with late relapse who achieve second molecular remission.
As to the definition of early versus late relapse, and con-
sequently of short versus prolonged first remission dura-
tion, here again there is no definitive consensus. Because
most standard ATRA plus chemotherapy regimens include
prolonged maintenance for two years, we propose that
early relapse is considered as that occurring within two
years of achieving remission, although this definition may
be somewhat arbitrary.

Allogeneic transplant is still an effective therapy and a
valid treatment option, especially in fit patients at higher

risk of subsequent relapse who have a suitable donor.
These include patients with short first remission duration
(<2 years) and patients who do not achieve a second
molecular remission after 2 cycles of ATO+/-ATRA.
Prolonged ATO is a viable alternative for patients unfit for
a transplantation procedure, or as a bridge during donor
identification.1,13 It remains uncertain as to whether pro-
longed ATO +/- ATRA can produce long-term remission in
APL patients with late relapse, although a single experi-
ence of a limited series suggested that a high proportion of
patients receiving this treatment strategy may achieve
another long-term remission.13 An algorithm with recom-
mended consolidation options after second CR and criteria
for selecting them is illustrated in Figure 1.  

The following review is organized in sections based on
reports comparing results of consolidation with and with-
out stem cell transplantation, consolidation with autolo-
gous versus allogeneic transplantation, and reports of con-
solidation with ATO alone or in combination regimens in
patients not eligible for transplant.

Reports comparing results of consolidation
with and without stem cell transplantation 

An early report from China on 47 relapsed APL patients
treated with ATO suggested that disease-free survival
(DFS) was significantly better with more intensified con-
solidation therapy of combined ATO and chemotherapy as
compared to ATO or chemotherapy alone after second
CR.14 There is also considerable evidence that consolida-
tion with SCT may improve the outcome of patients in
second remission after ATO treatment and is better than
consolidation with ATO or ATRA alone or with
chemotherapy.15-17 Both the updated results of a pivotal US
multicenter trial and the European APL group study
showed higher overall survival (OS) and DFS rates in
patients who received SCT as consolidation compared to
those who did not receive transplantation.15,16 In the latter
study, 7-year event-free survival (EFS) and OS were
30.4%, and 39.5% in patients who received no SCT com-
pared to 61% and 60%, and 52.2% and 51.8%, in patients
treated with autologous and allogeneic transplants, respec-
tively.16 Similar results were observed in a more recent
series of 37 relapsed patients. In this series, 5-year OS was
100% for patients who underwent autologous transplanta-
tion compared to 39% in patients treated with ATO plus
ATRA.17

Reports of consolidation with autologous and
allogeneic stem cell transplantation 

Although no prospective randomized trials have been
reported, a number of studies compared the role of autol-
ogous or allogeneic SCT in APL patients in second remis-
sion. Some of these studies documented a similar or even
better outcome with autologous than with ASCT. A recur-
rent observation reported in these retrospective analyses is
that transplant-related mortality (TRM) of ASCT ham-
pered a possible OS benefit related to the graft-versus-
leukemia effect in reducing subsequent relapses. 

Among these studies, the European Bone and Marrow
Transplant (EBMT) group evaluated the role of either
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AuSCT or ASCT in a large number of patients treated in
the ATRA era. In this registry study, patients in CR2
achieved a better leukemia-free survival after ASCT com-
pared to those receiving AuSCT (59% vs. 51%). However
this benefit was at the expense of increased TRM (24% vs.
16%).18 This study lacked information about MRD prior to
and following transplant. We reported a single center
study on the outcome after ASCT in 17 patients treated
after second or subsequent CR for whom pre-transplant
MRD assessment was available. We documented a signif-
icant anti-leukemic effect of ASCT even in patients with
advanced disease including those with pre-transplant evi-
dence of MRD.19 All patients with MRD positive disease
prior to transplant achieved molecular remission after
transplant, although the response was less prolonged in
more advanced cases. The 10-year actuarial probabilities
of OS and DFS were 53% and 46%, respectively; howev-
er, TRM was high (32%).19

Studies that evaluated prognostic factors for subsequent
relapse after SCT showed that the duration of first remis-
sion and the achievement of second molecular remission
prior to transplant are associated with post-transplant out-
come.16,19-22 The relevance of pre-SCT MRD status is well

established in the autologous transplant setting. Meloni et
al. prospectively monitored MRD status of 15 patients
who received autologous transplantation in second remis-
sion. Six of 8 patients who received PML/RARA-negative
marrow achieved prolonged clinical and molecular remis-
sions (median 28 months; range 15-60 months). In con-
trast, all the 7 patients transplanted with positive  MRD
relapsed at a median time of five months (range 2-9
months) from transplant.21

Similarly, the European APL group retrospectively eval-
uated the outcome of patients who underwent autologous
or allogeneic SCT after second complete remission.16 EFS
and OS were significantly better in the autologous setting.
Moreover, when the analysis was limited to patients in
molecular remission, the 7-year EFS and OS improved to
77% and 75%, respectively, compared to 52.2% and
51.8% in the allogeneic group. Transplant-related mortal-
ity was 7% compared to 39% in the autologous and allo-
geneic settings, respectively.16 The results from using
AuSCT were comparable to those reported by a CALGB
study on AML that included 12 APL patients in second
complete remission. The 5-year DFS and OS were both
67%.22 Two other small studies support the use of autolo-

Figure 1. Therapeutic options for APL patients in second CR. Molecular status for PML/RARA after consolidation and CR1
duration are important factors for the choice of successive options. These may include autologous or allogeneic SCT and
prolonged ATO+/-ATRA cycles for patients unfit for an SCT procedure. For patients with molecular CR and CR1 duration
under two years, the choice between autologous or allogeneic SCT may also vary based on the type of available donor
and clinical parameters (e.g. age, PS) with impact on TRM.    



gous transplant in patients who achieve a second molecu-
lar complete remission.20,23 The earlier one reported that
long-term remission after either allograft or autograft is
associated with eradication of PML-RARA positive cells,
and that continued positivity predicts subsequent relapse.20

The more recent one showed that 11 of 13 patients who
received autologous transplants while in second molecular
remission were alive.23 Ten patients in this latter study
were in sustained molecular remission after a median fol-
low up of 25 months with no TRM.23 Together these stud-
ies suggest that, for APL patients who had a long first
remission duration and are in second molecular remission,
autologous transplantation is an effective approach for a
second lengthy remission.16-18,20,21,23

We recently evaluated the role of allogeneic transplant
in patients with advanced disease (CR2 or beyond) treated
in the era of ATO. This study included 31 patients (15
CR2, 16≥ CR3) transplanted in 4 Italian institutions. At
time of transplant, 16 patients were MRD positive and 15
were negative. The 4-year overall survival was higher for
patients transplanted in CR2 and for MRD negative
patients (62% and 64%, respectively) compared to
patients transplanted in CR3 or over and positive for MRD
(31% and 27%, respectively). MRD status prior to trans-
plant was associated with significantly better DFS and the
rate of relapse was higher in patients transplanted with RT-
PCR-positive disease.24 The 4-year cumulative incidence
of TRM was 19.6% in this series including advanced dis-
ease cases and 7 haploidentical transplants.23 This
improvement may reflect recent advances in transplant
supportive measures, wider use of peripheral blood stem
cells as well as better haploidentical transplant
modalities.25 In conjunction with other reported series, this
study confirms that allogeneic transplant continues to be
an effective therapeutic option in relapsed APL patients
who are eligible for this treatment policy.

Consolidation reports of ATO alone or in com-
bination regimens in patients not eligible for
transplant

Given the exquisite efficacy of ATO in APL and the pos-
sibility of accurately monitoring response to therapy and
re-emerging MRD through PCR analysis, prolonged ther-
apy with ATO-based regimens with or without ATRA may
be considered in patients unfit for transplant. Durable
molecular remissions were reported in 8 of 9 patients
(median CR duration, 25 months) treated with prolonged
post-remission therapy consisting of four courses of ATO
and seven shorter courses of ATRA. All patients in this
recent report had late relapses prior to SCT rescue (at a
median time of 1.9 years; range 1-7 years), all except one
were treated for molecular relapse, and all were closely
monitored for MRD.13 However, this experience was lim-
ited to only a few patients, and the identification of
patients with low risk of subsequent relapse after first dis-
ease recurrence remains challenging.

Conclusion

Recommendations and indications for remission re-
induction and consolidation in APL patients with APL

relapse are evolving because of the changing scenario in
front-line therapy. ATRA-ATO or ATRA-CHT are the
standard approach for patients relapsing after chemothera-
py-based or ATO-based treatment, respectively. First con-
solidation after re-induction with further ATO or CHT is
recommended with the aim of achieving second molecular
remission. All patients must be tested after consolidation
for MRD status in experienced laboratories of reference.
The choice for further consolidation will be taken in con-
sideration of first remission duration, the quality of remis-
sion (molecular vs. hematologic only), patient age and per-
formance status, and donor availability. Autologous SCT
can be recommended for patients with prolonged (>2
years) first remission who test negative for MRD after 2
cycles of ATO-based therapy, while patients ineligible for
SCT can continue ATO for consolidation and maintenance
with close monitoring of MRD. Patients who fail to
achieve first complete molecular remission, those who had
short first remission, or those who test positive for MRD
after ATO induction and consolidation, should be consid-
ered for allogeneic SCT if a suitable donor is available.
Patients who are candidates for allogeneic SCT should be
sent to transplant without delay once they achieve molec-
ular remission.
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Genetics of inherited disorders of platelets

Introduction

This review of inherited disorders of platelet
function and platelet production will empha-
size recent advances and the identification of
genes whose defects are at the origin of a
bleeding syndrome.1-4 Spontaneous bleeding is
mostly mucocutaneous in nature; excessive
trauma-related bleeding is another feature of
milder forms. Treatment has been reviewed
elsewhere.5 Figure 1 illustrates disorders
affecting platelet surface constituents, while
Figure 2 shows those affecting intracellular
components. Tables 1 and 2 summarize gene
defects giving familial thrombocytopenia (FT)
with or without defects of platelet function and
grouped according to platelet morphology.
Gene variants identified by candidate gene

association and genome-wide association
studies should also be born in mind for they
can cumulatively lead to hypo-reactive
platelets and affect such parameters as platelet
size or count. They include novel gene vari-
ants such as PEAR1 (platelet endothelial
aggregation receptor 1) that modulate platelet
reactivity and bleeding tendency.45-48

Defects of platelet function 

Defects of platelet adhesion
Abnormalities of GPIb-IX function.

Bernard-Soulier syndrome (BSS) associates a
moderate to severe macrothrombocytopenia
with a decreased von Willebrand factor
(VWF)-dependent platelet adhesion under

Bleeding disorders  

Genetic defects of platelets constitute a group of rare diseases that give rise to bleeding syndromes
of autosomal dominant or recessive inheritance. They affect platelet production, giving rise to a low
circulating platelet count and changes in platelet morphology, platelet function, or a combination of
both an altered megakaryopoiesis and a defective platelet response. As a result, blood platelets fail to
fulfill their hemostatic function. The most studied are deficiencies of glycoprotein mediators of adhe-
sion and aggregation while defects of primary receptors for stimuli include that of the P2Y12 ADP
receptor. Inherited defects of secretion from storage organelles (dense granules, α-granules) and of
the generation of procoagulant activity have led to the identification of many genes involved in
megakaryocyte biology. Signaling pathway defects leading to agonist-specific modifications of
platelet aggregation are the current target of exome-sequencing strategies. In familial thrombocy-
topenia, changes in megakaryocyte maturation within the bone marrow mostly lead to a deficient pro-
platelet formation and an altered timing of platelet release; sometimes defects extend to other cells
and in some cases interfere with development. We now review recent advances in the field and high-
light genes responsible for inherited diseases of platelets.

Learning goals

At the conclusion of this activity, participants should be able to assess:
- how a wide variety of molecular defects of surface and intracellular constituents of platelets lead

to defective platelet function and bleeding;
- how pathologies within each of a series of major gene families put inherited disorders of platelets

to the forefront of research into rare diseases; 
- how genetic defects of transcription factors and of cytoskeletal proteins can affect megakaryocyte

biology leading to an altered platelet morphology and number;
- how the use of modern gene screening procedures including whole exome or genome sequencing

will transform practice in a routine hematology laboratory.
The Human Genome Variation Society (HGVS) numbering and nomenclature as used in this review

(available from://www.Hgvs.org/mutnomen) is recommended to describe mutations. Since amino
acid numbering within each protein is now recommended to start with the initiating methionine,
while it was variably used before, current numbering is often different from the one used in the
original publications. In cases in which the HGVS numbering is different from the original publica-
tions, the original nomenclature is provided in parentheses.

A B S T R A C T
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flow caused by quantitative or qualitative defects of GPIb-
IX-V (Table 1). GPIbα contains VWF and thrombin-bind-
ing sites within the N-terminal domain. The additional
absence of extracellular binding sites on GPIbα for P-
selectin, TSP1, coagulation factors (F) XI and XII, αMβ2
and high molecular weight kininogen may extend the phe-
notype.6 The products of four genes (GPIBA, GPIBB, GP9
and GP5) assemble in a 2:4:2:1 ratio within maturing
megakaryocytes (MK) in the bone marrow to form GPIb-
IX-V as present in the platelet membrane.6 Mutations
within GPIBA, GPIBB and GP9 in BSS prevent the com-
position and/or trafficking of the complex through the
endoplasmic reticulum (ER) and Golgi apparatus by
changing the quaternary organization of GPIb-IX.7 The
absence of the interaction between GPIbα and filamin A in

the membrane cytoskeleton may account for the giant
platelets. In rare variant BSS, platelets express non-func-
tional GPIbα.1,2,4 A common heterozygous p.Ala172Val
(formerly Ala156Val) mutation is the cause of inherited
thrombocytopenia alone in Southern Italy.8 Heterozygous
mutations in GPIBB cause BSS when associated with the
DiGeorge/velocardiofacial syndrome, a developmental
disorder given by a heterozygous microdeletion at 22q11,
the site of localization of  GPIBB. Correction of murine
BSS by lentivirus-mediated gene therapy suggests a prom-
ising strategy for gene therapy.49

Upregulated VWF-binding to GPIbα. Platelet-type von
Willebrand disease (platelet-type VWD) is characterized
by thrombocytopenia and increased platelet agglutination
by low-dose ristocetin in the presence of normal plasma.

Table 1. Inherited thrombocytopenia with large-sized platelets. 

Group of Syndrome Platelet count Platelet Associated  Associated biological Gene defect and Ref 
abnormalities and morphology function phenotype abnormalities transmission

Platelet adhesion BSS Moderate to severe decrease Loss of platelet Occasionally Impaired platelet GPIBA (17p13) 6-8
Giant platelets adhesion to VWF Di-George syndrome production GPIBB (22q11)

GP9 (3q21) 
AR

Platelet-type VWD Decreased Enhanced VWF/GPIb. - Blocked GPIb GPIBA (17p13) 2,9,10
Some large platelets Abnormal vessel-wall Loss of large AD

interaction VWF multimers from plasma

VWD2B Variable, Enhanced VWF/GPIb - Abnomal VWF Exon 28 of VWF 2,11
+/-  enlarged, sometimes Abnormal vessel-wall Loss of large (12p13.3)
agglutinated platelets interaction VWF multimers from plasma AD

Transcription factors GATA-1 Decreased Aggregation impaired, Dyserythropoietic anemia, Decreased protein GATA-1 2,12,13
Enlarged platelets β-thalassemia (e.g. GPIb-IX) and (Xp11)

α-granule expression X-linked

Paris-Trousseau Decreased with giant - Psychomotor retardation, Immature MKs predominate FLI1 (11q23.3) 2,12,14,15
syndrome fused granules facial, cardiac defects in marrow microdeletion

AD

α-granule defects Gray platelet Decreased with enlarged Variable aggregation Myelofibrosis Occasional loss of GPVI NBEAL2 16-20
syndrome platelets lacking response Enlarged spleen Increased Vitamin B12 (3p21)

α-granules mostly AR

Quebec syndrome Sometimes decreased Abnormal response Excessive fibrinolysis Proteolytic degradation PLAU 21,22
Platelet aniscocytosis to epinephrine of α-granule proteins (10q24)

tandem duplication

Cytoskeleton defects MYH9-RD Decreased Abnormal NMMHC-IIA Deafness, Presence of Döhle MYH9 2,12,
Presence of giant platelets distribution and function cataract, bodies in  leukocytes (22q12-13) 23,24

renal dysfunction AD

Filaminopathia Decreased Abnormal thrombus Neurological, Abnormal distribution FLNA 2,25,26
Variable presence formation gastro-intestinal, of FLNA in platelets (Xq28)
of large platelets cardiologic X-linked

Tubulin �1 Decreased Normal aggregation - Platelets with TBB1 12,27
Presence of large, decreased microtubules (6p21.3)
round, platelets AD

Defects of αIIbβ3 Isolated Decreased Variable aggregation - Altered platelet production ITGA2B 28-31
thrombocytopenia Presence of large platelets response ITGB3

(17q21.32)
AD or AR

Lipid metabolic Hyperabsorption and Normal at birth, Reduced Premature coronary Increased plant sterols, ABCG5 or ABCG8 12,32
disorder defect of metabolism rapidly artery disease and hypercholesterolemia (2p21)

of sterols macrothrombocytopenic atherosclerotic disease AR
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p.Gly249Val (or Ser), p.Asp251Tyr, p.Met255Val  (previ-
ously Gly233Val/Ser, Asp235Tyr, Met239Val) substitu-
tions provoke changes in the conformation of the GPIbα
N-terminal domain that binds soluble VWF directly as
does a p.Pro449_Ser457 deletion in the macroglycopep-
tide-coding region of GPIBA.4,9,10 This clinical condition
resembles type 2B VWD and diagnosis requires care.9
Giant platelets, thrombocytopenia and even circulating
platelet aggregates can occur in type 2B VWD given by
mutations in exon 28 of the VWF gene. Culture of CD34+

cells from the peripheral blood of patients with type 2B
VWD showed early association of the up-regulated VWF
with GPIb, an altered megakaryopoiesis and modified pro-
platelet production.11 Mouse models have confirmed a
marked reduction in thrombus formation in vivo with
modulation of disease severity by ADAMTS13 (a disinte-
grin and metalloprotease with thrombospondin type I
motif, 13); platelet-bound large VWF multimers are par-
ticularly susceptible to cleavage by this enzyme.39,50

Deficient collagen receptor function. Platelet-collagen
interaction in flowing blood is a multistep process involv-
ing both integrin α2β1 and GPVI that signals through the
FcRg-chain, a process negatively regulated by PECAM-1
(platelet-endothelial adhesion molecule-1). α2β1 is shared
with a variety of cell types whereas GPVI is megakary-
ocyte (MK)-specific. Specific haplotypes in GP6 and
ITGA2 can account for variations in a wide range of den-

sity of both receptors and affect the collagen response.45

Patients with FT linked to heterozygous mutations in the
ANKRD26 (ankyrin repeat domain 26) gene variably
express α2β1, otherwise there is no clear pathology of this
integrin.51 In contrast, individuals in two families with a
life-long but mild bleeding syndrome and severely defi-
cient collagen-induced platelet aggregation are compound
heterozygotes for mutations of GP6.52,53 Note that
acquired antibodies, extracellular proteases and even shear
can induce sheddase activity by members of the ADAMTS
family and loss of GPVI, a factor to take into account in
diagnosis.54  Sheddase is a name given to cell-bound pro-
teases that cleave membrane receptors close to the trans-
membrane domain with release of the extracellular
domain.

Inherited variants of receptors for soluble 
agonists and of signaling pathways

Pathology of ADP and TXA2 (thromboxane A2) receptors
Inherited defects of platelet aggregation to specific ago-

nists are a frequent source of bleeding with many patients
having as yet undefined abnormalities affecting Gi-recep-
tor signaling, the TXA2 pathway or dense granule secre-
tion.55 Platelets possess 2 classes of purinergic receptor for
ADP: P2Y1 that mediates Ca2+-mobilization and shape

Table 2. Inherited thrombocytopenia with normal sized or small platelets. 

Group of Syndrome Platelet count Platelet Associated  Associated biological Gene defect and Ref 
abnormalities and morphology function phenotype abnormalities transmission

Associated with TAR Decreased Abnormal Orthopedic abnormality. Decreased Y14 protein RBM8 2,33-35
orthopedic Normalization possible Malformations of the and defective mRNA 1q21.1
abnormalities heart and kidneys. processing AR

Normal hands Deletion of one allele, 
SNP in the other

RUS Decreased - Orthopedic abnormality. Amegakaryocytosis HOXA11 2,12
Hand abnormality (7p15-14)

AD

Transcription FPD/AML1 Decreased. Impaired Hematological malignant Abnormal PCK-θ, RUNX1 2,12,36-38
factor RUNX1 Variable platelet Aspirin-like syndrome platelet type 12-LOX (21q22.3)

morphology among others AD

Role of the ANKRD26 Decreased Impaired Leukemia? Decreased α-granule ANKRD26 12,39,40
corresponding number. 10p.12
protein unknown Increased TPO levels AD

Congenital CAMT Severely decreased Normal Possible development Increased TPO levels. MPL 2,12,41
amegakaryopoiesis of aplasia Decreased number of MK (1p34)

AD

Cytoskeleton/ WAS Decreased Impaired Cellular and humoral Decreased WASP.  WAS 2,42-44
signaling defect Small discoid aggregation, immunodeficiency, Low granule number. (Xp11.23)

platelets reduced increased risk of Altered platelet production X-linked
secretion autoimmune disease 

and hematologic malignancy

X-linked XLT Mild Impaired - Decreased WASP. WAS  2,42-44
Thrombocytopenia thrombocytopenia. aggregation, Low granule number. (Xp11.23)

Small discoid platelets defect in secretion Altered platelet production X-linked
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change; and P2Y12, responsible for macroscopic platelet
aggregation.56 Only patients with quantitative or qualita-
tive abnormalities of P2Y12 have been characterized so far.
Their phenotype includes a much decreased and reversible
platelet aggregation to high-dose ADP and an inability of
ADP to inhibit adenylate cyclase. A specific receptor
defect was confirmed when analysis of PCR products
from genomic DNA of a French patient revealed a mutant
allele at the P2RY12 locus.57 Mutations in other patients
include nucleotide deletions in the open-reading frame,
frameshifts resulting in premature protein truncation, and
missense mutations affecting ADP binding and even
receptor trafficking.55-58

A defective platelet aggregation to TXA2 in Japanese
families linked to a p.Arg60Leu substitution in the TXA2
receptor α-subunit (TPXA2R, TPα) results in impaired
signal transmission and a loss of aggregation induced by
arachidonic acid and U46619, a TXA2 receptor agonist.59

Mutations that disrupt both TPα function and receptor
cycling have been reported.55 An absent platelet response
to adrenaline is frequent in routine screening but its con-
tribution as a cause of bleeding remains uncertain.

Defects in intracellular signaling pathways
Pathologies of signal transduction pathways also con-

cern patients with defects of platelet aggregation that
affect some stimuli more than others.1,4 Early studies high-
lighted patients with abnormalities of: a) phospholipase C;
b) protein kinase C; and c) Gαi and Gαq, although gene
mutations were not reported. Likewise, patients with con-
genital deficiencies of cyclooxygenase-1, prostaglandin H
synthase-1, thromboxane synthase, phospholipase A2,
lipoxygenase, glycogen synthase and ATP metabolism
were all the object of reports largely based on platelet
function testing.1,4 Such defects may directly interfere with
αIIbβ3 activation and Fg binding, or intervene secondarily
by preventing secretion of ADP or TXA2. A special cate-
gory of patients with defects in the G-protein cascade
involve second messengers or RGS proteins that affect
cAMP levels.60 Gsα is regulated by the complex imprinted
gene cluster GNAS1; direct genetic and epigenetic defects
of GNAS1 have been reported and include both Gsα hypo-
function and a thrombotic phenotype associated with more
generalized hormonal, skeletal defects and sometimes
mental retardation.60-62 Isolated reports of signaling mole-

Figure 1. Disorders that principally affect surface components of platelets.
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cules involved in platelet dysfunction include human
gp91phox (phagocyte oxidase) deficiency with impaired
isoprostane formation and decreased thrombus formation,
while mutations in the OCRL (Lowe oculocerebrorenal
syndrome protein) gene encoding an inositol polyphos-
phate 5-phosphatase characterize the Lowe syndrome.63,64

A major effort is underway to uncover the mutations
responsible for signaling defects either by a phenotypic
approach or by whole exome sequencing.16,46,55 Signaling
defects can be specific for MKs and platelets, or extend to
other cell types and be secondary to genetic defects of
transcription factors, as we will show in later sections.

Defects of secretion (storage pool disease)

Defects of α-granules
These are the storage sites for many proteins either syn-

thesized in MK or endocytosed from plasma. Most are
biologically active and after secretion account for non-
hemostatic roles of platelets as well as participating in
hemostasis.65,66 The organelle membranes contain a vari-
ety of glycoproteins (e.g. P-selectin, CD40L and CD63)
that are translocated to the plasma membrane during
secretion. Specific deficiencies of α-granule-stored pro-

teins also occur in inherited deficiencies of the correspon-
ding plasma proteins (e.g. factor V deficiency, fibrinogen
(Fg) in afibrinogenemia, VWF in type 3 VWD).4

Gray platelet syndrome (GPS) is a mild bleeding disor-
der characterized by a severe deficiency of α-granules and
their contents.1,4 The molecular defect involves packaging
of proteins and α-granule biogenesis in MK. Clinical fea-
tures include modest macrothrombocytopenia, an early
onset of myelofibrosis and enlarged spleens. Secretion-
dependent platelet aggregation is abnormal, as is platelet
spreading and thrombus formation under flow.4,67 A low
platelet expression of GPVI due to increased sheddase
activity by members of the ADAMTS family has been
reported in isolated cases.4 Electron microscopy shows
only vestigial α-granules in platelets and MKs, vacuoles
are abundant in MKs and α-granule proteins seen in the
surface-connected canalicular system. Emperipolesis (pas-
sage of other blood cells through MKs) is a feature. Small
vesicles containing tissue inhibitors of metalloproteases
(TIMPs) are present in GPS platelets and may represent
the T-granules described by others.17,68 In 2011, three
groups using new generation sequencing technologies
showed mutations in NBEAL2 (neurobeachin-like 2) in
GPS.16,18,19 NBEAL2 belongs to a gene family that includes
LYST (see below). The protein encoded by this gene con-

Figure 2. Disorders that affect intracellular organelles or cytosolic proteins of platelets.



tains a beige and Chediak-Higashi (BEACH) domain and
multiple WD40 domains (domains terminating in trypto-
phan (W) and aspartic acid (D)) and appears directly
implicated in α-granule biogenesis in MKs. It has been
speculated that genetically GPS is a heterogeneous trait
whose severity depends on the basis of the α-granule defi-
ciency.20

Mutations of VPS33B, encoding a regulator of soluble
N-ethylmaleimide-sensitive factor activating receptor
(SNARE)-dependent membrane fusion and of VIPAS39
encoding VPS33B-interacting protein, cause the arthro-
gryposis-renal dysfunction-cholestasis (ARC) syndrome.69

Mostly lethal for young children, ARC associates platelet
dysfunction and low granule content with a multisystem
disorder featuring renal tubular and other dysfunctions.
The platelet defect extends to stored and membrane com-
ponents of α-granules.70 Other variant disorders affecting
α-granules include the Medich giant platelet disorder
where platelets feature scroll-like membranous
inclusions.1,4

The autosomal dominant Quebec platelet syndrome
(QPS) is unique to French-Canadian families.21 Here,
platelets show protease-related degradation of many α-
granule proteins (including P-selectin) despite a normal α-
granule ultrastructure. Thrombocytopenia is sometimes
observed and there is a characteristic platelet aggregation
deficiency with epinephrine. Fibrinolytic inhibitors not
platelet transfusions reduce bleeding due to the fact that
platelets in QPS possess unusually large amounts of uroki-
nase-type plasminogen activator (u-PA). This promotes
intra-granular plasminogen generation and excessive fibri-
nolysis upon platelet secretion. The genetic basis of QPS
is a tandem duplication of the u-PA gene, PLAU.22

Defects of dense (δ) granules
These are storage sites for serotonin, ADP and ATP.

Storage pool disease (SPD) affecting dense granules is a
common cause of defects of secretion-dependent platelet
aggregation.55 Secretion deficiency may be severe or par-
tial, in some patients it also extends to α-granules. It may
concern granule biogenesis and storage of constituents or
the signaling pathways responsible for exocytosis. When
dense granules deficiencies are associated with general-
ized abnormalities of lysosome-related organelles, they
lead to clearly defined phenotypes. This is so for the
Hermansky-Pudlak (HP), Chediak-Higashi (CH) and
Griscelli syndromes where heterogeneous disorders of
vesicle biogenesis and melanosomal defects also cause a
lack of pigmentation of the skin and hair.71 

In HPS, oculocutaneous albinism is an additional fea-
ture as is ceroid-lipofuchsin storage in the reticulo-
endothelial system; granulomatous colitis, interstitial lung
disease and fatal pulmonary fibrosis occur in some sub-
types. Defects in nine genes (HPS1 through HPS9) cause
distinct HPS subtypes in man.71,72 A pathological 16-base
duplication in exon 15 of the HPS1 gene predominates in
Puerto Rican patients. HPS proteins interact with each
other in complexes called BLOCS (biogenesis of lyso-
some related organelles complexes). Genetic defects dis-
rupt processing of these and SLC35D3 (a member of the
solute carrier family) during dense granule biogenesis.73

HPS2 is associated with innate immunity defects.71 The
beta3A subunit of the adaptor protein-3 (AP-3) complex
encoded by AP3B1 is abnormal in HPS2, although

homozygosity mapping and whole-exome sequencing
have revealed candidate mutations in SLC45A2 and
G6PC3 (glucose-6-phosphatase 3) as potential causes of
HPS2 in a patient who associated oculocutaneous albinism
with neutropenia.74 Next generation sequencing has also
allowed the rapid identification of a c.597-2 A>T transver-
sion in the intron 7 splice acceptor site of HPS4 leading to
abnormal splicing and a premature stop codon in exon
10.75

In CHS, bleeding is associated with severe immunolog-
ical defects with life-threatening infections and progres-
sive neurological dysfunction if the patient survives to
adulthood.71 The immunodeficiency leads to the develop-
ment of a lymphoproliferative syndrome and an accelerat-
ed phase in approximately 85% of patients. The hallmark
of CHS is the presence of giant inclusion bodies in a vari-
ety of granule-containing cells. The CHS gene (LYST,
lysosomal trafficking regulator) has been cloned and a
series of frameshift and nonsense mutations described that
result in truncated CHS protein and a severe phenotype.
Rare missense mutations can be associated with a milder
form of the disease. LYST is a large protein with distinct
structural domains including ‘BEACH’ and ‘ARM/HEAT’
suggestive as for NEABL2 of a function in membrane
contact interactions and organelle protein trafficking.

Patients in Griscelli syndrome have partial albinism and
silver hair; different subtypes associate neurological
defects and/or severe immunodeficiency with a defective
cytotoxic lymphocyte activity but no obvious bleeding
tendency. Mutations in the genes encoding myosin Va,
Rab27a (a small GTPase), or melanophilin cause 3 sub-
types of Griscelli syndrome. Differential diagnosis with
HPS type II can be difficult, as shown for a child with both
heterozygous Rab27a and homozygous AP3B1 mutations,
bleeding and an impaired secretion-dependent platelet
aggregation.76 Defective platelet secretion (dense and α-
granules) despite normal granule cargo in familial hemo-
phagocytic lymphohistiocytosis (FHL) types 3, 4 and 5 are
caused by defects in Munc (mammalian uncoordinated)
13-4, syntaxin-11 and the Munc18b coding genes;
Munc18b may be a key regulator of syntaxin-11 in platelet
exocytosis.77-79 This review highlights how platelets use
similar secretory machinery as cytotoxic T lymphocytes
and NK (natural killer) cells.

Glanzmann thrombasthenia 

Glanzmann thrombasthenia (GT) is the classic inherited
platelet disorder; platelets fail to aggregate to all physio-
logical agonists due to quantitative or qualitative defects
of the integrin, αIIbβ3. In normal hemostasis, αIIbβ3 on
activated platelets binds Fg and other adhesive proteins
that link platelets together during aggregation. Other man-
ifestations of GT include a defective platelet spreading on
collagen, while clot retraction and αIIbβ3-dependent Fg
storage in α-granules are variably defective depending on
the nature of the mutation. GT has been comprehensively
dealt with in two recent reviews and only essential details
will be repeated here.28,29

Direct sequencing of the ITGA2B and ITGB3 genes
allows the detection of most mutations in GT which has
autosomal recessive inheritance, so compound heterozy-
gosity is common except for certain ethnic groups, such as
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the French Manouche gypsies in whom consanguinity is
widespread.80 Genetic defects occur across both genes that
are closely located at 17q21-23. Nonsense mutations,
splice site mutations resulting in frameshifts and missense
mutations are all common. They mostly prevent subunit
biosynthesis in MKs or inhibit transport of pro-αIIbβ3
complexes from the ER to the Golgi apparatus and/or their
export to the cell surface. Particularly abundant are muta-
tions within the β-propeller region of αIIb and within the
epithelial growth factor (EGF)-domains of β3 (for specific
examples see Mansour et al. and Mor-Cohen et al.81,82).
Analysis of GT is now advanced and population studies
have started.83,84 β3 also forms part of the vitronectin
receptor (αvβ3) expressed in many tissues. It has but a
minor presence in platelets. In GT, αvβ3 is absent if the
genetic lesion affects β3 production. Yet patients with β3
gene defects do not have a distinctive phenotype because,
unlike β3-/- mouse models, clear evidence for abnormal
vessel development, bone thickening, increased rates of
abortion or of tumor development has not been forthcom-
ing.28 An unusually high number of reports of deep vein
thrombosis leaves the question open as to whether it may
be an unexpected risk factor in GT.85 In variant GT,
platelets express non-functional integrin. Mostly the muta-
tions affect ITGB3 and amino acid substitutions (e.g.
p.Asp145Tyr or p.Arg240Gln or Trp – formerly
Asp119Tyr and Arg214Gln/Trp) affecting MIDAS (metal
ion dependent adhesion site), ADMIDAS (adjacent to
MIDAS) or SyMBS (synergistic metal ion binding site)
domains; these helped identify ligand binding sites in the
activated integrin.28,29 Likewise, a p.Ser778Pro (previously
Ser752Pro) substitution in the cytoplasmic domain of  β3,
or stop codons leading to β3 truncated within the cytoplas-
mic tail, have helped identify domains involved in ‘inside-
out’ signaling and activation of αIIbβ3 through the bind-
ing of kindlin-3 and talin.28,29 A p.Cys586Arg (formerly
Cys560Arg) in β3 unexpectedly led to platelets expressing
residual surface αIIbβ3 able to spontaneously bind Fg; a
situation recalling platelet-type VWD where normal VWF
multimers spontaneously bind to mutated GPIbαβ and
block its function.4,9 In fact, mutations within many of the
disulfides in the EGF domains of β3 both severely inter-
fere with αIIbβ3 expression and lead to partially activated
integrin.82 Correction of dog GT by lentivirus-mediated
gene therapy suggests a promising strategy for the future
treatment of patients with classic GT.86 

An interesting new variant-type in GT was identified by
mutations within ITGA2B and ITGB3, which, while affect-
ing αIIbβ3 function also lead to moderate thrombocytope-
nia and platelet anisocytosis.28,30 These mostly affect
either cytoplasmic domains of both αIIb and β3 and espe-
cially the salt-bridge linking αIIb p.Arg1026 (previously
Arg995) and β3 p.Asp749 (formerly Asp723) or mem-
brane proximal residues in extracellular domains and also
favor αIIbβ3 activation.30,31 One recent study has shown
how such mutations modify MK interaction with matrix
proteins and interfere with proplatelet production.31

Also to be mentioned is leukocyte adhesion deficiency-
III (LAD-III) syndrome in which life-threatening bleeding
is associated with a high susceptibility for infections and
poor wound healing in early life. The complex clinical fea-
tures result from mutations in the kindlin-3 coding gene
(FERMT3) that abolish ‘inside-out’ integrin activation in
platelets, white blood and endothelial cells.87-89

Scott syndrome
The Scott syndrome is a rare inherited disorder caused

by defective scrambling of phospholipids on blood cells.90

It manifests by a decreased fibrin formation during shear-
dependent adhesion of platelets to subendothelium. Scott
platelets when activated are unable to translocate phos-
phatidylserine (PS) to the outer phospholipid leaflet of the
membrane bilayer; factors Va and Xa fail to bind leading
to a decreased capacity of platelets to convert prothrombin
into thrombin. This lack of thrombin generation is suffi-
cient to induce a bleeding syndrome. Physiological stimuli
that induce PS translocation include a thrombin and colla-
gen mixture and complement C5b-9. Microvesiculation, a
process that can be quantified by flow cytometry using
FITC-annexin V, accompanies PS expression and is also
defective in Scott syndrome. The disease is given by muta-
tions in TMEM16F (also known as ANO6, anoctamin 6)
that encodes transmembrane protein 16F, a Ca2+-activated
channel essential for Ca2+-dependent PS exposure.90-92

Familial thrombocytopenias 

Inherited defects of platelet production constitute a het-
erogeneous group of diseases often autosomal dominant in
inheritance.1-4,12 In Tables 1 and 2 we group the disorders
according to the presence or not of platelet size changes,
in the text we discuss them in terms of their genotype.
Some disorders associate low circulating platelet counts
with well characterized platelet functional and morpholog-
ical abnormalities and have been dealt with in preceding
sections. In others, while platelet dysfunction is also often
present, it has historically been considered as secondary to
the low platelet count or little studied.

Defects in transcription factors

An altered megakaryopoiesis resulting from transcrip-
tion factor defects is a common cause of familial thrombo-
cytopenias (FT). Abnormalities can extend to other mar-
row cells and interfere with development, e.g. the associa-
tion of pancytopenia and radio-ulnar synostosis (RUS)
attributed to homeobox gene (HOXA11) mutations.2 In the
Paris-Trousseau syndrome, a decreased platelet produc-
tion and a mild hemorrhagic tendency are associated most-
ly with de novo deletions at 11q23.3 and a heterozygous
loss of FLI1 (Friend leukemia virus integration 1).2,12

Platelets are often large and feature giant α-granules
formed by fusion after MK maturation. The phenotype is
given by pathologically low Fli1 protein levels during
what, in normal conditions, is transient monoallelic FLI1
expression at an early stage of MK differentiation.14 The
result is a subpopulation of immature MKs that fail to
reach the platelet production stage. Fli1 forms a complex
with RUNX1 to regulate megakaryopoiesis. A characteris-
tic of deficiencies of both genes is a persistance of
MYH10 protein in platelets.15 Paris-Trousseau is a variant
of Jacobsen’s syndrome in which patients have congenital
heart defects, trigonocephaly, facial dysmorphism, mental
retardation and multiple organ malfunction. 

X-linked familial thrombocytopenia (XLT) or XLT with
thalassemia (XLTT) result from mutations in the GATA1
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(GATA-binding protein 1 or globin transcription factor 1)
gene.2,13 The often enlarged platelets aggregate poorly to
collagen. GATA-1 protein has domains that account for
sequence-specific DNA binding and for the interaction of
its co-factor, FOG-1 (Friend of GATA-1 protein). It co-
ordinates hematopoietic cell differentiation by activating
lineage specific genes. Erythrocytes are abnormal in size
and shape. XLT without anemia is given by amino acid
substitutions in GATA-1 (e.g. p.Asp218Tyr, p.Gly208Ser,
p.Val205Met) that affect its interaction with FOG-1 but
which allow GATA-1 binding to DNA. In contrast, a
recurrent Arg216Gln substitution in the N-terminal finger
of GATA-1 that destabilizes binding to DNA without
affecting its interaction with FOG-1 gives red cell abnor-
malities and XLTT.13 A low transcription of GATA-1 target
genes, GPIBB and GP9 is a characteristic of GATA-1
defects and platelets may have few α-granules. GATA-1
mutations are also seen in Down syndrome and related
disorders.

Autosomal dominant mutations in the gene encoding the
hematopoietic transcription factor RUNX1 (Runt related
transcription factor) (previously known as CBFA2,
AML1) give rise to haploinsufficiency and FT with a pre-
disposition to hematological malignancies.2,36 Inactivating
(p. Arg139Ala) or dominant-negative p.Arg174Phe muta-
tions interfering with DNA binding by RUNX1, lead to an
arrest of MK maturation and an expanded population of
progenitor cells. RUNX1 is a master regulatory gene in
hematopoiesis. The propensity to develop leukemia is
accompanied by downregulation of NR4A3, a gene impli-
cated in leukemia development; a process facilitated by
the expanded population of progenitor cells susceptible to
be hit by secondary pro-leukemic genetic events.36

Impaired platelet aggregation and secretion are associated
with a deficiency of protein kinase C-q(PKC-q) and defec-
tive phosphorylation of pleckstrin and myosin light
chain.37 Platelet expression profiling revealed a decreased
expression of the genes encoding platelet 12-lipoxygenase
(ALOX12) and myosin regulatory light chain polypeptide
(MYL9) among other transcriptional targets of
RUNX1.37,38 

Defects in megakaryocyte production

In congenital amegakaryocytic thrombocytopenia
(CAMT), severe thrombocytopenia at birth rapidly devel-
ops into a pancytopenia in most affected children. Patients
have low numbers of MKs in their marrow; thrombopoi-
etin (TPO) is unable to fulfill its normal thrombopoietic
role due to homozygous or compound heterozygous muta-
tions in the MPL (myeloproliferative leukemia virus onco-
gene) gene encoding the TPO receptor (c-MPL).41 Only
rarely are skeletal and central nervous system anomalies
present.93 Patients with early development into aplasia are
more likely to have frameshift or nonsense mutations and
a complete loss of c-MPL. Missense mutations leading to
residual c-MPL result in a slower progression of the dis-
ease. Mutations in MPL giving rise to an activated form of
c-MPL are seen in familial essential thrombocythemia
with an overproduction of platelets.2,4,41

Thrombocytopenia with absent radii (TAR syndrome)

associates CAMT-like thrombocytopenia and osteodysge-
nesis with shortened (or absent) forearms due to bilateral
radial aplasia. Although other skeletal anomalies can be
present, hands and fingers are unaffected. Serum TPO lev-
els are elevated, and platelets of TAR patients fail to
respond to recombinant TPO when added in combination
with suboptimal amounts of platelet activators. A deletion
at 1q21.1 was first associated with the disease.33 Albers et
al. then reported that TAR was given by compound inher-
itance of a null allele and one of two low-frequency SNPs
in the regulatory regions of RBM8A encoding the Y14 sub-
unit of the exon-junction complex (EJC) essential for
RNA processing.34 Platelet function can also be affected
with an unexplained restoration of TPO signaling as
patients age.35

Defects of the cytoskeleton and thrombocy-
topenia with increased platelet size 

Macrothrombocytopenia occurs in MYH9-related dis-
ease (MYH9-RD; myosin heavy chain 9-related disease)
affecting non-muscle myosin heavy-chain IIA (or myosin-
9) (Table 1).2,23 Platelets can be truly giant and ultrastruc-
tural modifications are seen in MKs taken from the mar-
row. Phenotypic heterogeneity extends to variable combi-
nations of Döhle bodies in neutrophils, nephritis, hearing
loss and cataracts. Diagnostic immunofluorescence pat-
terns are seen for myosin-9 aggregates in leukocytes.
Mutations in the head domain (affecting Ca2+-ATPase
activity) favor deafness and renal disease in later life,
while those affecting the rod (and myosin-IIA assembly)
may only have a hematologic consequence. Mutation
hotspots characterize the disease. Haploinsufficiency and
a dominant-negative effect can influence phenotype
although other genetic or environmental factors can also
intervene even in the same family. Decreased myosin light
chain (MLC) phosphorylation and myosin-9 function in
MKs slow MK migration towards the sinusoids as well as
blurring the signaling mechanism for proplatelet forma-
tion.24 Blebbistatin, an inhibitor of myosin-9 and inhibitors
of Rho-associated kinase-1 (ROCK1) or MLC kinase res-
cue proplatelet formation in MKs in culture suggesting
that treatment reducing myosin contractility, strangely
augmented in MYH9-platelets, may offer therapeutic
potential in MYH9-RD (N Debili et al., submitted manu-
script, 2013).

X-linked mutations in FLNA encoding filamin A give a
variety of developmental defects with abnormal neuronal
migration resulting in periventricular nodular heterotopia
(PNH). Filamin A is an attachment site for GPIbα in the
platelet cytoskeleton (see section on BSS above) and we
have described that FLNA mutations can also give rise to
bleeding and macrothrombocytopenia, including in a
patient originally diagnosed as having ITP.25 Significantly,
FLNA mutation heterogeneity was associated with differ-
ent functional impacts especially with regard to thrombus
growth under flow.26 TBB1 mutations affecting β1-tubulin
are also associated with thrombocytopenia and platelet
anisocytosis (variable size) with enlarged forms having
defects of microtubule assembly.27



Thrombocytopenia with small or normal-sized
platelets 

Wiskott-Aldrich syndrome (WAS) is an X-linked reces-
sive disease combining thrombocytopenia and small
platelets with eczema, recurrent infections, an increased
risk for autoimmunity and malignancy.2,42,43 A milder form
without immune problems is known as hereditary X-
linked thrombocytopenia (XLT). The small platelets
aggregate poorly and have a low granule number. T lym-
phocytes show defective function. The WAS gene is com-
posed of 12 exons, genetic defects result either in the
decreased expression of WASP (WAS protein) or its
absence, the latter being predictive of a more severe dis-
ease.43 Missense mutations affecting the N-terminal Ena
Vasp homology 1 domains predominate in hereditary XLT
probably because of residual protein expression.44

Deficiency in the WASP-interacting protein (WIP) also
results in a block of WASP expression.94 WASP is a key
regulator of actin polymerization in hematopoietic cells; it
is involved in signal transduction with tyrosine phospho-
rylation sites and adapter protein function. WASP induces
premature proplatelet formation in the marrow where a
lack of actin-rich podosomes retards MK migration to the
vascular sinus. Mutations in WAS giving spontaneously
activated WASP with increased actin polymerizing activi-
ty are responsible for an X-linked form of neutropenia.42

One of the first disorders to be treated with hematopoietic
stem cell transplantation, WAS is now the subject of sev-
eral phase I/II gene therapy trials.95

ANKRD26-related thrombocytopenia (thrombocytope-
nia 2, THC2) is an autosomal dominant disease with most-
ly a moderate fall in platelet count, normal-sized platelets
and mild bleeding.12,51 Bone marrow examination revealed
an evident dysmegakaryopoiesis. Platelets are often defi-
cient in α2β1 and have a reduced number of α-granules. A
high incidence of leukemia is suspected. Recently discov-
ered features are ubiquitin/proteasome-rich particulate
cytoplasmic structures (PaCSs) in both platelets and MKs;
their presence suggests a link with oncogenesis.40 

Conclusions

We have provided an up-to-date assessment of the
genetics of inherited disorders of platelets and MKs. Due
to space restrictions, single case reports have mostly been
omitted, as have historical reports with no recent update.
We have also minimized discussion of disorders arising
indirectly, such as the macrothrombocytopenia arising
rapidly after birth in the lipid metabolic disorder linked to
an inability to metabolize plant sterols (sitosterolemia) due
to mutations in ABCG5 or ABCG8.12,32 A major question
concerns the true abundance of inherited diseases with a
low platelet count. Many patients with FTs are first falsely
diagnosed as immune thrombocytopenic purpura (ITP).96

Even now a high percentage of patients with a low platelet
count do not fall into the categories covered by Tables 1
and 2 suggesting that other molecular causes are frequent.
It may well be that ITP will require a new classification
and that patients with MK gene mutations account for a
significant number of cases, with perhaps the secondary
formation of autoimmune antibodies aggravating the
thrombocytopenia. Whole exome sequencing and other

new generation technologies will help fill in the missing
pieces of the puzzle.16,34,46-48 
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Inhibitor development in mild hemophilia A

What is mild hemophilia and how is
it treated? 

Hemophilia A is an inherited clotting disor-
der that occurs in 1:4000 men, caused by a
deficiency of clotting factor VIII (FVIII), due
to molecular genetic defects in the F8 gene.1;2

The severity of bleeding symptoms in patients
with hemophilia depends on the residual, func-
tional FVIII plasma concentration, which is
expressed in international units (IU). The
FVIII plasma concentration varies between
0.50 and 1.50 IU/mL in healthy individuals.
Patients with hemophilia are classified into
three severity groups according to the residual
FVIII plasma concentration: severe (<0.01
IU/mL), moderate (0.02-0.05 IU/mL) and mild
(0.06-0.40 IU/mL). Patients with severe hemo-
philia may bleed spontaneously in their joints,
muscles or other locations without preceding
trauma.  Spontaneous bleeding is less likely in
moderate hemophilia and increasingly unusual
in mild hemophilia. In patients with moderate
and mild hemophilia, excessive bleeding
rather takes place after minor trauma, dental or
surgical procedures. 

Bleeding is treated by intravenous adminis-
tration of FVIII concentrates.3 FVIII concen-
trates are dosed in IU/kg body weight; 1.0
IU/kg body weight of factor VIII concentrate
increases the plasma concentration by about
0.02 IU/mL.  In case of a life threatening

bleed, the target plasma concentration is 1.00
IU/mL. This can be achieved by infusion of 50
IU/kg FVIII concentrate. The short half-life of
FVIII (6-12 hours) requires repeated adminis-
tration of FVIII concentrate to maintain plas-
ma concentrations of FVIII above the hemo-
static threshold of 0.40-0.50 IU/mL. For joint
bleeds, one or two infusions are often enough,
whereas intracranial bleeds may need treat-
ment for up to two weeks.

In mild hemophilia A (MHA) small bleeds
may be managed by infusion of DDAVP
(desmopressin).4;5 This analog of the physio-
logical pituitary hormone vasopressin increas-
es the FVIII plasma concentration 3-5 fold by
releasing FVIII from an unidentified
releasable pool and von Willebrand Factor
(VWF) from the Weibel-Palade bodies where
it is stored in endothelial cells. VWF serves as
a carrier protein for FVIII in plasma and pro-
tects it from proteolytic degradation.6 The
effect of DDAVP decreases after 2-3 consecu-
tive administrations, due to depletion of stor-
age pools for VWF in the endothelium. 

In patients with severe hemophilia, DDAVP
cannot be used since there is none or extreme-
ly little endogenous FVIII synthesis. Patients
with severe hemophilia A need frequent treat-
ment with FVIII concentrates. They receive
regular prophylactic treatment to prevent joint
bleedings, as recurrent joint bleeds may lead to
arthropathy, i.e. painful joint deformation with
limited function, especially located in elbows,

Bleeding disorders 

The most challenging complication in the treatment of hemophilia is the formation of inhibiting
antibodies (inhibitors). In contrast to severe hemophilia A, many patients with mild hemophilia A
(MHA) will have a lifelong risk of new inhibitor formation. Inhibitors may change the clinical pheno-
type dramatically, as the inhibitor frequently cross-reacts with the patient’s endogenous FVIII, reduc-
ing the endogenous FVIII plasma levels below 0.01 IU/mL. Specific F8 missense mutations predispose
for inhibitor development. Inhibitors are frequently provoked by intensive treatment with therapeutic
FVIII concentrates (more than 5 consecutive exposure days). Specific immunological characteristics,
associated with the underlying F8 missense mutation, have been demonstrated in experimental stud-
ies. The lifelong inhibitor risk in MHA requires lifelong vigilance by the hemophilia team to minimize
risk of inhibitor formation and to ensure early detection to optimize subsequent management. 

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the morbidity and risk factor for inhibitors in mild hemophilia A;
- describe the immunological characteristics of inhibitors in mild hemophilia A;
- discuss treatment options for mild hemophilia inhibitor patients, both for the treatment of bleeding

episodes and for inhibitor eradication.
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knees and ankles.7 By prophylactic administration of
FVIII concentrate 3-4 times per week, FVIII plasma levels
are kept above 0.01 IU/mL. This is generally sufficient to
prevent spontaneous joint hemorrhage. 

Incidence of inhibitors in mild hemophilia 

The most challenging complication in the treatment of
hemophilia is the formation of inhibiting antibodies
(inhibitors) directed against active parts of the FVIII pro-
tein. FVIII concentrates are no longer effective in patients
with inhibitors, as the administered FVIII is swiftly inac-
tivated (neutralized) by the circulating inhibitors.
Bypassing therapies such as recombinant FVIIa
(Novoseven®, NovoNordisk) or activated prothrombin
complex concentrate (FEIBA®, Baxter) are necessary to
control bleeds in these patients, with accompanying clini-
cal challenges and financial expense. The management of
bleeding in patients with inhibitors will be discussed fur-
ther on in this article. The cumulative incidence of
inhibitor development is approximately 30% in severe
hemophilia A8 and historically reported at lower inci-
dences of 3%-13% in patients with moderate or mild
hemophilia A.9-12 As inhibitor development is elicited by
exposure to therapeutic FVIII concentrates, the risk
increases with every new exposure day (ED). Therefore,
the incidence of inhibitors in a specific population is
dependent on the cumulative number of EDs that these
patients have received. From studies in severe hemophilia
A, it has become clear that the risk of inhibitor develop-
ment is highest during the first 10-20 ED and decreases to
less than 1% after 50 ED.13 In contrast, data on MHA
inhibitor rates have been derived from cross-sectional
studies and do not take the cumulative number of ED into
account. Moreover, information about FVIII concentrate
exposure in MHA patients is especially important as they
receive factor VIII replacement therapy on an irregular,
‘on demand’ basis and much less frequently than severe
hemophilia A patients, as their bleeding phenotypes are
milder. Some adult patients with MHA may still have had
less than 50 EDs to therapeutic factor VIII and be at risk
of developing inhibitors, in contrast to patients with severe
hemophilia who generally reach 50 ED within the first
years of life. 

In order to account for EDs in the analysis of incidence
and risk factors for inhibitor development in MHA, the
INSIGHT study (International Study on etiology of
inhibitors in patients with moderate/mild hemophilia A:
influences of Immuno Genetic and Hemophilia Treatment
factors) was initiated. This observational study included
2711 moderate and MHA patients (FVIII 0.02-0.40
IU/mL) from 34 hemophilia treatment centers in Europe
and Australia who received at least one exposure to factor
VIII concentrate between 1980 and 2011. The risk of
inhibitor development was calculated adjusting for the
number of ED and appeared to be 6.7% (95%CI: 4.5-8.9)
at 50ED and  further increased to 13.3% (95%CI: 9.6-
17.0) at 100 ED, with greater risk for particular
genotypes.14 Thus, in contrast to severe hemophilia A, the
risk of inhibitor development in MHA does not seem to
decrease below 1% after 50 ED.

Presenting symptoms and morbidity of
inhibitors in mild hemophilia

In the first case series of 26 moderate and MHA
inhibitor patients described by Hay et al., the median age
at inhibitor development was 33 years and inhibitors were
detected after a median of 5.5 bleeding episodes.15 In the
INSIGHT cohort, inhibitors developed at a median age of
37 years (interquartile range, IQR, 15-60) after a median
of 29 ED (IQR 14-70).16 An even higher median age at
inhibitor development of 66 years was reported in a recent
study of 14 MHA inhibitor patients from a single center.17

In patients with MHA, inhibitor development may
change the clinical phenotype dramatically, as the
inhibitor frequently cross-reacts with the patient’s endoge-
nous FVIII, reducing the endogenous FVIII plasma levels
below 0.01 IU/mL. This occurred in 23 of the 26 MHA
inhibitor patients described by Hay and was associated
with spontaneous bleeding.15 The bleeding pattern was
similar to acquired hemophilia in 17 patients, often severe
and caused deaths in 2 patients due to uncontrollable GI
and retroperitoneal hemorrhage. Extensive mucocuta-
neous bleeding was common, whereas joint bleeding
occurred relatively rarely. A reduction in FVIII plasma
levels was confirmed in the unselected cohort of MHA
inhibitor patients from in the INSIGHT study. In 58 of 101
(57%) inhibitor patients, FVIII plasma level fell below
0.01 IU/mL.16 In those patients who maintain their
endogenous FVIII level despite the presence of an
inhibitor, the inhibitor seems to be exclusively directed
against the exogenous therapeutic FVIII concentrate. 

What causes inhibitors in mild hemophilia?

Risk factors for inhibitor development have been exten-
sively studied in severe hemophilia A and may be environ-
mental or genetic.18-20 Most studies on risk factors for
inhibitors were conducted in severe hemophilia A patients.
These studies indicated the following host-related factors
to increase the risk of inhibitor development in severe
hemophilia A: null mutations and large deletions in the F8
gene, non-Caucasian ethnicity, positive family history for
inhibitor development.19-24 Treatment-related factors
reported to increase the risk of inhibitor development in
severe hemophilia A are: intensive exposure (5 or more
EDs) to FVIII concentrates at first treatment and surgery
combined with an intensive first exposure (> 4 ED).23;25-27

Clinical risk factors 
Relatively few studies have addressed risk factors for

inhibitor development in MHA. Most of our knowledge
on risk factors for inhibitor development in patients with
MHA is derived from small, uncontrolled observational
studies or case series. Inhibitors in patients with MHA fre-
quently arise following a period of intensive treatment
when therapeutic FVIII concentrates are given for several
consecutive days, e.g. for surgery. In the largest case series
of MHA inhibitor patients reported up to now, 16 of 26
inhibitors arose following intensive treatment.15 In a
Canadian study, four of seven inhibitors arose within six
weeks of FVIII administration for at least six consecutive
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days.28 In a recent single center cohort study of 14 MHA
inhibitor patients, the inhibitor arose in 13 patients follow-
ing intensive treatment (at least 5 consecutive ED).17

Similarly, in a Dutch cohort, inhibitor development was
preceded by intensive treatment with therapeutic FVIII
concentrates in 7 of 10 inhibitor patients.29 The latter
cohort study included 138 MHA patients of whom 41
received perioperative FVIII replacement. Surgery as the
reason for first intensive exposure was associated with a
186-fold (95%CI: 25-1403) increased risk of inhibitor
development in the three months after the surgical proce-
dure as compared to any other 3-month period during the
observation period of the study. This extremely high rela-
tive risk is explained by the low exposure to therapeutic
factor concentrates during the time period to which the
post-operative period of three months was compared.
Patients with MHA do not need frequent therapeutic FVIII
concentrates and months may pass without any exposure
to FVIII concentrate. Thus, the analysis of clinical risk
factors in MHA inhibitor development requires a careful
methodological approach. The difference between the
groups to be compared should be carefully defined (e.g.
intensive FVIII treatment for surgery vs. FVIII treatment
for other reasons), and efforts should be made to compare
patients with a similar likelihood of developing inhibitors.
Especially the number of previous FVIII exposure days
should be as similar as possible. In a case-control study of
36 inhibitor cases and 62 controls, half of the inhibitor
cases (18 of 36; 50%) and 18% (11 of 62) of the controls
received intensive FVIII treatment (defined as 6 or more
consecutive days of FVIII replacement) during the prior
year.30 Intensive treatment in the prior year was only asso-
ciated with inhibitor development in those 30 years of age
or older (OR 12.6; 95%CI: 2.8-57.8), when multivariate
analysis was adjusted for less than 50 previous days of
FVIII, the p.Arg612Cys genotype, Caucasian ethnicity
and baseline FVIII from 0.01 to less than 0.02 IU/mL. The
association between surgery and inhibitor development
could not be further analyzed because information on sur-
gery was only available in subjects who received intensive
treatment. The authors observed an interaction between
intensive treatment and age that persisted after adjustment
for a cumulative lifetime exposure to FVIII of less than 50
days. Therefore, the authors concluded that the impact of
intensive treatment in adults does not appear to be the
result of less FVIII exposure prior to adulthood. This
seems to contrast with the findings of Mauser-Bunschoten
et al. who found in the above-mentioned cohort study of
14 MHA inhibitor patients that age at first treatment (43
vs. 6.7 years) and age at intensive treatment (53 vs. 21
years) were significantly higher in the inhibitor patients
than in the patients who did not develop an inhibitor.17 The
interesting observations of these studies should be inter-
preted with caution, as not all potential confounders may
have been addressed. The most important of these is prior
exposure to FVIII. In the study by Kempton et al., this was
accounted for by classifying patients into two categories:
those with and without a cumulative lifetime exposure to
FVIII of less than 50 days. However, this classification
does not take into account differences that may exist with-
in these groups. Both among patients with fewer than 50
ED and among patients with more than 50 ED there
remains substantial variation in the numbers of EDs and
consequently the likelihood to develop inhibitors. Ideally,

control patients should be matched to the case patients
based on their cumulative number of EDs. Without this
matching on EDs, the study result may be confounded by
differences in exposure histories. 

The effect of continuous infusion on inhibitor develop-
ment has been the subject of intense debate, as inhibitors
frequently occur following intensive treatment adminis-
tered by continuous infusion. In the Canadian study men-
tioned above, four inhibitors occurred after continuous
infusion.28 In the Dutch cohort study, an adjusted RR of 13
(95%CI: 1.9-86) was calculated for the three months fol-
lowing surgery covered by continuous infusion.29

However, as stated above, this was inadvertently com-
pared to periods in which exposure to FVIII concentrates
may have been very low. In the studies by Kempton and
Mauser-Bunschoten, no significant association was found
between continuous infusion and inhibitor develop-
ment.17;30 A large European cohort study analyzing a total
of 1079 continuous infusions given peri-operatively or for
major bleeds in 742 patients with severe, moderate or mild
hemophilia A, confirmed that the absolute inhibitor risk of
continuous infusion is limited, as only 9 patients (1.2%)
developed an inhibitor.31 In a cohort study of 46 consecu-
tive surgical procedures in MHA patients, of whom 57%
received continuous infusion, the inhibitor incidence was
4% (95%CI: 0.5-14.8). Both inhibitors that occurred in
this study were of low titer (< 5 BU/mL).32

Genetic risk factors
Inhibitor development in MHA is associated with a pos-

itive family history for inhibitor development, pointing at
a genetic predisposition for this. The genetic susceptibility
may be largely due to the underlying F8 genotype. MHA
is generally caused by missense mutations of which there
are over 500 reported causative mutations on the
Haemophilia A database (http://hadb.org.uk/).33 Missense
mutations confer a low risk of inhibitor development in
comparison to null mutations or large deletions of the F8
gene, which are associated with a complete absence of
FVIII protein. In patients with missense mutations, the
presence of circulating endogenous, albeit aberrant FVIII
protein maintains a state of immunological tolerance
towards FVIII. In contrast, in patients without any circu-
lating endogenous F VIII, the complete therapeutic FVIII
protein that is administered will be seen as ‘foreign’ by the
immune system. However, there are certain missense
mutations that predispose to inhibitor development in
MHA. An overview of reported associations between spe-
cific missense mutations and inhibitor development is
available from the Haemophilia A Mutation Structure, Test
and Resource Site (HAMSTeRs) database33

(http://hadb.org.uk/) or on the CDC Hemophilia A
Mutation Project (CHAMP) database (http://www.
cdc.gov/ncbddd/hemophilia/champs.html).34 Missense
mutations associated with inhibitor development are clus-
tered in the A2 domain and the C1-C2 domains. Mutations
in the C1-C2 domains may lead to changes in the 3-dimen-
sional structure of FVIII, influencing  binding to VWF and
phospholipid membranes. The change in 3-dimensional
structure may also affect the antigenic characteristics of
the endogenous FVIII protein. Specific missense muta-
tions that are associated with inhibitors in MHA are:
p.Arg612Cys, p.Tyr2124Cys, p.Arg2169Cys,
p.Trp2248Cys, p.Pro2319Leu.19 Amino acid numbering
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for point mutations is given in the format recommended
by the Human Genome Variation Society, HGVS
(http://www.hgvs.org), as this format is now recognized as
the standard way to report mutations. HGVS universally
uses the first A of the initiation ATG codon to start amino
acid numbering; however, most original FVIII studies
started numbering from the beginning of the mature
processed protein. To convert to the classical-type num-
bering found in the literature, subtract 19 from the HGVS
number (e.g. p.Arg612Cys used to be referred to as
Arg593Cys).35 Not only does the position of the missense
mutation determine inhibitor risk, but the risk is also influ-
enced by the type of substitution. Amino acids can be
divided into 4 classes according to their chemico-physical
properties: small/hydrophobic, neutral, acidic and basic. A
recent study in 36 inhibitors that occurred in 720 patients
with missense mutations (46% mild and 22% moderate
hemophilia A) found that the risk of inhibitor formation is
significantly higher if the substituted amino acid in FVIII
belongs to another physical-chemical class than the origi-
nal residue.36

Immunological characteristics of antibody 
formation in MHA patients

In patients with severe hemophilia, the characteristics of
inhibitory antibodies have been extensively
characterized.37;38 Immuno-dominant B-cell epitopes are
located in specific regions of the FVIII protein: the A2
domain, A3 and C2 domain.39-42 In contrast to patients with
severe hemophilia A, the epitopes of inhibitory antibodies
in patients with MHA may also be associated with the mis-
sense mutation underlying MHA. An early study by
Santagostino and co-workers reported a discrepant
response to DDAVP and therapeutic FVIII concentrate in
2 MHA patients carrying the p.Arg2169His mutation.43

Despite the presence of the inhibitor, a rise in endogenous
FVIII was observed after DDAVP administration, whereas
plasma FVIII levels did not increase in response to infused
therapeutic FVIII concentrate. This suggested that anti-
FVIII antibodies bound to infused wild-type FVIII, but not
to the patient’s endogenously synthesized FVIII.
Characterization of anti-FVIII antibodies in a patient with
the missense mutation p.Arg612Cys, located in the A2
domain, unambiguously demonstrated this phenomenon:
anti-FVIII antibodies bound specifically to wild-type
recombinant A2 domain, but not to a recombinant A2
domain containing the p.Arg612Cys substitution.44

Similarly, anti-FVIII antibodies from patients with the
p.Arg2169His mutation were shown to bind exclusively to
wild-type p.Arg2169-FVIII and not to p.His2169-
FVIII.45;46 Together these findings support the concept that
the immunological response to FVIII in MHA is linked to
the underlying F8 missense mutation.  

The immunological knowledge on the development of
tolerance to endogenous or ‘self’ proteins provides an
explanation for the differential response to wild-type and
endogenous FVIII in MHA patients with inhibitors. CD4+

T-cell responses play a central role in the regulation of the
immune response through their ability to support the gen-
eration of B cells producing high affinity antibodies. The
repertoire of circulating T cells is shaped by positive and
negative selection in the thymus.47 Positive selection

processes control the propensity of T cells to recognize
foreign antigen-derived peptides in the context of MHC
class I or II. Negative selection ensures that T cells that
bind with high affinity to peptides derived from self-anti-
gens are efficiently eliminated in the thymus. 47 In severe
hemophilia A, potential FVIII-reactive CD4+ T cells are
not efficiently eliminated due to the absence of FVIII.
Exposure to FVIII concentrate may then readily elicit
CD4+ T-cell responses, explaining the high frequency of
FVIII inhibitors in patients with severe hemophilia A. In
contrast, in patients with MHA, the endogenously
expressed aberrant FVIII protein is expected to promote
elimination of potential FVIII-reactive CD4+ T cells. This
tolerance is only established for peptides derived from the
endogenously expressed FVIII protein and not for
sequence-mismatched wild-type FVIII. Therefore, CD4+

T-cell responses directed towards peptides that do not con-
tain the amino acid substitutions dictated by the underly-
ing missense mutation will provoke an immune response
after exposure to infused ‘wild-type’ FVIII. The proof of
this concept was demonstrated in a pioneering study by
Jacquemin and co-workers.48 From an MHA inhibitor
patient with the p.Arg2169His substitution, they isolated
three FVIII specific CD4+ T-cell clones that were directed
towards a synthetic peptide encompassing p.Arg2169.
Thus, a CD4+ T-cell response directed towards a single
amino acid mismatch with endogenously expressed FVIII
can provoke a CD4+ T-cell response in patients with MHA.
Subsequent analyses of CD4+ T-cell responses in patients
with p.Arg612Cys and p.Ala2220Pro substitutions have
confirmed that CD4+ T-cell responses in MHA patients are
directed towards wild-type factor VIII-derived peptides
containing a single amino acid mismatch with endoge-
nously expressed FVIII (Figure 1).49-51

Interestingly, synthetic p.Arg612, p.Arg2169 and
p.Ala2220-containing peptides can bind to multiple MHC
class II molecules,48-51 suggesting that inhibitor develop-
ment in mild hemophilia A is not strictly dependent on
HLA class II profile. Indeed, a study in a small group of
patients with the p.Arg612Cys mutation did not yield a
clear association with a particular MHC class II allele.52

Future studies using large numbers of patients are needed
to further substantiate these findings but our current data
suggest that at least for patients with the p.Arg612Cys,
p.Arg2169His and p.Ala2220Pro mutations inhibitor for-
mation is unlikely to be strongly linked to HLA class II
profile. 

Further studies are needed to obtain greater insight into
genetic risk factors and immunological mechanisms lead-
ing to inhibitor development in MHA. The following crit-
ical questions need to be addressed. Which specific F8
missense mutations predispose to inhibitor development?
By what mechanism do patients with these missense muta-
tions confer an increased susceptibility for inhibitor devel-
opment? Why does a minority of patients develop antibod-
ies that do not cross-react with their endogenous FVIII?
Further analyses need to confirm whether restricted CD4+

T-cell responses to mismatched FVIII are a common path-
ogenic mechanism for inhibitor formation in MHA. 

Prevention of inhibitors

Treatment intent in MHA should primarily aim at secur-
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ing hemostasis and, secondly, at minimizing risk of
inhibitor formation if possible. The majority of treatment
episodes are likely to be ‘on demand’ in response to trau-
ma or for a surgical procedure. In addition to the type of
injury or surgery, the personal and family history of the
patient should be taken into account when the treatment
regimen is decided on. Particular information is needed on
previous treatment episodes, follow up and timing of
inhibitor screening, and any personal or family history of
inhibitor detection. Knowledge of the causative F8 geno-
type is of increasing interest to pre-emptively identify
those patients with a mutation that carries an increased
inhibitor risk. The recent UKHCDO inhibitor guidelines
advise clinicians to consult existing databases in order to
check if a specific F8 genotype has been reported to be
associated with an inhibitors.21 Recommended frequency
of inhibitor testing is annual in MHA (if they have been
exposed to FVIII), after intensive exposure (>5 EDs), or
after surgery. Patients with MHA and a F8 genotype with

high inhibitor prevalence and/or a family history of
inhibitors should undergo inhibitor testing after all expo-
sures.

In the context of significant trauma or major surgery, par-
ticularly involving the head, the decision to treat with FVIII
concentrate is uncontroversial in the context of a patient
without an inhibitor history, regardless of family history of
inhibitors or F8 genotype. Vigilance is required, however,
for a re-emerging (but previously missed) or de novo
inhibitor, both during the treatment and in a ‘convalescent’
inhibitor screen a number of weeks post exposure.
Prevention of inhibitor development assumes greater signif-
icance in the context of a mild injury or minor surgical
episode in which hemostatic compromise would be neither
life nor limb threatening. As such, treatment with DDAVP
should always be considered, with tranexamic acid used as
an adjunct (except in the context of urogenital bleeding). By
maximizing the availability of endogenous FVIII without
exposure to allogeneic therapeutic FVIII concentrates,
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Figure 1. T-cell responses to mismatched FVIII in MHA. (A) T cells that bind with high affinity to peptides derived of self-
antigens are efficiently eliminated in the thymus. Peptides derived from endogenously expressed FVIII in patients with
MHA are presented on MHC class II on the surface of thymic epithelial cells (TEC). T cells that bind with high affinity to
the presented peptides undergo apoptosis and are eliminated from the T-cell repertoire. MHA patients carrying an
p.Arg612Cys substitution can present a p.Cys612 containing peptide (indicated in green) on MHC class II. T cells reactive
with this peptide are eliminated from the repertoire. (B) Following treatment, peptides derived from the infused exoge-
nous FVIII are presented on the surface of antigen presenting cells (APC). Peptides harboring p.Arg612 (indicated in red)
can be recognized by CD4+ T cells that specifically recognize this p.Arg612 containing peptide in the context of MHC class
II. Subsequent T-cell proliferation provides the initial event in the development of an immune response. The sequence of
the two peptides is shown below the panels. MHC class II binding motifs are depicted in bold. The left peptide is derived
from endogenous FVIII and contains an Cys at position 612 (indicated in green). The right peptide is derived from infused
therapeutic FVIII and contains an Arg at position 612 (indicated in red). A single mismatch between these peptides
results in CD4 T-cell response to the red peptide that originates from infused FVIII. This figure is based on data reported
by James et al.49



DDAVP carries no risk of inhibitor formation. Other hemo-
static adjuncts, e.g. fibrin glue, topical tranexamic acid,
vasoconstrictive local anesthetic agents and fine bore nee-
dles in dental work should also enhance a conservative
approach when appropriate, further minimizing FVIII con-
centrate exposure. In case of musculoskeletal injury, protec-
tion, rest, ice, compression and elevation (PRICE) maneu-
vers should be re-emphasized to the patient as these con-
tribute to optimal recovery, whilst minimizing FVIII con-
centrate use.

How are bleeds in inhibitor patients treated? 

Once inhibitory antibodies are detected, treatment can
be challenging depending on the personal circumstances
of the patient, inhibitor titer and whether the inhibitor
cross-reacts with endogenous FVIII. In general, bleeding
episodes in inhibitor patients can be prevented or treated
with FVIII bypassing agents, such as recombinant FVIIa
(Novoseven®) or activated prothrombin complex concen-
trate (FEIBA®). A recent randomized cross-over trial in 26
inhibitor patients with severe hemophilia A demonstrated
a 61% reduction in hemarthrosis during prophylactic treat-
ment with activated prothrombin complex as compared
with ‘on demand’ therapy.53

Detection of an inhibitor within an ongoing treatment
episode with hemostatic requirement will either need esca-
lation of FVIII concentrate dosing and frequency to over-
come the inhibitory activity in the case of a low titer
inhibitor or conversion to conventional bypassing agent
treatment for higher titer antibodies. The former strategy
risks provoking an anamnestic response and eliciting a
cross-reacting antibody that compromises the patient’s
endogenous baseline FVIII level with a worsening bleed-
ing phenotype that may then persist. For new bleeding
episodes in MHA inhibitor patients, bypassing agents are
the first choice for significant trauma or major surgery. 

More challenging is the situation when hemostatic treat-
ment is needed for significant trauma or major surgery in
an individual with a history of an inhibitor that has
become undetectable since the last treatment episode. If
time allows, the patient should be counseled about the
risks of the various therapeutic options. Indeed, if major
surgery is truly elective, one such option would be not to
proceed with the surgery at all. In an emergency situation,
FVIII concentrate may be used for major bleeding for its
optimal efficacy during the window of opportunity of no
detectable inhibitory activity. In that case, surveillance for
re-emergence of the inhibitor should be robust with a low
threshold for change to bypassing agents. For mild trauma
or minor surgery in MHA inhibitor patients that have cir-
culating endogenous FVIII levels, desmopressin
(DDAVP) is an important treatment option. The treatment
decision becomes more complex in the aging individual
with emergent co-morbidities (e.g. cardiac) and a past his-
tory but currently undetectable inhibitor (particularly if
there had been cross-reactive anti-FVIII activity). Each
scenario that might require hemostatic cover then needs
careful assessment of the necessity for treatment at all, the
likely intensity of required treatment, the likelihood of
more intense treatment being required if immediate treat-
ment is avoided (e.g. dental complications), and the poten-
tial risks of either re-challenge with FVIII concentrate, or

use of DDAVP or a bypassing agent. 
The complexities of treating aging MHA inhibitor

patients exemplify the need to maintain regular contact
with all individuals with hemophilia, regardless of severi-
ty. The annual review is an important opportunity to pro-
vide educational reminders that might change behavior to
minimize future bleed risk or prevent avoidable surgical
interventions e.g. optimizing primary dental care, avoid-
ance of aspirin and non-steroid anti-inflammatory drugs
(NSAIDs), counseling adolescents about avoidance of
violence/moderation of high-risk activities, cardiovascular
risk stratification in the middle-aged and risk reduction
strategies including smoking cessation and weight reduc-
tion measures. 

Inhibitor eradication 

In contrast to the recently published International
immune tolerance induction (ITI) data for severe hemo-
philia A,54 there is a recognized lack of equivalent data to
support any evidence-based guidance in MHA.55;56 In
MHA patients, avoidance of FVIII concentrate will often
allow the inhibitor titer to decline. However, tolerance is
not likely and re-exposure to FVIII concentrates will often
result in a return of the inhibitor. 

Small ITI case series reporting high-risk MHA patients
with severe bleeding suggest traditional ITI regimens used
in severe HA are less efficacious in mild HA, with a less
than 30% ‘success’ rate.15;17;57 In the recently reported,
largest single-center experience,17 only a minority of
patients (3 of 14) with inhibitors actually proceeded to
attempt ITI eradication, with only one reported success. A
single patient was treated with rituximab alone with suc-
cess, although the authors do not confirm that he was suc-
cessfully re-challenged with FVIII without anamnesis
occurring. Of the remaining 10 patients, 3 died of unrelat-
ed causes and the remaining 7 all experienced anamnesis. 

Further case reports of rituximab use alone have been
reported58;59 and a literature review60 suggests higher than
expected success rates (12 of 16, 75%) with rituximab
either alone or with/after other immunomodulatory thera-
py. This figure should be treated with caution as there may
be reporting bias of successful cases and there is no analy-
sis of the number of cases re-challenged with FVIII to
establish true tolerance. However, it does illustrate an
important difference between MHA and severe hemophil-
ia A. This was recently supported by the case series of 36
MHA inhibitor patients reported by Kempton.61 The
inhibitor persisted in 11 patients and 8 subjects cleared the
inhibitor spontaneously. The other 17 subjects cleared
their inhibitor following eradication treatment. Rituximab
alone (n=6) and other immunomodulating treatments
alone (n=2) were associated with an increased likelihood
of inhibitor clearance (adjusted HR 4.4; 95%CI: 1.06-
20.03 and 10.21; 95%CI: 1.17-78.28), whereas ITI alone
(n=9) was not (adjusted HR 1.35; 95%CI: 0.44-4.07) in a
multivariate analysis adjusted for race, age, base-line
FVIII and inhibitor peak titer. Unfortunately, it is not clear
how many of the patients that were classified as ‘inhibitor
clearance’ withstood a re-challenge with FVIII.
Preliminary results from a French-Belgium study suggest
that immune tolerance induction could be more effective
than no specific treatment or immunomodulating drugs in
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preventing further risk of anamnesis.5
In the face of a reduced baseline FVIII and severe bleed-

ing phenotype, it is an acceptable and clinically important
goal in MHA to reduce the antibody titer more rapidly
than might occur naturally, as re-achieving baseline FVIII
levels mitigates the bleeding phenotype without recourse
to treatment with a bypassing agent or prophylaxis.
Importantly, unless re-challenged with FVIII, investiga-
tors should avoid denoting cases as ‘complete remissions’
or ‘successful tolerization’ as is often the case in the liter-
ature.  Equally, perceived ‘spontaneous disappearance’ of
antibody should not necessarily be reassuring to the clini-
cian. A high proportion experience anamnesis upon re-
challenge15;17 and, as alluded to, ‘spontaneous disappear-
ance’ of antibody coincident with an attempt to tolerize an
individual, e.g. with immunosuppression, may lead to the
potentially false assumption of success or tolerization.
Other case reports describe use of other immunosuppres-
sive regimens used in acquired hemophilia A.62-64

In conclusion, in contrast to severe hemophilia A, many
patients with MHA will have a lifelong risk of new
inhibitor formation, with life changing consequences to
the patients in whom they occur, adding a substantial risk
of morbidity and mortality. This lifelong risk requires life-
long vigilance by the hemophilia team to minimize risk of
inhibitor formation and to ensure early detection to opti-
mize subsequent management. Further understanding of
the causative missense F8 mutations and underlying
immunological processes will help personalize inhibitor-
risk prediction. In high-risk patients who need surgery or
intensive treatment, alternative treatment options such as
DDAVP or bypassing agents may be considered.
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Immune tolerance induction: current status

Introduction

Factor VIII or IX inhibitors are now the
commonest treatment-related complication of
hemophilia. Given the therapeutic limitations
of the hemostatic treatment options for
patients with persistent inhibitors, and the
increased morbidity and treatment cost associ-
ated with persistent inhibitors, inhibitor elimi-
nation through immune tolerance induction is
the ideal solution for many inhibitor patients.
Although described first over 30 years ago,1

and widely practiced since, our knowledge of
immune tolerance induction (ITI) is largely
derived from case histories, single center case
series2-7 and retrospective registries.8-11

Commonly used regimens are summarized in
Table 1. Due to the rarity of the condition and
prohibitive logistical difficulties involved,
only a single randomized study of ITI has been
published.12 This International Immune toler-
ance Study (I-ITI study) was a randomized
controlled comparison of high (200
IU/kg/day) and low-dose ITI (50 IU/kg/day).
These studies have identified what are proba-

bly the most important host factors affecting
the outcome of ITI. Treatment factors are still
hotly debated however, and the optimal
approach to ITI is unresolved,

The conduct and outcome of ITI

Immune tolerance induction for factor VIII
inhibitors is generally conducted by the admin-
istration of factor VIII regularly in doses rang-
ing from 50 IU/kg three times weekly to 100
IU/kg administered twice daily (Table 1).2-11

Progress of ITI is monitored by checking the
inhibitor titer monthly until the titer has fallen
below the level of detection and then checking
factor VIII recovery until this has normalized
(>66%), and then confirming tolerance by
demonstrating a normal factor VIII half-life
(>7 h) after a 3-day washout.12,13-16 An alterna-
tive, pragmatic equivalent of a more than 7 h
half-life has recently been proposed, which is
a measurable FVIII trough level 48 h after
administration of standard prophylaxis (20-50
IU/kg).16 The attraction of such an approach is

Bleeding disorders

Factor VIII or IX inhibitors render patients with hemophilia A and B resistant to conventional
replacement therapy and therefore cause considerable morbidity and increase treatment cost. All such
patients should be considered for some form of immune tolerance (ITI) regimen to attempt inhibitor
eradication. Established predictors of successful ITI include severe hemophilia A, peak historical
inhibitor titer less than 200 and starting titer less than 10 BU/mL, young age at the start of ITI and
minimum delay in starting ITI. Interruption in ITI and infection reduce the chance of achieving toler-
ance, especially in poor risk patients. Tolerance is defined by restoration of the patient’s normal factor
VIII pharmacokinetics. Since this will usually be unknown, population norms and high-sensitivity
inhibitor assay tests must be used.High-dose ITI is associated with reduced intercurrent bleeding and
may achieve tolerance more rapidly compared with low-dose ITI, but has not been shown to have a
superior ITI response-rate, except perhaps in poor risk patients. There is no conclusive evidence that
the response to ITI is affected by the type of factor VIII concentrate used. Immunosuppression has a
very limited place in rescue therapy for patients with severe hemophilia failing to respond to ITI.
Immunosuppression may be more helpful as part of an ITI regimen for patients with mild or moderate
severity hemophilia A and in hemophilia B, groups that have a very disappointing response to conven-
tional ITI. 

Learning goals

At the end of this activity, the participant will be able to:
- identify patients suitable for immune tolerance induction (ITI);
- evaluate the likelihood of successful ITI;
- know how to select the most appropriate regimen of ITI;
- know how to conduct ITI and monitor response to treatment;
- manage the morbidity associated with ITI.

A B S T R A C T



that it avoids the need for difficult pharmacokinetic (PK)
studies in very small children.

Normal half-life (taken as ≥7h) is considered an indica-
tor of tolerance because, up to now, it has been the most
sensitive indicator available. This end point has serious
limitations, however, since 7 h is the lower limit of the
normal range in a pediatric population rather than the indi-
vidual’s normal half-life, which is generally unknown.
Normal factor VIII half-life varies considerably between
individuals17,18 so that a patient considered tolerant with a
half-life of 7 h may still have a persistent low-level
inhibitor and a normal half-life significantly in excess of 7
h. This suspicion derives support from the ITI study, in
which it has been shown that at least 4 patients with a fac-
tor VIII half-life of more than 7 h had persisting inhibitors
measured using a low titer inhibitor assay with a sensitiv-
ity of 0.04 BU/mL (M  Dardikh et al., submitted manu-
script, 2013).19 Furthermore, patients with a past inhibitor
history, but thought to be inhibitor free, use significantly
more (P=0.005) factor VIII than patients with no such his-
tory implying that low level residual inhibitor activity may
commonly persist following ITI.20 This low level inhibitor
activity may be abolished by prolonged ITI or by regular
prophylaxis with doses of factor VIII similar to those
employed in low-dose ITI.20 It is not known whether
patients with residual low level inhibitor activity are more
prone to frank relapse. A proportion of patients will suffer
obvious relapse with recurrence of an inhibitor measurable
using the Bethesda assay and loss of clinical responsive-
ness to factor VIII. Estimates of the risk of relapse follow-
ing ITI vary, depending on the length of follow up and the
definitions used. Mariani reported gross relapse following
ITI in 15% after 25 years follow up10 and DiMichele
reported 12% relapse after eight months.11 The I-ITI study
reported 8% relapse within 12 months, using a sensitive
pharmacokinetic definition of success but none of these
patients had gross relapse with loss of responsiveness to
factor VIII.12 Most patients achieve normal PK within 6-
12 months though a minority may take 1-3 years or more.2-
4,9-11 The International ITI Study, however, found that, in
good risk patients, the median time on ITI in the low-dose
arm was 16.4 months and in the high-dose arm 14.2
months.12 Response rates to ITI have been variously
reported at 50-90% and depend on patient selection, the
end points used, and whether an intention to treat analysis
is used.2-12 The use of intenion to treat analysis will result
in lower reported response rates will tend to have lower
response rates because they include patients who stopped
early for logistical reasons and could be judged not to have
had a fair trial of therapy. The omission of such patients
from many reports amounts to reporting bias. Although
not immunological failures, these patients are therapeutic
failures and should always be included. ITI is demanding
and may be discontinued because of line infection, loss of
venous access, lack of commitment, and a host of reasons
not directly related to poor clinical response. The immuno-
logical response is determined by a number of host and
treatment factors and these are described below.

Host factors and the outcome of ITI

Factors that potentially affect the outcome of ITI are

listed in Table 2. The starting inhibitor titer is the most
powerful predictor of ITI success.10,11,21,22 These include:
patient age at the start of ITI, peak historical inhibitor titer,
titre at the start of ITI and peak titer after starting ITI, eth-
nic origin, and factor VIII genotype.23

Inhibitor titer 
Both the North American and International Immune

Tolerance registries identified a starting inhibitor titer less
than 10 Bu/mL as the most powerful predictor of success-
ful ITI.11,12 Peak historical titer, reflecting the strength of
the secondary immune response to factor VIII, also corre-
lated with success, though less powerfully.10,11 Based on
these data and a meta-analysis of the two registries, good
risk patients are commonly defined as having an inhibitor
titer of more than 10 BU/mL at the start of ITI and a his-
toric peak titer of less than 200 BU/mL.12,20,24 The peak
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Table 1. Commonly used ITI protocols. 

Protocol Terapeutic regimen

Bonn1,4 Phase 1:
VIII:C 100 IU/Kg twice daily.
FEIBA 100 IU/Kg twice daily.
Until the inhibitor is undetectable by the Bethesda method.

Phase 2:
VIII:C 100 IU/kg twice daily.
Tail off over 3 months when VIII half-life is normal.

Van Creveld2 VIIIC 25-50 IU/kg twice daily for 1-2 weeks.
VIIIC 25-50 IU/kg every 2nd day or 3 times/week until tolerant.

Other variants7,10,11 VIIIC 100-200 IU/kg once daily is commonly used.

Malmö5 Neutralizing continuous infusion of VIII:C to maintain 0.3 IU/mL 
VIIIC for 10-14 days.
Cyclophosphamide 12-15 mg/kg iv on Days 1 and 2.
Cyclophosphamide 2-3 mg/kg orally on Days 3-10.
IV immunoglobulin 2.5-5g on Day 1 and 0.4 g/kg/day on days 
4 and 5.
Protein A adsorption if the inhibitor titer is >10 BU/mL 
before the start of treatment to reduce to <10 BU/mL.

Table 2. Determinants of successful ITI.

Host factors Treatment factors

Historical peak inhibitor titer. >5 years delay starting ITI

Inhibitor titer at start of ITI. Interruption of ITI

Peak inhibitor titer on ITI. Dose of VIII/IX

Age at start of ITI. CVAD infection

Hemophilia A or B. Type of concentrate?

Hemophilia A severity.

Ethnicity?

Factor VIII genotype?



inhibitor titer after starting  immune tolerance correlated
more strongly than historical titer both in data from the
North American Immune Tolerance registry and the
International Immune Tolerance Study (I-ITI study).11,12

Indeed, patients who are super-high responders (inhibitor
rises rapidly to >500 BU/mL after starting ITI) usually
have a poor outcome.11,12 It has, therefore, been argued that
ITI can be abandoned in such patients after 6-9 months
and rescue therapy considered unless there is evidence of
a significant ongoing decline in inhibitor titer.13,16

Ethnic origin, factor VIII genotype and patient age 
Although ethnic origin has a very significant influence

on the risk of developing an inhibitor, no convincing evi-
dence has so far emerged that it influences the outcome of
ITI. Attempts to investigate this have been hampered by
low subject numbers and so the possibility that ethnicity
may affect the outcome of ITI cannot be excluded.10,12,23,24

The effect of factor VIII genotype on the outcome of ITI
has been investigated in the PROFIT study.25 A higher suc-
cess rate of 81% was observed amongst 16 of 86 high
responders with low inhibitor risk mutations when com-
pared with the 47% success rate observed in the 70 of 86
subjects with a high inhibitor risk mutation  (P=0.01). 

Older patients are less successfully tolerized.2,3,10,11,26

This is probably partly because delay in starting ITI has an
adverse effect on the outcome of ITI,2,3,11 but is also
because inhibitors arising later in life may be more diffi-
cult to tolerize, however quickly ITI is started.2,26 For most
patients presenting with inhibitors early in life, this is no
longer a practical problem. The universal use of prophy-
laxis causes inhibitors to present very early in life and ITI
is generally considered immediately. Even after deferring
the start of ITI until the inhibitor titer had fallen below 10
BU/mL, the average age at which ITI started in the I-ITI
study was 24 months.12 For that reason, we were unable to
demonstrate an effect of age on outcome in the very
restricted age group recruited to the I-ITI study.12

Treatment factors and the outcome of ITI

Immediate or deferred start to ITI? 
Opinion is divided on whether ITI should start as soon

as the inhibitor is detected or whether it should be deferred
until the titer has fallen below 10 BU/mL. Many clinicians
start immediately because they argue that this avoids a fur-
ther anamnestic increase in inhibitor and minimizes the
risk of morbidity whilst waiting to start ITI. Anamnesis
can be avoided, however, by the use of recombinant acti-
vator factor VII (NovoSeven, Novo Nordisk, Denmark) to
treat bleeding whilst waiting to start ITI.13-16 They also
argue that a delayed start may adversely affect the out-
come of ITI. This seems unlikely, however, since the
response to ITI did not decline for five years from the time
of diagnosis in the NAITR11 and it took a median of only
five months from inhibitor diagnosis for the titer to decline
to less than 10 BU/mL in the I-ITI study.12

However, a starting titer less than 10 BU is the most
powerful predictor of a good outcome and deliberately
deferring the start of ITI until the titer has fallen to this
level may improve the outcome. Certainly, case-series
where ITI was deferred until the inhibitor has fallen below

10 BU/mL report very high success-rates2,6,7 and ITI does
not usually have to be deferred for very long. This hypoth-
esis has not been tested in a clinical trial, however, and so,
although deferring the start of ITI is recommended by
some, there is no consensus.13,16 Inhibitors that fail to fall
to less than 10 BU/mL over 12-24 months have usually
been observed to respond poorly to ITI. 
The ITI regimen

The choice of ITI regimen remains problematic.
Common regimens are summarized in Table 1.

Patients with very low titer inhibitors peaking at less
than 5 BU/mL are usually successfully tolerized using
low-dose regimens (50 IU/kg three times weekly.16,27 Even
very low titer inhibitors should be eliminated by ITI, if
possible, since they may prevent effective prophylaxis and
be associated with increased morbidity and treatment cost
even if the patient remains responsive to factor VIII to
some degree.

At the other extreme, the IITR and NAITR and various
case-series suggest that poor-risk patients (peak titer >200,
starting titer >10 BU/mL) are best tolerized using a high-
dose regimen.3,4,10,11,21,22,28 High level high-responders have
a lower overall response rate but appear to respond better
to high-dose ITI using doses of 100-200 IU/kg/day. 

Meta-analysis of these registries suggested, and the I-
ITI study showed, that high-dose and low-dose (50 IU/Kg
3 times/week) regimens are equally effective in inducing
tolerance in good risk patients.2,10-12,28 By implication,
therefore, 200 IU/Kg/day and the commonly used 100
IU/kg/day can assumed to be equally efficacious for
inducing tolerance in good risk patients.12,15

Low-dose ITI (50 IU/kg three times/week) takes longer
to achieve a negative Bethesda titer11,12 and slightly longer
overall to achieve tolerance than high-dose regimens (200
IU/kg/day). Low-dose ITI was also associated with more
intercurrent bleeding than high-dose ITI (Odds Ratio 2.2;
P=0.0019). Eighty-five percent of bleeds occurred in the
early phase of ITI, before the Bethesda titer became nega-
tive. There were 72 hospitalizations for bleeding in the
low-dose arm and 39 in the high-dose arm. Almost one-
third of subjects remained bleed-free throughout ITI (8 of
58 low-dose and 21 of 57 high-dose).12 There was a sug-
gestion that low-dose patients may have developed more
arthropathy as a consequence of their relative excess of
intercurrent bleeding on ITI, since their bleed rate was still
greater than high-dose patients even after they had become
tolerant and when patients in both arms were using the
same regimen of prophylaxis.12

Developing countries with limited resources have
derived reassurance that low-dose and high-dose ITI
appear to be equally effective in inducing tolerance and
have adopted low-dose therapy. Where resources are less
limited, clinicians have tended to opt for high-dose ITI to
minimize intercurrent bleeding. Although high-dose ITI is
associated with less morbidity, the difference is not dra-
matic and high-dose may not be very cost-efficient. A pre-
liminary pharmaco-economic analysis of the I-ITI study
shows a median of 6 bleeds in high-dose versus12 in low-
dose patients and estimated a cost of more than £100,000
per averted bleed using the high-dose regimen. Overall,
high-dose ITI costs four times as much per ITI success
than low-dose ITI. The bleeding phenotype varies between
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patients, with bleed-free patients in both treatment arms.
Furthermore, 85% of bleeding occurred in the first phase
of ITI, before the Bethesda titer became negative. Perhaps
the optimal regimen is that tailored to the patient and the
natural history of ITI itself.
The choice of FVIII 

Uncontrolled data have been used to suggest that toler-
ance may be more readily achieved using low-purity
pdFVIII than with rFVIII.22,29,30 Kreuz observed that 6
patients regarded as failing to respond to ITI using rFVIII
responded when changed to intermediate-purity plasma
derived concentrate rich in von Willebrand factor.22 This
group also reported a far lower (29%) response to high-
purity factor VIII concentrate when compared with the
91% success rate observed in a historical group treated
with intermediate purity plasma derived factor VIII.
Gringeri also reported a surprisingly good response-rate
amongst a series of poor risk patients treated with von
Willebrand containing concentrate.30 Neither the IITR nor
the NAITR could corroborate this observation, due to the
skewed distribution of products used in the reported
patients,10,11 though data from the NAITR appeared to
show greater success using monoclonally purified factor
VIII than observed with rFVIII.31 Other case series using a
variety of products report much higher ITI success-rates
amongst patients using high purity products than those
reported by the Frankfurt group and success rates for ITI
apparently unaffected by product type.2,3,6,7,31-33 Although
the I-ITI study showed no difference in ITI success rate
between patients using plasma-derived or recombinant
factor VIII, this study was underpowered for this compar-
ison and most patients using pdFVIII were also using high
purity products.12 A randomized comparison of the effica-
cy of high-dose pdFVIII or rFVIII for ITI in poor risk
patients is in progress.34 However, product choice was left
to the discretion of the managing clinician in the I-ITI
study and 102 of 115 randomized patients used recombi-
nant products.12 Clearly, the current consensus is that first-
line ITI should be conducted using rFVIII usually with the
product used by the patient at the time of inhibitor devel-
opment, unless as part of a clinical trial.

Venous access 
A central venous access device (CVAD) is commonly

inserted to facilitate ITI though the frequency with which
CVADs are used varies from country to country. Some
authorities attempt to avoid the use of CVADs during ITI
to minimize the risk of infection. CVAD infection is sig-
nificantly more common in inhibitor than non-inhibitor
patients (RR3.5; P=0.00).35 Infection has been observed to
have a very marked adverse affect on the outcome of ITI,
especially in poor risk patients. The I-ITI study observed
that, in good risk patients, infection or CVAD placement
had no effect on either the proportion achieving tolerance
or the time taken to achieve tolerance.12 Implantable
CVADs are significantly less likely to become infected
during ITI than external lines such as Hickman or Broviac
catheter.12,35 Careful attention to the details of optimal line
management are important to minimize the risk of infec-
tion.36 An alternative approach to facilitate venous access,
which is largely free from the risk of infection, is the sur-

gical creation of an arteriovenous fistula.37 Very careful
attention to surgical detail and deliberate restriction of the
flow rate through the fistula is required, however, if
increased growth of the limb used for the fistula is to be
avoided.37

Dose adjustment during ITI
Most published ITI regimens, with occasional excep-

tions,7 maintain the same dose of FVIII until the patient is
considered tolerant. Dose tailoring, however, has been
used on an empirical basis by some clinicians, and the pat-
tern of response and morbidity in the I-ITI study suggests
a dose tailoring regimen that may be suitable for further
study. High-dose ITI is associated with a statistically sig-
nificant reduction in bleeding only in the early phase of
ITI, following which factor VIII dose could be reduced
without seriously affecting the rate of intercurrent bleed-
ing.12 Furthermore; although high-dose patients achieve a
negative Bethesda titer three times faster than low-dose,
the time taken to achieve the subsequent milestones of
normal recovery and half-life were similar.12 This implies
that it may be possible, having started with high-dose ITI,
to reduce the dose of FVIII during the course of ITI with-
out affecting the time taken to achieve tolerance. This may
be associated with a risk that some patients may lose
ground when the dose is reduced. This risk may be higher
in poor risk patients, since these patients are more depend-
ent on high-dose therapy than good risk patients to achieve
successful ITI. It is planned to investigate this approach
further in the UK.16

It is important to avoid interruption to ITI because inter-
ruptions of a few weeks to several months markedly
reduce the likelihood of successful ITI.9

Inadequate response to ITI, failed first-line therapy and
relapse

If first-line therapy is considered not to be effective or to
have failed, the strategy should be reviewed without inter-
rupting ITI. Options to be considered include abandoning
ITI, increasing the dose of FVIII to 200 IU/kg/day, chang-
ing to a pdFVIII of high VWF content, adding immuno-
suppression or both. pdFVIII with a high VWF content has
been associated with anecdotal reports of success and the
risks associated with the presence of a long-term inhibitor
are likely to outweigh the very small potential risk of
transfusion-transmitted disease. Rituximab has also been
used in patients who have failed conventional ITI, but with
mixed responses.38-40 A consecutive cohort of 15 patients
treated with rituximab as rescue therapy demonstrated that
it probably can be used in combination with standard ITI
regimens. Few  (14%) achieved a complete and stable
remission with rituximab alone but 58% of those treated
with rituximab combined with FVIII obtained at least a
stable partial response.40 A systematic review from
Franchini reported similar findings and durable remission
in 53% of cases.41

Inhibitor eradication in mild hemophilia

About 25% of factor VIII inhibitors are reported from
kindreds with mild hemophilia, often with high-risk-muta-
tions.26 The appearance of an inhibitor in mild hemophilia
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is usually accompanied by a severe decline in endogenous
factor VIII level and the development of a pattern of soft
tissue bleeding similar to that observed in acquired hemo-
philia. These inhibitors disappeared in approximately 50%
of patients after a median nine months. If factor VIII ther-
apy can be avoided, though, they often return when the
patient is challenged again. The distinctive bleeding pat-
tern and the poor, 25% response reported to conventional
approaches to ITI26 has encouraged a number of investiga-
tors to attempt ITI using rituximab or other immunosup-
pressive agents alone or in combination with factor VIII.41-
43 This appears to be successful in at least 50% of such
patients, although the number of subjects is small and the
response rate was, in some cases, no different from the
spontaneous disappearance time, making an accurate eval-
uation of the efficacy of this approach impossible.
Masterly inactivity may still be the first-line approach to
inhibitors in mild hemophilia, unless recurrent sponta-
neous bleeding makes this impossible.

Immune tolerance induction in hemophilia B

Conventional ITI using regimens analogous to those
used in severe hemophilia A are notably unsuccessful in
hemophilia B, particularly in those patients whose
inhibitors present with severe reactions to factor IX. The
NAITR reported 31% success (5 of 16) success using a
median dose of 100 U/kg/day.11 There were insufficient
data to differentiate outcome between differing dose regi-
mens, but patients with an allergic phenotype and a family
history of inhibitors had a poorer outcome.11,14 ITI in
hemophilia B may also be complicated by anaphylaxis
and, sometimes irreversible, nephrotic syndrome.11,44-46

Successful ITI using the Malmo protocol has been
reported in 6 of 7 patients, although 2 required two or
more ITI courses and one relapsed after six months.5 The
Malmo ITI regimen has been used historically for both
factor VIII and IX inhibitors, and involves intensive factor
VIII or IX infusion to maintain a circulating level of 0.3
IU/mL combined with immunosuppression using
cyclophosphamide, high-dose immunoglobulin and extra-
corporeal immunoadsorption (for details see Table 1).5
Although very intensive, the regimen had the advantage
that when it was successful, tolerance was achieved within
as little as three weeks. It has largely fallen into disuse,
however, because the overall success rate was relatively
low (62.5%) in hemophilia A and there was a growing
reluctance to administer cyclophosphamide to small chil-
dren. A number of individual case reports offer further
support for a role for immunosuppression as a component
of the ITI regimen used in patients with hemophilia B.
Success was reported in a patient with an allergic pheno-
type using initial desensitization with steroids, intravenous
immunoglobulin and escalating doses of FIX, followed by
the Malmo regimen.5,47 Others have reported successful
desensitization to FIX using a combination of rituximab
and factor XI infusions as part of ITI.48,49 Mycophenolate
combined with dexamethasone, intravenous immunoglob-
ulin and high-dose FIX has also been used in a few
patients with success50 and rituximab has been used as
part of the treatment regimen with variable outcomes in
single case reports or small series.38,48,49,51-53

Conclusion

Progress in the practice of ITI has been hampered by the
small number of patients available for study and the diffi-
culty in conducting well designed clinical trials.
Nevertheless the principle determinants of successful ITI
are reasonably well understood, though further investiga-
tion of the effect of ethnicity and factor VIII genotype are
required. 

All patients with factor VIII/IX inhibitors should be
considered for ITI although the family’s ability to comply
with this demanding treatment and the likelihood of a suc-
cessful outcome and morbidity should all be evaluated
before a final decision is taken. The relative merits of
high- and low-dose ITI appear reasonably well established
and clinicians will choose one or the other based on the
patient’s inhibitor titer, age, an evaluation of the impor-
tance of intercurrent bleeding, and the resources available
to them.

The optimal approach to patients with severe hemophil-
ia who are resistant to ITI has not been established. Von
Willebrand containing concentrates may have a part to
play here, though the evidence for this is not strong and
the combination of high-dose ITI with immunosuppres-
sion with rituximab appears more promising. Similarly,
there is growing, though fragmentary evidence that
immunosuppression is an important modality of ITI in
mild hemophilia and hemophilia B, improving the dismal
success rates observed for conventional ITI in those con-
ditions.
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Pathogenesis of bone marrow failure and leukemia 
progression in Fanconi anemia

Fanconi anemia: clinical signs
throughout life

Fanconi anemia (FA) is the most frequent
inherited cause of bone marrow failure (BMF),
myelodysplastic syndrome (MDS) and, beside
Down syndrome, of acute myeloid leukemia
(AML).1-3 There are typically several clinical
stages in FA that are related to age.1,4-6 At birth
and early childhood, only physical signs are
present, and these range from discreet to
extensive. Many patients then experience bone
marrow failure (BMF) between 5 and 15 years
of age, and the diagnosis is often made at this
stage. Still later, during their teens or young
adulthood, the risk of AML and MDS/AML
becomes very high. Still later, in adult patients,
a range of solid cancers can be seen, especially
oropharyngeal cancer.7 A significant and prob-
ably underestimated fraction of older patients
have no family history of the disease nor any
physical signs, and they do not develop bone
marrow failure; but they still have an increased
risk of malignancies. Throughout life, the
hematopoietic situation can change sponta-
neously by genetic reversion or by clonal evo-
lution including progression to MDS or

AML.8-13 New insights have recently emerged
regarding disease pathophysiology from new
mouse models and from clinical studies in
patients. These help provide a better under-
standing of the natural history of the disease.

FA clinical and laboratory diagnosis

Except for the very rare FANCB, which is
located on the X chromosome,14 all other
FANC genes are autosomic and the disease is
recessive. FA patients often, but not always,
present with a combination of various congen-
ital abnormalities such as a short stature,
Fanconi facies and microphthalmia, thumb
and radius deformities, and/or other malforma-
tions (reviewed in Shimamura and Alter1).
Many FA patients develop a progressive BMF
during the course of the disease, usually dur-
ing the first and second decades of life,4,5 and,
for the majority of patients, the suspicion of
FA will only be made after the onset of pancy-
topenia. In some patients, the underlying diag-
nosis of FA is not known until MDS/AML
occurs, and it is safe to screen children and
young adults with MDS or AML with physical

Bone marrow failure 

A B S T R A C T

Fanconi anemia (FA) is the most frequent inherited cause of bone marrow failure (BMF), myelodys-
plastic syndrome (MDS) and acute myeloid leukemia (AML). Cells deficient in the FA DNA repair path-
ways, i.e. the FA cells, are highly sensitive to DNA damage, especially DNA interstrand crosslinks that
can be triggered by naturally produced reactive aldehydes. Hematopoietic progenitor cells (HPCs) are
impaired in patients, largely due to p53/p21 activation, cell cycle arrest and cell death related to the
accumulation of damaged DNA and cell stress. Loss of quiescence of the hematopoietic stem cells
(HSCs) has been evidenced in young Fanc-deficient mice and likely contributes to the accelerated
aging and BM attrition. Remarkably, the hematopoietic alterations begin during prenatal life and the
HSC pool can be already limited at birth. While many patients develop an overt BMF in childhood, the
stem cell defect and genomic instability favor clonal evolution and frequent emergence of MDS or
AML with a specific pattern of somatic lesions, e.g. unbalanced chromosomal translocations resulting
in 1q+, 3q+, 7q-, and 21q/RUNX1 alterations. A better understanding of the multistep progression
towards MDS/AML in FA patients should be relevant for complex-karyotype or secondary MDS/AML in
older, non-FA, patients, for whom FA represents a model genetic condition. 

Learning goals

At the conclusion of this activity, participants should:
- be aware that FA is a major predisposing cause of MDS and AML in young patients;
- be able to describe the natural history of the disease through life;
- be able to describe the main characteristics of MDS and AML occurring in FA patients;
- understand the pathogenesis bases of a DNA damage repair syndrome that leads to HSC deficiency

and clonal evolution.



signs and/or FA-associated chromosomal abnormalities in
the bone marrow such as 1q+ or 3q+ (see below).
Increases in HbF, serum alpha-fetoprotein and macrocyto-
sis are commonly noted in FA but their absence does not
rule out the disease; although not specific for FA, they
may help to distinguish an inherited from an acquired
BMF.1 The biological diagnosis of FA is primarily based
on the hypersensitivity of FA cells to DNA interstrand
crosslink (ICL) chemicals such as diepoxybutane (DEB)
or mitomycin C (MMC). The chromosomal breakage test
with these agents is the technique of reference for diagnos-
ing FA.15,16 In the majority of cases, a precise diagnosis
can be made with careful analysis of case history, physical
examination and a positive chromosomal breakage blood
test (breaks and radials). Other blood tests, available in
research laboratories, include cell-cycle analysis17 and
evaluation of FANCD2 mono-ubiquitination, which can
positively diagnose FA core patients.18 However, all these
tests can be ambiguous or even give false negative results
in patients who develop hematopoietic reversion and
somatic mosaicism. Hematopoietic reversion occurs
when, after a spontaneous genetic event in a hematopoietic
stem cell (i.e. a reverse point mutation or intragenic
recombination), one FA allele is corrected, with a conse-
quent recovery of a normal or subnormal protein activity
and cellular phenotype.8,19 Because there has been no evi-
dence that this same phenomenon could occur in primary
skin fibroblasts, these cells have been used to overcome
misleading results in blood due to somatic mosaicism.10,20-
23 Once the FA diagnosis is established at the cellular level,
FANC gene mutations can be screened. To date, 15 FANC
genes (genes that have been found to be mutated in FA
patients) have been identified (FANCA, FANCB, FANCC,
FANCD1/BRCA2, FANCD2, FANCE, FANCF, FANCG,
FANCI, FANCJ/BRIP1, FANCL, FANCM, FANCN/PALB2,
FANCO/RAD51C, and FANCP/SLX4), the most frequent
in patients being FANCA, FANCC, FANCG and
FANCD2.24-26 FA mutations are listed in the Fanconi
Anemia Mutation Database (www.rockefeller.edu/fan-
coni). There are few clear genetic-phenotype correlations
in the classical ‘FA core’ patients, although ‘hypomorphic’
mutations might be associated with milder phenotypes and
could give time to develop to clonal evolution and late
onset solid cancer.27-29 In contrast, FA-D2 patients usually
experience a more severe phenotype,30 and FA-
D1/BRCA2 patients develop an early and rapidly lethal
cancer-prone syndrome.31-33

The FA pathway is involved in DNA repair and
counteracts the genotoxic effects of naturally
produced aldehydes

Products of the 15 FA genes function in a common DNA
repair signaling pathway, the FA pathway, which closely
co-operates with other DNA repair proteins for resolving
DNA ICLs during replication (reviewed by Kee et al.25

and Kottemann et al.26). Until recently, the nature of the
endogenous cross-linking agent remained unknown, but a
breakthrough came when Patel’s group discovered that
endogenous reactive aldehydes are the genotoxins that are
probably largely responsible for the pathophysiology of
FA.34-36 Reactive aldehydes, such as acetaldehyde, are
naturally produced by-products of metabolism that can

trigger protein and DNA lesions, particularly ICLs.
Therefore, an intact FA pathway is necessary to counteract
the genotoxic effects of reactive aldehydes.34 Upon DNA
damage, a central event in the FA pathway is the mono-
ubiquitination of FANCD2 and FANCI, which is mediated
by a group of upstream FA proteins (FANCA, FANCB,
FANCC, FANCE, FANCF, FANCG, FANCL, and
FANCM) that are assembled into a large nuclear E3 ubi-
quitin ligase complex called the FA core complex. The
mono-ubiquitinated FANCD2 and FANCI heterodimer
functionally interacts with downstream FA proteins such
as FANCD1/BRCA2, FANCN/PALB2, FANCJ/BRIP1,
FANCP/SLX4, RAD51C and their associated protein,
BRCA1. FAN1, an FA-associated protein, provides a
nuclease activity during the ICL repair. The FA pathway is
also involved in the regulation of mitosis and cytokinesis
to prevent micro-nucleation and chromosome abnormali-
ties.37,38 Moreover, FA cells are uniquely hypersensitive to
oxidative stress and apoptotic cytokine cues including
IFN-γ and TNF-α that could be related to additional func-
tion of the FA proteins.39-43

Pathogenesis of the bone marrow failure:
genotoxicity impairs HSCs

The efficiency of allogeneic HSC transplant in FA
patients shows that BMF is primarily related to an intrinsic
defect of hematopoietic cells. Progressive medullary
hypoplasia during childhood suggests cumulative deleteri-
ous effects in HSCs. Attempts to uncover the mechanisms
leading to BMF have been hampered by practical difficul-
ties associated with studying a rare human disorder with
low bone marrow cells in patients, and because the initial
murine Fanc−/− models, although extremely useful, did not
fully recapitulate the phenotype of human FA (reviewed
by Parmar et al.44). Indeed, mice with a single genetic defi-
ciency in the FA pathway are generally small, have
reduced fertility with abnormal germ cell development,
and exhibit cellular hypersensitivity to ICL agents; but
they do not develop spontaneous BMF despite stem cell
dysfunction upon transplantation,44-49 with the exception
of the Slx4−/− and double-mutant Fancc−/−Fancg−/−.50,51

Using new genetic mouse models, the Patel team recent-
ly showed that the deficiency in the Aldehyde dehydroge-
nase gene Aldh2 (leading to impaired aldehyde detoxifica-
tion) in combination with Fancd2 deficiency severely
impacts the hematopoietic cells.35 While most of the dou-
ble KO animals succumbed to T-cell leukemia as they
aged, the mice which did not develop leukemia sponta-
neously developed aplastic anemia, with the concomitant
accumulation of damaged DNA and apoptosis within the
HSPC pool. Moreover, the analysis of the bone marrow
cells in young Fancd2-/-Aldh2-/- mice before the onset of
leukemia or aplasia showed a marked reduction in the
HSPC and long-term HSC (LT-HSC) populations, along
with less quiescent and more actively cycling LT-HSCs.
Interestingly, only the HSPCs, but not the more mature
blood precursors, require Aldh2 for protection against
acetaldehyde toxicity. These studies suggest that the emer-
gence of BMF in Fanconi anemia is probably due to alde-
hyde-mediated genotoxicity restricted to the HSPC
pool.34 ,35

By analyzing a large series of primary bone marrow
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samples from FA patients, in collaboration with the
D’Andrea team, we observed a strong reduction in CD34+

BM cells that worsened with age, along with an accumu-
lation of DNA damage (marked by H2AX foci), induction
of p53 and p21, and cell cycle arrest in G0/G1 with a
senescence gene expression profile.52 The depletion of p53
or p21 in CD34+ BM cells using short hairpin RNAs
resulted in a dramatic increase in the number of clono-
genic progenitors in vitro. Moreover, the HSPC defects
and clonogenic ability were rescued in several in vivo
models, including Fancd2-/-p53-/- mice, and in a new
xenograft model involving transfer of human FA-like cord
blood cells into NOD/scid/IL2Rg-/- (NSG) immunodefi-
cient mice.52 Taken together, these data show that an exag-
gerated physiological stress response results from the
accumulation of DNA damage, underlying progressive
aging and HSC depletion in FA patients (Figure 1).
Interestingly, such response to accumulation of DNA dam-
age and cellular stress has been previously involved in the
hematopoietic aging occurring throughout life, both under
physiological conditions in healthy subjects and in some
DNA repair defects in mice.53-56 Further analyses are need-
ed to decipher precisely how protein and DNA damage
accumulates in the HSCs and in the more differentiated
progenitor cells, how each cell type responds to damage,
and how this response changes in the several stages of the
disease throughout the patient’s life. Collectively, these
and previous studies41,44-49,57-59 support the view that DNA
damage and cell stress in the HSPCs trigger cell cycle
abnormalities, senescence and cell death, leading to
impaired HSPCs, accelerated aging and BM exhaustion.
Interestingly, common signaling downstream mechanisms
including p53/p21 activation and senescence could partic-
ipate in the pathogenesis of several inherited BMF syn-
dromes, triggered by unresolved cellular conflicts, i.e.
DNA damage accumulation in Fanconi anemia, abnormal
telomeres in dyskeratosis congenita, and defective riboso-
mal function in Diamond-Blackfan anemia.52,60,61

Prenatal beginning of the HSC defect

Hematologic signs are not present at birth in FA sub-
jects; instead, they generally occur during childhood.1-3

Intriguingly, we observed low CD34+ BM counts in very
young FA patients who were diagnosed soon after birth,
before the onset of any peripheral hematologic signs.52

This raised the possibility of an early beginning of the
HSC defect in FA, i.e. during fetal life. Consistent with
this hypothesis, the analysis of human FA fetal liver sam-
ples obtained from medical abortions showed increased
expression of the cell cycle inhibitor CDKN1A/p21, at a
developmental stage (14-18 weeks) at which the liver is
mainly hematopoietic, suggesting the early onset of cell
cycle abnormalities and stress response in fetal
hematopoiesis.52 In Fancc-/- mouse, quantitative and quali-
tative deficiencies were observed in the fetal HSPCs
pool.62 Moreover, FA pathway silencing in human embry-
onic stem cells (hESCs) leads to early hematopoietic
development defects in vitro.63 Collectively, these data
suggest that the hematopoietic development is impaired
early in life in FA, during the expansion of the HSC pool
(a stage with high replication stress), leading to an altered
HSC pool at birth (Figure 2). 

Clonal evolution towards myelodysplastic 
syndromes and acute myeloid leukemia

In such a context of deficient HSPCs, bone marrow cells
experience a strong selective advantage upon clonal evolu-
tion, probably also facilitated by the constitutive genomic
instability of FA (Figure 3).9,64,65 Clinically, FA patients
develop MDS and AML with the highest frequency during
their teens or young adulthood.1 ,5,66 These are often, but not
always, preceded by a hypoplastic or aplastic phase. MDS
in FA often presents as refractory cytopenia with multilin-
eage dysplasia (RCMD, according to the World Health
Organization (WHO) 2008 classification), with or without
excess of blasts (RAEB).11,67 A certain level of dyserythro-
poiesis is almost constant in FA, and a mild dyserythro-
poiesis is not considered as an MDS criteria in this popula-
tion. Acute leukemia can be diagnosed primarily (in
approx. 30% of the AML in FA patients) or after an MDS
phase with an increasing fraction of blast cells in the bone
marrow. Karyotypic abnormalities are frequently found,
and translocations of chromosome 1q, monosomy 7, and
gains of 3q have been reported.11,66-70 In contrast, classic de
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Figure 1. Accumulation
of cell stress and DNA
damage impairs HSPCs
in FA.



novo translocations like t(8;21), inv(16) and 11q23-t/MLL
are not seen in FA. Using array-based high-density chro-
mosomal profiling and oncogene sequencing, we analyzed
bone marrow samples from a large series of FA patients at
various stages of the disease (hypoplasia/aplastic anemia,
MDS and AML, normal BM).11 We found a highly recur-
rent pattern of somatic abnormalities that were related to
unbalanced chromosomal translocations and led to partial
chromosomal arm duplications or losses (Figure 4). In con-
trast to what is seen in non-FA MDS/AML patients,71

somatic copy-neutral loss of heterozygosity (uniparental
disomy, UPD) were rarely found in FA, which is consistent
with a constitutive defect of homologous recombination
repair in FA. Regions of homozygosity were found using

SNP arrays in some patients but these were related to con-
sanguinity, as was demonstrated by paired fibroblast analy-
sis. The most frequent somatic lesion was partial duplica-
tion of chromosome 1q (1q+, 44.8% of 29 MDS/AML),
following by 3q+ (41.3%), RUNX1/21q- (20.7%), mono-
somy 7/7q- (17.2%), and 11q- (13.8%). Mutations of
MDS/AML oncogenes and tumor suppressor genes were
rarely found (isolated FLT3-ITD, NRAS, MLL-PTD, but no
TP53, CBL, TET2, CEBPα, NPM1, and FLT3-TKD muta-
tions in this series). 

Therefore, it appears that myeloid oncogenesis in FA
shares common lesions with non-FA patients (7q-, 5q-, 21q-
/RUNX1 lesions, PRDM16 translocations, MLL-PTD), but
lacks frequent TP53 deletion/mutation, maybe suggesting
alternative inactivation of tumor suppressor pathways. In
addition, FA-specific chromosomal lesions are very often
present, especially 1q+ and 3q+. The molecular targets of
these two lesions are not known, although the EVI1 onco-
gene at 3q26 is a strong candidate and, indeed, is strongly
expressed in 3q+ cases.72 It might be that EVI1 is preferen-
tially deregulated in FA through unbalanced chromosomal
translocations resulting in copy-number gain, rather than by
direct balanced translocation as usually seen in a subset of
non-FA MDS/AML. Whereas the lesions 7q, 3q+, and
RUNX1 abnormalities were found at the MDS and AML
stages only, translocation/duplication 1q+ can be seen at all
stages in the bone marrow, including ‘normal’ or hypoplas-
tic bone marrow without apparent transformation signs
(Figure 4), suggesting that 1q+ could rescue FA cells with-
out necessarily transforming them into MDS/AML.11

Clonal evolution with acquired attenuation of the FA-proto-
typical G2 checkpoint and resistance to TNFα have been
described in human and mouse, respectively.12,64,73 It is like-
ly that these and other cellular phenotypes rescue FA HSPC
by conferring them a selective advantage, but also predis-
pose patients to develop malignancies. Thorough longitudi-
nal characterization of the molecular and cellular features
associated with bone marrow progression should lead to a
better understanding of the step-wise mechanisms of trans-
formation. With this aim in mind, chromosomal profiling
and next-generation sequencing (NGS) in sequential BM
samples will allow information to be obtained as to the
architecture of clonal evolution and tumor progression in
FA, as was performed in secondary or relapsing AML in
non-FA patients or in inherited severe congenital neutrope-
nia progressing to AML.74-76
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Figure 2. Prenatal beginning of the hematopoietic involve-
ment in FA.

Figure 3. Frequent evolution in the bone marrow of FA patients. 



Myelodysplastic syndromes and acute myeloid
leukemia monitoring in FA patients

Hematopoietic stem cell transplantation (HSCT) is cur-
rently the best treatment to cure FA aplastic anemia or
MDS/AML.77 However, great care has to be taken when
considering HSCT, and decision-making should be based
upon clinical and biological criteria including age, severi-
ty of the cytopenia, significant bone marrow dysplasia,
excess of blast cells, cytogenetic/molecular abnormalities,
and immunological compatibility with the donor. Because
MDS/AML is a frequent and severe occurrence in FA, it is

necessary to follow up patients with regular bone marrow
aspirate tests with expert morphological and karyotype
evaluation to detect transformation before the onset of an
overt MDS/AML.1,15 Conventional karyotype appears to
be sensitive for the early detection of discreet subclones,
due to the possibility of observing large unbalanced
translocations in individual cells and probably a clonal
advantage in culture. Systematic interphase fluorescence
in situ hybridization (FISH) screening using probes for
chromosome 7q, 3q, and break-apart RUNX1 might
increase the sensitivity of detection of clonal cells.
MDS/AML cases can have an apparently normal kary-

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 97 |

Stockholm, Sweden, June 13-16, 2013

Figure 4. A recurrent profile of chromosomal abnormalities in bone marrow samples of FA patients. Samples are grouped
by bone marrow stages (normal, medullary hypoplasia/aplasia, MDS, AML). The 1q+ and 3q+ lesions are specific from
FA compared to MDS/AML of non-FA patients, other abnormalities including 7q- and RUNX1 mutations can be found in
non-FA patients. 1q+ is found at all stages of the bone marrow progression, whereas most other lesions are found at
most advanced MDS/AML stages. (This research was originally published in Blood. Quentin S, Cuccuini W, Ceccaldi R, et
al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that
includes cryptic RUNX1/AML1 lesions. Blood. 2011;117(15):e161-70. ©the American Society of Hematology11).



otype but cryptic chromosomal or genomic abnormalities
detected by FISH and/or array analysis.11 Therefore, when
abnormal cells are observed with a bone marrow smear in
FA patients, we now implement the karyotype analysis
using high-density DNA arrays and RUNX1 FISH. This
approach is useful in detecting short cryptic lesions and in
characterizing the abnormal karyotypes precisely, fre-
quently highlighting meaningful chromosomal lesions.11

Whether a systematic screen by high-throughput genomic
tools could usefully improve the early detection of
genome abnormalities is under investigation. The predic-
tive value of the various chromosomal/genomic abnormal-
ities in patients with or without MDS/AML will have to be
carefully evaluated in the long term in large cohorts of FA
patients with respect to the therapeutic options and clinical
benefits. For example, a sole clonal abnormality like 1q+
can be present in a ‘normal’ or non-MDS hypoplastic bone
marrow, and may not necessarily predict a progression
into AML in the following years. By contrast, abnormali-
ties like 7q-, 3q+, RUNX1 or complex karyotype may
encourage a decision to proceed to HSCT.

Conclusions

Recent studies have revealed insights in the pathophys-
iology of the BMF and MDS/AML in Fanconi anemia,
drawing a picture from which emerge genomic instability,
cellular stress, balance of HSC quiescence versus prolifer-
ation/differentiation and senescence, accelerated aging,
and predisposition to clonal evolution. A better under-
standing of the multistep progression towards MDS/AML
in FA patients should be relevant for complex-karyotype
or secondary MDS/AML in older, non-FA patients, for
whom close physiopathological cellular mechanisms are
likely involved.78,79

At the therapeutic level, in addition to prevention from
exposure to exogenous DNA insults, FA patients might
benefit from new treatments aiming to enhance patients’
capacity for detoxifying aldehydes,34 or to inhibit proin-
flammatory cytokines or oxidative stress.59,80 While devel-
opment of gene therapy and IPS cells in FA are still ham-
pered by practical issues,80 the recently acquired insights
into disease pathogenesis also reinforce the view that allo-
geneic HSCT is a radical and curative therapy for severe
BMF and predisposition to MDS/AML in FA patients by
replacing defective cells.77,81 The utility of transplant is
increasing with the use of unrelated and mismatched
donors and improvements in the management of compli-
cations.7,77,82
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Diamond-Blackfan anemia: pathogenesis, management
and development of future therapies

Introduction

Bone marrow failure syndromes consist of
diverse disorders characterized by the dys-
function of bone marrow to produce cells of
one or more blood lineages. In one-third of the
pediatric marrow failure cases the disease is
inherited involving a genetic component caus-
ing the bone marrow dysfunction1. Inherited
bone marrow failure syndromes (IBMFS) usu-
ally present in childhood and are associated
with physical abnormalities and cancer predis-
position. Recent progress in genetics and
molecular biology investigations has revolu-
tionized the understanding of IBMFS patho-
physiology. Many of the genes mutated in
these disorders encode components of funda-
mental cellular processes such as DNA dam-
age repair (Fanconi anemia) or telomere main-
tenance (Dyskeratosis congenita). Diamond-
Blackfan anemia (DBA) is a congenital bone
marrow failure syndrome that is emerging as a
paradigm for diseases associated with defects
in ribosome biogenesis and function. Similarly
to other IBMFS, physical abnormalities and
cancer predisposition are both characteristic
for DBA. However, why defects in ribosome
biogenesis result in anemia, a relatively tissue-
specific phenotype, is intriguing and not per-
fectly understood. 

Clinical symptoms and diagnosis

Diamond-Blackfan anemia is a congenital
bone marrow failure syndrome that manifests
early in life. It classically presents at 2-3
months of age, and the majority of patients
(approx. 90%) are diagnosed during their first
year of life. However, in some rare cases DBA
may present in adulthood.2,3 The main hema-
tology findings at presentation include macro-
cytic anemia, reticulocytopenia and selective
absence of erythroid precursors in an other-
wise normocellular bone marrow.4 Together
with the early onset of symptoms (<1 year),
these criteria have remained the accepted stan-
dard for DBA diagnosis. As a supporting
hematologic feature, the vast majority of
patients have elevated erythrocyte adenosine
deaminase (eADA) activity.5,6 Elevated fetal
hemoglobin is also often observed. Although
DBA is sometimes referred to as pure red cell
aplasia, this term may be misleading since
other hematopoietic lineages may be affected.
Some patients present with a modest neutrope-
nia, thrombocytosis or thrombocytopenia.2

Furthermore, neutropenia and thrombocytope-
nia become increasingly common during the
course of the disease.7

Similarly to other IBMFS, physical defects
and cancer predisposition are characteristic of

Bone marrow failure

A B S T R A C T

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by a
macrocytic anemia, reticulocytopenia and reduction in erythroid precursors in an otherwise normocel-
lular bone marrow. The disease usually presents before one year of age. Fifty percent of the patients
have congenital anomalies. The mainstay of current therapy is corticosteroids and if the patients do
not respond to steroids, chronic blood transfusion therapy is needed. The disease can be cured by allo-
geneic bone marrow transplantation. DBA is a genetic disorder and is inherited in an autosomal dom-
inant manner with variable penetrance in 50% of cases while the remainders represent new muta-
tions. To date, mutations have been identified in 60-70% of DBA patients. Practically all of these
patients have a mutation in or a deletion of, a ribosomal protein gene. Ten different ribosomal protein
genes have now been identified as DBA genes and recently a handful of patients have been found with
mutations in GATA1. Abnormal ribosome biogenesis and ribosomal stress leads to activation of the
tumor suppressor p53. The p53 response appears to be particularly prominent in erythroid progenitors
and may explain many features of the DBA phenotype and symptoms.

Learning goals

At the conclusion of this activity, participants should have:
- learnt the key clinical manifestations, diagnostic criteria and current treatment options for

Diamond-Blackfan anemia;
- got an insight into the molecular and cellular pathogenesis of Diamond-Blackfan anemia and how

mechanism-based therapies may be developed to reduce side effects or cure the disease.



DBA. Congenital abnormalities are present in approxi-
mately 40-50% of the patients.2,3,8,9 The majority of these
involve head and eyes, upper limbs, heart and the geni-
tourinary system. Furthermore, one-third of cases show
retarded growth. Patients with DBA have an increased risk
of developing cancer.10 The mechanism of increased car-
cinogenesis is unknown. The observed-to-expected ratio
of all cancers combined is 5.4-fold higher than in the gen-
eral population with the highest risk for myelodysplastic
syndrome (MDS, 287-fold), acute myeloid leukemia
(AML, 28-fold), colon carcinoma (36-fold) and
osteogenic sarcoma (33-fold). The cancer risks appear
lower than in Fanconi anemia and dyskeratosis
congenital.11 Specific cancer screening approaches may be
difficult to design in practice due to diversity of the can-
cers that develop in DBA. 

For diagnosis, laboratory blood analysis, bone marrow
analysis (aspiration and biopsy) and genotyping are
required (Table 1). The differential diagnosis of DBA
includes other IBMFS and several acquired disorders, for
example, transient erythroblastopenia of childhood and
infections by parvovirus B19.12 Findings from National
Patient Registries in North America and Europe have pro-
vided extensive clinical data and, together with the recent
advances in gene discovery, have provided key clinical
insights.2,3,8,9,13 Detailed and extensive descriptions of the
recommended approach to clinical diagnosis and manage-
ment of DBA have recently been described in the report
from the DBA Clinical Consensus Conference and a
scholarly written “How I Treat Diamond Blackfan ane-
mia” overview.12,13

Current treatment

Corticosteroids form the main therapeutic regimen in
DBA and approximately 80% of the patients initially
respond to this treatment. However, because of the pro-
gressive loss of response or unacceptable side effects, only
half of these patients (40% of total) can be sustained on
corticosteroids.3,13 If the patient responds to corticos-
teroids, an attempt is made to reduce the dose gradually to
reduce side effects that include slow growth rate, cataracts
and demineralization of bone leading to pathological frac-
tures. It is recommended to treat congenital anomalies by
surgery before steroid treatment starts to facilitate wound
healing.13 The remaining patients require chronic transfu-
sion therapy every 3-5 weeks to maintain sufficient hemo-
globin levels (>8 g/dL) that allows for adequate growth
and development, while not suppressing the endogenous
red blood cell production. Chronic transfusion therapy
must be combined with iron chelation to avoid the accu-
mulation of iron in the liver, heart and other organs.
Approximately 20% of the patients enter spontaneous
remission in which physiologically acceptable hemoglo-
bin level is maintained without therapeutic interventions. 

Allogeneic bone marrow transplantation is the only cur-
ative treatment for the hematopoietic manifestation of
DBA, and it is normally considered among the young
patients (<10 years) who are transfusion-dependent and
have access to a matched sibling donor.3,12 However,
although matched sibling donor bone marrow transplanta-
tions have been reported with satisfactory results, trans-
plantation using a matched alternative donor is associated

with a poor outcome.
Numerous alternative therapies (growth factors, pro-

lactin, immunosuppressants) have been applied in the
treatment of DBA but these are not routinely used since
they have either been ineffective or only found to be effec-
tive in rare cases.12,13 Of special interest is the recent case
report demonstrating a complete remission in response the
amino acid L-leucine.14 Supporting this report, therapeutic
experiments with L-leucine improved the erythroid defect
in zebrafish and mouse models for DBA.15,16 With the cur-
rent therapies, the overall survival at over 40 years is
75.1%.3 A high proportion of deaths are treatment-related
and corticosteroid-responsive patients have a significant
survival advantage compared to transfusion-dependent
patients.

Inheritance and genetics of DBA 

The incidence of DBA is estimated to be 5-7 cases per
million live births without ethnic predilection or biased
sex ratio.2,8,9 Almost 50% of DBA cases are familial and
inherited as an autosomal dominant trait with variable
penetrance.6 Family members who share a common genet-
ic alteration may show dramatic variation in the severity
of anemia and treatment response. 

Mutations in or deletions of genes encoding ribosomal
protein (RP) S19, RPS24, RPS17, RPL35a, RPL5, RPL11,
RPS7, RPS10, RPS26 and RPL26 collectively explain the
genetic basis for approximately 60-70% of DBA cases17-25

(Figure 1). Furthermore, alterations in additional RP genes
have been identified in isolated patients, although the
pathogenic significance of these rare variants is not
clear.21-23 All reported mutations are heterozygous, which

| 102 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association

Table 1. Diagnostic criteria, genetic analysis and current ther-
apeutic approaches for Diamond-Blackfan anemia. This is a
simplified overview based on the report from the DBA Clinical
Consensus Conference12 and a recent clinical review.13

Main diagnostic criteria
Age less than one year
Macrocytic anemia with no significant cytopenias
Reticulocytopenia
Normal marrow cellularity with a relatively low number of erythroid precursors

Minor diagnostic criteria
Elevated erythrocyte adenosine deaminase activity
Elevated fetal hemoglobin (HbF)
Congenital anomalies described in classical DBA

Inheritance and genetic analysis
Gene mutation in one of the ribosomal protein genes described in classical DBA
Positive family history (found in 50% of cases)

Differential diagnosis
Other IBMFS: Fanconi anemia, Schwachman Diamond Syndrome,  Dyskeratosis congenita
Acquired disorders: transient erythroblastopenia of childhood, Pearson syndrome
Viral infections, e.g. B19 parvovirus

Current therapies
The natural therapy: remission (20%)
Corticosteroids
Blood transfusion
Allogeneic transplantation (relatively rare, see text)



is consistent with the dominant inheritance pattern.
Twenty-five percent of the patients have mutations in

the gene coding for RPS19 making it the most common
DBA gene. More than 120 unique alterations have been
identified (Available from: www.dbagenes.unito.it
Accessed January 201326). The mutations may completely
disrupt the expression of RPS19, or interfere with the fold-
ing of RPS19 or its assembly into the 40S ribosomal sub-
unit, and thus result in a functional haploinsufficiency.

Nearly all mutations in the other DBA genes are predicted
to cause premature termination, splicing disruption, frame
shifting or complete deletion of one allele, supporting
functional haploinsufficiency as the basis for the disease
pathology.27-29

Recently, patients with GATA1 mutations were identi-
fied in two unrelated families.30 However, the identifica-
tion and phenotypic characterization of additional DBA
patients with GATA1 mutations will eventually determine
whether these patients present ‘classical’ DBA.

Erythropoiesis 

The erythrocyte is the most common cell type in blood.
Mature erythrocytes have a limited life span, approximate-
ly 120 days in humans and 40 days in mice, and they must
be continuously produced in order to renew the red cell
mass. The erythroid lineage consists of erythroid progeni-
tor and precursor cell compartments (Figure 2). Erythroid
progenitor cells are relatively infrequent and can be divid-
ed into the early and late progenitor cells based on their
colony-forming potential in vitro. The early progenitor
cells (burst-forming unit-erythroid, BFU-E) are the first
solely erythroid-restricted cells and give rise to large
multi-clustered colonies.32 BFU-Es also possess a limited
self-renewal capacity. The late progenitor cells (colony-
forming unit-erythroid, CFU-E) give rise to smaller
colonies than BFU-Es. The proliferation and survival of
BFU-Es is mainly dependent on stem cell factor (SCF)
and interleukin-3 (IL-3) signaling, while erythropoietin
(Epo) alone is sufficient to support CFU-Es. CFU-Es dif-
ferentiate into morphologically distinguishable erythroid
precursor cells. The first recognizable precursor, proery-
throblast, undergoes 3-5 cell divisions giving rise to
basophilic, polychromatic and orthochromatic erythrob-
lasts. These differentiation divisions are characterized by a
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Figure 1. The ribosomal proteins mutated in DBA, their fre-
quency and distribution within the ribosomal subunits. The
figure shows the two ribosomal subunits, the large 60S
and the small 40S subunit. Approximately half of the ribo-
somal mass consists of the ribosomal RNA and the other
half of the ribosomal proteins, which are referred to as the
RPL when they are found in the large 60S subunit and RPS
in the small 40S subunit. In approximately 30-40% of
patients the mutation is unknown. RPS19 is by far the
most common disease gene and it is found mutated in
25% of patients. GATA1 mutations are not shown here
since GATA1 is a transcription factor and these mutations
are rare.

Figure 2. Erythroid development and differentiation. Cells of the erythroid lineage can be divided into erythroid progenitor
and precursor cells. Erythroid progenitor cells are distinguished based on their differential growth factor requirements
and colony-forming capacity in vitro. BFU-E progenitor cells are dependent on SCF and IL-3 signaling, while CFU-E progen-
itor cells are solely dependent on Epo. In contrast to the erythroid progenitor cells, erythroid precursor cells are recognized
based on their morphology, which reflects the accumulation of erythroid-specific proteins, decrease in size and nuclear
condensation. Scientific evidence suggests that although there is a proliferation deficiency throughout the hierarchy
including at the level of hematopoietic stem cells and early progenitors, the main deficiency is at the level of the CFU-E
- proerythroblast transition. The arrows indicate at which level of the hierarchy the different treatment modalities act.
Blood and marrow transplantation rebuilds the hematopoietic system from the level of the stem cells and is curative if
successful whereas chronic red cell transfusions just treat the anemia temporarily.  It is known that corticosteroids
increase the self-renewal of BFU-Es and thereby increase the total erythroid output but they may also have additional
DBA-specific mechanisms of action. More detailed knowledge about the mechanism of action may allow a reduction in
the corticosteroid dose by using other drugs that synergize with corticosteroids in combination.31



rapid G1 cell cycle phase, which results in a progressive
decrease in the cell size.33 Simultaneously, maturating pre-
cursor cells undergo alterations in morphology that reflect
the accumulation of erythroid-specific proteins and
nuclear condensation. Orthochromatic erythroblasts with-
draw from the cell cycle and form reticulocytes by extrud-
ing their nuclei. Reticulocytes loose their mitochondria
and ribosomes within a couple of days and mature into
erythrocytes.32 The main intrinsic regulator of erythro-
poiesis apart from the Epo receptor and c-Kit (SCF recep-
tor) is the transcription factor GATA-1.34,35

The hematopoietic defect and cellular 
mechanisms in DBA

The success of bone marrow transplantation and studies
using cultured cells from patients demonstrate the intrinsic
cell nature of the hematopoietic defect in DBA. Erythroid
progenitor cells are usually present, often in normal num-
bers, in the marrow of young patients suggesting that the
main erythroid failure of DBA results from impaired ter-
minal differentiation of erythroid progenitor cells rather
than from their absence.36,37 Consistent with these studies,
Ohene-Abuakwa et al. used a liquid erythroid culture sys-
tem in order to locate the erythroid defect at the onset of
Epo-dependent terminal erythroid differentiation.38

Furthermore, recent studies using mouse models for
RPS19-deficient DBA located the most severe erythroid
defect at the CFU-E-proerythroblast transition, corrobo-
rating the previous findings.39 Some patients develop
hypocellular bone marrow over time and this is often asso-
ciated with neutropenia and thrombocytopenia.7 Although
the frequency of immature hematopoietic stem and pro-
genitor cells in patients appears normal, their proliferative
capacity is significantly lower compared to controls.7,41

These findings suggest that the hematopoietic defect in
DBA involves hematopoietic progenitors or even
hematopoietic stem cells (HSCs) resulting in bone marrow
failure. Supporting these conclusions are recent findings
from an inducible Rps19-deficient mouse model.39 In this
study, transplantation of HSCs derived from mice that had
been transiently exposed to Rps19 deficiency led to signif-
icantly reduced engraftment in the peripheral blood,
demonstrating the irreversible exhaustion of HSCs.39

Disease severity and spontaneous remission

Despite recent advances in understanding the molecular
basis of DBA, the natural course of the disease remains
largely unpredictable. Approximately 20% of the patients
enter spontaneous remission, often during the first decade
of life, in which physiologically acceptable hemoglobin
level is maintained without therapeutic intervention.
Interestingly, there appears to be no clear correlation
between the chance of remission and the type and duration
of the therapy. The failure of the genotype to predict the
hematopoietic phenotype is highlighted by the variable
penetrance of genetic lesions in DBA pedigrees. However,
there is a genotype-phenotype relationship when it comes
to orofacial clefts since these are found in patients with
RPL5 and RPL11 mutations and not in patients with mutat-

ed RPS19.13,29

It is of interest that the vast majority of patients in remis-
sion continue to exhibit elevated eADA and
macrocytosis.2,6 These findings suggest a continuous pres-
ence of the erythroid defect, which is compensated
through extrinsic factors that stimulate the hematopoietic
stem and progenitor cells, leading to increased influx of
cells into the Epo-responsive stage. Indeed, Ohene-
Abuakwa et al. demonstrated a consistent erythroid defect
of patient cells in vitro regardless of the clinical severity.38

Intriguingly, a similar defect was observed when culturing
cells from asymptomatic first-degree relatives who shared
the genetic lesion. Relapses tend to occur under conditions
of hematopoietic stress, such as pregnancy, indicating the
importance of the dynamics of the hematopoietic system
in determining whether the patient is symptomatic or not.41

Presentation of anemia in DBA normally coincides with
the neonatal decline in HSC turnover.42 Dynamics of the
hematopoietic system could also directly influence the
severity of the cellular defect of DBA. This is supported
by the fact that the chance of relapse in remitted patients
appears low, except during stress conditions.

5q minus syndrome

MDS comprise a heterogeneous group of clonal disor-
ders characterized by dysplastic bone marrow and periph-
eral cytopenia. The 5q- syndrome is a distinct subtype of
MDS, defined by an isolated interstitial deletion of chro-
mosome 5q, and is characterized by macrocytic anemia,
normal or elevated platelet counts, dysplastic megakary-
ocytes and elevated risk of AML.43 Most patients respond
to the treatment with lenalidomide, resulting in reduced
transfusion requirement that is often combined with a
complete cytogenetic response.44 The 5q- common deleted
region encompasses forty protein-coding genes.45 By a
systematic targeting of each gene using the short hairpin
RNA (shRNA) technology, Ebert et al. identified RPS14
as the critical gene for the erythroid phenotype.46

Therefore, a similar mechanism underlies the erythroid
phenotype in both 5q minus syndrome and DBA.

The molecular pathology in DBA

With the exception of a few DBA patients with GATA1
mutations, all the identified mutations in DBA are found
in ribosomal proteins. Therefore, defects in ribosome bio-
genesis are considered the key pathogenic mechanism in
DBA. However, it is still not yet fully understood why the
main phenotype, ineffective erythropoiesis, is relatively
tissue-specific since ribosomal proteins have a generic
function in all cell types. Below, we will discuss ribosomal
stress, a possible role for p53, and the regulation of protein
translation as possible molecular mechanisms causing the
DBA phenotype.
Ribosome biogenesis and ribosomal stress

Ribosome biogenesis takes place in a specialized
nuclear compartment, the nucleolus, which is formed
around the actively transcribed rRNA genes. Transcription
of rRNA genes by RNA polymerase I gives rise to a 47S
precursor rRNA (pre-rRNA), which simultaneously asso-
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ciates with trans-acting factors to form the 90S pre-ribo-
some. After a series of remodeling and pre-rRNA process-
ing, 90S pre-ribosome splits into pre-40S and pre-60S
subunits that are exported into the cytoplasm where the
final maturation steps occur.47,48 The modified pre-rRNA
undergoes hierarchical endonucleolytic and exonucleolyt-
ic cleavages, eventually giving rise to 18S, 28S and 5.8S
mature rRNAs.47 Ribosomal proteins assemble with pre-
rRNA in a hierarchical manner and facilitate its process-
ing, nuclear export and cytoplasmic maturation, and defi-
ciency of ribosomal proteins impairs the rRNA processing
at distinct stages.49-51 Perturbations to the dynamics and
flow of this process have been associated with alterations
in the regulation of cell size and cell cycle progression,
leading to developmental defects and increased cancer
susceptibility.52 Pharmacological or genetic disruption of
rRNA transcription and processing has shown to result in
the activation of the tumor suppressor p53.53-56 Similarly,
numerous studies have demonstrated the activation of p53
in response to ribosomal protein deficiencies.57,58 During
normal growth conditions, the activity of p53 is kept low
by the oncoprotein mouse double minute 2 (Mdm2). In the
absence of stress, Mdm2 binds to p53 and functions as an

ubiquitin ligase, targeting p53 for proteosomal degrada-
tion. Various cellular stresses disrupt the interaction
between Mdm2 and p53, resulting in the stabilization and
activation of p53. In case of ribosomal stress, impaired
rRNA synthesis or processing leads to nuclear accumula-
tion of free ribosomal proteins, which are able to bind to
Mdm2 and inhibit its ubiquitin ligase function, resulting in
the accumulation of p53 (Figure 3). Although multiple
ribosomal proteins have been shown to interact with
Mdm2, the recent evidence suggests that only RPL5 and
RPL11, in a mutually dependent manner, are required for
Mdm2 inhibition.58

Disease models suggest a role for p53
Several animal models with reduced expression of ribo-

somal proteins have been generated to define the role of
ribosomal proteins in hematopoiesis and generate model
systems for DBA (reviewed in McGowan and Mason59).
rps19-deficient zebrafish models were generated using
morpholino technology.60,61 These models showed devel-
opmental and hematologic abnormalities. Furthermore,
the loss of p53 rescued the phenotypic abnormalities
observed upon rps19 haploinsufficiency.60 In 2008,
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Figure 3. Ribosome biogenesis, ribosomal stress and development of possible mechanism-based therapies. Transcription
of rDNA by RNA polymerase I gives rise to a 47S rRNA precursor, which associates with trans-acting factors that mediate
a series of chemical modifications and nucleolytic cleavages. This results in the formation of pre-40S and pre-60S ribo-
somal subunits that are exported into the cytoplasm where the final maturation takes place. Ribosomal proteins asso-
ciate with pre-rRNA in a hierarchical manner and facilitate its processing, nuclear export and maturation. Deficiency of
ribosomal proteins impairs rRNA processing (indicated by the red X). Ribosomal stress is believed to be a key pathogenic
mechanism in DBA. During steady state conditions, the levels of p53 are kept low through proteosomal degradation by
Mdm2. Impaired rRNA synthesis or processing leads to nuclear accumulation of free ribosomal proteins, which are able
to bind to Mdm2 and inhibit its ubiquitin ligase function, resulting in the accumulation of p53.58 The figure also shows
three possible mechanistic approaches to treat DBA. Gene replacement therapy will cure the hematologic disease.
Reduction in p53 activity will improve erythropoiesis in DBA although p53 reduction is not without risks. L-Leucine can
activate the mTORC1 pathway. mTORC1 regulates ribosome biogenesis by promoting rRNA and ribosomal protein syn-
thesis and enhancing translation initiation and elongation. Of these three possible approaches, L-Leucine therapy is least
likely to cause severe side effects. Clinical trials using L-Leucine are under way.



McGowan et al. reported a novel mouse model for RPS19-
deficient DBA that presents a missense mutation resulting
in a single amino acid substitution in the Rps19 protein.62

This mutation was embryonic lethal in a homozygous set-
ting. However, the heterozygous mice exhibited dark skin,
retarded growth and a mild macrocytic anemia with a
reduction in erythrocyte number. Importantly, all of these
features were rescued in a p53-deficient background.
RPS19 can be down-regulated in hematopoietic cells
using knockdown technology to generate a DBA-like phe-
notype in vitro.63-65 This approach was taken to generate
mouse models with inducible and graded downregulation
of Rps19.38 Depending on the level of Rps19 downregula-
tion, mice with mild to lethal macrocytic anemia could be
generated. Strikingly, crossing these mice into p53-defi-
cient background almost fully corrected the lethal
hematopoietic phenotype.38

As the studies using DBA animal models demonstrate
an activation of p53 in response to ribosomal protein defi-
ciencies, it is tempting to speculate that the erythroid fail-
ure in DBA patients is caused through p53-dependent
mechanisms. Recently, downregulation of RPS19 or
RPS14 in primary human bone marrow cells was shown to
result in the erythroid-pronounced activation of p53.66

Furthermore, the treatment of bone marrow cells with nut-
lin-3, a compound that activates p53 by preventing its
interaction with Mdm2, led to an erythroid-biased activa-
tion of p53. Finally, inhibition of p53 with a small mole-
cule pifithrin alpha rescued the erythroid defect in RPS19-
deficient and RPS14-deficient human bone marrow cell
cultures. Immunohistochemistry for p53 in the bone mar-
row biopsies from DBA patients demonstrated elevated
levels of p53, although variation was observed in terms of
the intensity and cell type-specificity of p53 staining.66

However, a generic defect in ribosomal biogenesis may
influence the translational apparatus in cells and influence
other regulatory pathways than just p53. 
Translational defects

Ribosomal protein haploinsufficiency has been shown
to result in reduced rate of protein synthesis.67 However,
whether the global reduction in translation contributes to
the severe anemia of DBA is not known. Studies in mice
deficient for Flvcr, a heme exporter protein, have led to a
hypothesis that defective globin synthesis contributes to
the erythroid defect of DBA.68 These findings suggest that
the accumulation of free heme in proerythroblasts is toxic,
raising a hypothesis that the dysregulation of heme synthe-
sis and globin translation, resulting in a transient excess of
free heme, could in part explain the erythroid defect of
DBA.  

Development of future therapies

Lenalidomide
Lenalidomide has proven to be highly effective in the

treatment of patients with 5q- syndrome, causing both
hematologic and cytogenetic responses.44 Although the
underlying mechanism remains elusive, lenalidomide has
been reported to promote the erythroid differentiation of
human CD34-positive bone marrow cells and the produc-
tion of fetal hemoglobin.69 This is due to its ability to stim-
ulate CFU-E progenitor cells, possibly through the modu-

lation the Epo receptor turnover.70.71 As corticosteroids and
lenalidomide promote erythropoiesis at distinct stages, use
of these agents in combination could provide a more pro-
found therapeutic effect in DBA.70

L-Leucine
Recently, based on the theory of inefficient translation

as the underlying cause for the severe anemia in DBA,
Pospisilova et al. reported one patient who became trans-
fusion-independent in response to treatment with the
amino acid L-leucine.14 Similarly, L-leucine administra-
tion alleviated the developmental defects and in some
cases also the anemia of rps19-deficient and rps14-defi-
cient zebrafish models.15 Furthermore, dietary L-leucine
was shown to improve the anemia of Rps19-deficient
mice.16 L-leucine is an essential branched chain amino
acid that plays an important role in the regulation of pro-
tein synthesis, and this response involves the mam-
malian/mechanistic target of rapamycin complex 1
(mTORC1) pathway.72 Thus the enhanced translation of
ribosomal proteins could underlie the therapeutic effect of
L-leucine. Irrespective of the mechanism, several large
clinical trials are now ongoing or about to start. The future
outcome of these trials could be exciting since the side
effects of L-Leucine, if used in the correct dose, are
expected to be relatively modest compared to the potential
toxic effects of corticosteroids. 
Targeting the p53 pathway

Based on the current experimental findings, it is tempt-
ing to speculate that the erythroid defect in DBA is largely
caused through a p53-dependent mechanism. The identifi-
cation of p53 could provide a novel therapeutic avenue for
the treatment of DBA and related disorders. Inhibition of
p53 with a small molecule pifithrin alpha rescues the ery-
throid defect of RPS19-deficient and RPS14-deficient
human bone marrow cell cultures.66 Indeed, a transient
dampening of the p53 pathway could provide a therapeutic
benefit in patients. However, direct interference with p53
raises concerns because of its role as a tumor suppressor.
Strategies targeting disease-specific factors either
upstream or downstream of p53 could provide a more
promising alternative. 
Gene therapy

Gene therapy is the only approach apart from allogeneic
transplantation that can cure the hematopoietic defect in
DBA. In a recent proof-of-principle experiment, the lethal
bone marrow failure in Rps19-deficient mice could be cured
by gene therapy.73 However, as the current therapies, espe-
cially those with corticosteroids, have a relatively good out-
come, moving gene therapy to the clinic will require a care-
ful assessment of the risk-benefit ratio for this approach. We
envisage that the first clinical trials could be applied to
patients with a chronic transfusion-dependent DBA.
Lentiviral vectors, in which the potent spleen focus-forming
vector (SFFV) promoter drives the expression of codon-
optimized human RPS19 cDNA, were used to correct the
DBA phenotype in mice.73 However, for future clinical
application, more moderate cellular promoters must be vali-
dated, as they are potentially safer with regards to the prob-
ability of insertional mutagenesis. Clinical trials for Fanconi
anemia employing similar lentiviral vectors, in which the
PGK promoter drives the expression of FANCA cDNA, are

| 106 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



being conducted.74 However, the elongation factor 1α
(EF1α) short promoter may prove to be an even more viable
alternative.75 Furthermore, a lentiviral vector utilizing the
EF1α promoter combined with the locus control region of β-
globin has been shown to allow a constitutive but erythroid-
pronounced transgene expression.76 The safety and efficacy
of ongoing clinical trials using lentiviral vectors to treat dis-
orders other than DBA will largely determine the future of
DBA gene therapy. Although the follow-up time for these tri-
als is still relatively short, no severe genotoxic side effects
have been reported.77 The development of a human gene
therapy protocol for RPS19-deficient DBA is estimated to
take approximately five years
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Optimizing hematopoetic stem cell transplantation 
for bone marrow failure syndromes

Introduction

Marrow failures include aplastic anemia
(AA), generally considered an autoimmune
disease. This needs to be differentiated from
hypoplastic MDS and PNH with aplasia. A
number of congenital diseases are part of the
marrow failure world. Most prominent are
failures of DNA repair such as Fanconi anemia
and much rarer failure of ribosomal apparatus
e.g. Diamond Blackfan anemia and
Schwachman-Diamond anemia, or of telomere
elongation such as dyskeratosis congenita. In
the latter congenital disorders, hematopoietic
stem cell transplantation (HSCT) is often a
consideration. HSCT will not correct the
underlying congenital disease but can correct
the marrow failure. Indications to transplant
patients with congenital marrow failure and
use of transplant technology should be
reserved for specialized centers because of
susceptibilities to toxicity and secondary can-
cers. This review will, therefore, focus on
acquired marrow failure. Figure 1A and B
shows the absolute numbers of allogeneic
HSCT for marrow failure as reported in the
activity survey of the European Group for

Blood and Marrow Transplantation (EBMT).
Separate lines are drawn for HSCT from sib-
ling and unrelated donors, and separate graphs
for AA and other marrow failure syndromes,
the most important of these being Fanconi
anemia. As is evident, in Europe, there has
been a continuous increase in HSCT for these
indications in the period 2004-2011.

Aplastic anemia (AA) is defined as pancy-
topenia with a hypocellular marrow. The inci-
dence of acquired aplastic anemia in the Western
hemisphere is around 1-2 per million of the pop-
ulation per year, and this is higher in East Asia.
Age distribution shows peaks in children and
young adults, and in patients over 60 years of
age. Patients with AA commonly present with
anemia and hemorrhage, or neutropenic infec-
tion. Diagnosis may not be very clear at the out-
set. Treatment decisions are complex, a watch
and wait strategy is often used initially in cases
of unexplained pancytopenia, but a prolonged
interval from diagnosis to treatment is associat-
ed with worse outcome.1 Prior to treatment, the
patient should be stable in terms of controlling
bleeding and treating infection. Once disease is
confirmed, disease severity has been assessed,
and family typing performed, it is time to initiate
treatment.

Bone marrow failure  

Hematopoietic stem cell transplantation for marrow failure is overall a huge success story of mod-
ern medicine with 70%-90% long-term survival achieved in these patients. First-line treatment for
acquired marrow failure includes immunosuppression with antithymocyte globulin and cyclosporine
as well as marrow transplantation, and decision algorithms are useful to determine appropriate
approaches. A series of prospective and observational studies have determined current standards for
transplantation in patients with an HLA-identical sibling donor, and it is against these standards that
all future progress has to be measured. In recent years, availability of well-matched unrelated donors
has increased dramatically and results of unrelated donor transplantation are approaching those with
sibling donor transplantation. This is in sharp contrast to results in the 1990s. In patients without a
matched sibling or unrelated donor, alternative approaches, including cord blood transplants and
transplants from haploidentical donors, are discussed.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe standard indications and procedures for allogeneic stem cell transplantation in aplastic

anemia;
- determine the appropriate timing to start an unrelated donor search for patients with marrow fail-

ure;
- discuss choice of stem cell source for transplantation in patients with marrow failure.

A B S T R A C T



First-line treatment

The decision for first-line treatment will depend on
patient age, availability of an HLA-identical sibling donor,
and, in part, on the severity of the disease.2 Family HLA
typing is, therefore, recommended at first suspicion of the
disease. The standard first-line treatment for a newly diag-
nosed patient with AA is either allogeneic bone marrow
transplantation (BMT) from an HLA-identical sibling
donor or immunosuppressive therapy (IST) with a combi-
nation of ATG and cyclosporine A (ATG+CSA), with
younger age and more severe disease favoring HSCT, and
older age and less severe disease favoring IST as first-line
treatment. Allogeneic BMT from an HLA-identical sibling
donor is recommended as first-line treatment if the disease
is severe or very severe, and if the patient is younger than
40-50 years of age.

HLA-identical sibling donor transplantation:

Transplantation for AA from an HLA-identical sibling
donor has improved considerably over the years with a
75%-80% chance of long-term cure in more recent
cohorts. Unresolved issues are: graft failure rates of 4%-
14% including late graft failure, and graft-versus-host dis-
ease (GvHD), severe acute GvHD (grade III-IV) (which
appears to occur less commonly now) and chronic GvHD,
which still occurs in 3%-40% of patients. 

There is controversy concerning the upper age limit for
BMT as a first-line treatment as results vary in different
case series. In more recent cohorts of patients reported to
the EBMT, outcome of patients in the 20-30, 30-40 and
40-50 year age groups tend to be similar. The advantage of
treating a patient with IST and transplanting only in case
of IST failure is appealing, but outcome in patients under-
going transplantation after failing IST is worse than under-
going transplantation upfront.3 In this study, the hazard
ratio for mortality was 1.7 in patients receiving a trans-
plant as part of a second-line treatment as compared to
patients with up-front transplantation. For patients with an
HLA-identical sibling donor in whom transplantation is
not used as first-line treatment, BMT remains an option as
second-line treatment in the case of IST failure. 

Optimal transplantation strategies for HLA-identical
sibling BMT are defined. It is recommended to use bone
marrow stem cells rather than G-CSF mobilized peripheral
blood stem cells. In retrospective studies, earlier engraft-
ment occurred with peripheral blood but survival was
worse with more chronic GVHD, using peripheral blood
compared with bone marrow.1,4 Figure 2 shows acute and
chronic GvHD in recipients of peripheral blood and mar-
row transplants from sibling donors.1 The effect of sex-
mismatch between donor and recipient has been evaluated
and shows better survival in patients with donors from the
same gender. Male patients with female donors had risks
of acute GvHD increased by 33% as compared to male-
into-male transplant patients; female patients with male
donors had increased risks of graft rejection.5 The condi-
tioning regimens and GVHD prophylaxis described below
refer specifically to patients with acquired AA. In younger
patients with AA, the standard conditioning proposed is
cyclophosphamide 50 mg/kg x 4 + antithymocyte globulin
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Figure 1. Data from the Activity Survey of the European
Group of Blood and Marrow Transplantation. Frequencies
of allogeneic Transplants for (A) severe aplastic anemia
(SAA) and (B) other marrow failure syndromes (BMF-other)
most of which are Fanconi Anemia.

Figure 2. Sibling donor transplantation, differences in
acute and chronic graft-versus-host (GvHD) disease by
stem cell source comparing bone marrow versus peripher-
al blood.1



(ATG). This regimen is highly immunosuppressive to pre-
vent graft rejection and GVHD. The benefit of adding
ATG to cyclophosphamide is unclear, but a retrospective
study showed better survival in recipients of ATG1 (Figure
3). The recommended post-transplant immunosuppression
is cyclosporine A (CSA) continued for at least 12 months
with slow tapering and short course methotrexate, the
superiority of the combination having been confirmed in a
randomized controlled trial (RCT). Because of unsatisfac-
tory results with older patients (e.g. >30 or >40 years of
age) with sibling donor transplantation, and the fact that
most of these patients received a transplant not as first- but
as second-line treatment having a longer interval from
diagnosis to transplantation and a higher transfusional
load, several groups have tried to modify conditioning by
adding, for example, fludarabine and by reducing the
cyclophosphamide dose. Some interesting series have
been published7 but data are limited.

Unrelated donor transplantation

The outcome of unrelated donor transplants for patients
with AA has improved in the last decade.8,9 Improved selec-
tion of better HLA-matched donors most likely played a
major role. Since this progress in high-resolution typing,
with greater availability of HLA-A, B-, C-, DRB1-, DQB1-
matched donors, the number of unrelated donor transplants
for marrow failure has increased (Figure 1A and B).
Outcomes after unrelated donor transplantation for AA con-
tinue to improve, as shown by the results from the EBMT
database (Figure 4) with 72% 5-year survival in patients
transplanted in the period 2006-2011. Slightly higher sur-
vival rates are reported in phase II studies (73%-80%10,11) as
is often seen when comparing phase II single center data to
data obtained from large observational registries. 

Appropriate timing to start the search for an unrelated
donor is an important issue. In patients who may become
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Figure 3. Survival of patients receiving sibling donor trans-
plantation for aplastic anemia by disease duration prior to
transplant, and use of conditioning regimens with
cyclophosphamide and antithymocyte globulin.1

Figure 4. Survival after allogeneic Transplantation from
unrelated donors in 2000-2205 and 2006-2011.



candidates for unrelated donor transplantation, donor
search should start at diagnosis as response to immune
suppressive treatment may require an appropriate time
interval that will be used to identify an appropriate donor.
Pediatric groups, in particular, discuss up-front unrelated
donor transplantation12 because with the increasing size of
the donor pool, and the increasing proportion of unrelated
donor typed at high-resolution level, the donor search may
take much less time. Indeed, outcomes after unrelated
donor transplantation in children are now similar to those
after matched sibling donor transplantation.

Similar to sibling transplants, outcomes are improved if
marrow is used rather than peripheral blood13 as marrow
failure patients derive little, if any benefit from the higher
T-cell dose found in peripheral blood with the associated
higher risks of chronic GvHD. Optimal conditioning regi-
mens in unrelated donor transplantation are not known.
Increasingly, regimens incorporating fludarabine, ATG or
campath and small doses of total body irradiation (e.g. 2
Gy of TBI) are being used10,14-16 with variable doses of
cyclosphosphamide. An interesting study tested
cyclophosphamide de-escalation15 with toxicity at doses of
over 100 mg/kg and graft failure with doses under 50
mg/kg when used in combination with fludarabine, ATG
and TBI. Similar regimens are used successfully in
patients with congenital marrow failure.17

Transplants from alternative donors

Umbilical cord blood as an alternative source of stem
cells for transplantation has been used in a small number
of patients with AA,18 Umbilical cord blood transplanta-
tion (UCBT) has extended the availability of hematopoiet-
ic stem cell transplantation (HSCT) in the absence of a
suitable donor. Outcome is excellent in the case of identi-
cal sibling cord (a situation that is rare, i.e. child with the
disease of a mother who is pregnant) but less so with unre-
lated cord blood units. Double unrelated cord blood trans-
plantation has been reported in only a few patients with
marrow failure. In a study of 14 patients with congenital
and acquired marrow failure who received double cord
blood transplantation after a median follow up of 23
months, the estimated 2-year overall survival was 80±17%
and 33±16% for patients with acquired and inherited mar-
row failure. Transplantation of two partially HLA-
matched cord blood units thus enables salvage treatment
of high-risk patients. In a series of 71 patients reported as
an observational study,19 with a median age of 13 years,
the cumulative incidence of neutrophil recovery at Day 60
was 51±6% with a shorter time to engraftment with higher
nucleated cell counts (>3.9¥107/kg); the incidence of acute
GVHD was 20±5% and chronic GVHD was 18±5%.
Three year overall survival was 38±6%. Therefore, cord
blood transplantation results are currently not equivalent
to sibling or unrelated donor transplantation and further
studies are needed. Interestingly, however, there is no
direct comparison and it is likely that alternative donor
transplant recipients are not comparable to patients receiv-
ing standard treatment.

In parallel to cord blood transplantation, haploidentical
stem cell transplantation has undergone major modifica-
tions and progress. The advantage of haploidentical stem

cell transplantation is the rapid availability of a one-haplo-
type mismatched donor for almost all patients. The most
commonly used transplant technology is T-cell depleted
grafts with high dose of CD34+ cells.20 More recently,
unmanipulated haploidentical bone transplantation with
post-transplant cyclophosphamide as GvHD prophylaxis
has been reported,21 although few patients with aplastic
anemia have been treated. Problems of haploidentical
stem cell transplantation include non-engraftment, poor
immune reconstitution, and high rates of relapse in
patients with active malignancy at the time of transplanta-
tion. Haploidentical transplants have been used only on an
individual basis in AA and no large studies have been per-
formed. In a series of 19 Chinese patients receiving a com-
bination of G-CSF-primed marrow and G-CSF-mobilized
peripheral blood stem cells from haploidentical family
donors using a conditioning regimen with busulphan,
cyclophosphamide and ATG, all patients engrafted.
Survival was 64% with 56% reported with chronic
GVHD.22 Alternative donor transplantation will continue
to be difficult to study in marrow failure as this is for
patients with rare diseases, and of these, a minority fail
strategies of conventional treatment or transplants using
the more established techniques with matched sibling or
unrelated donors.

Paroxysmal nocturnal hemoglobinuria

Paroxysmal nocturnal hemoglobinuria (PNH) is a dis-
ease with highly variable clinical manifestations and may
resemble aplastic anemia. It is, however, more commonly
a disease with the classical hemolytic or thromboembolic
presentation. A recent comparative study23 in which trans-
planted patients from the EBMT registry have been
matched to patients without transplantation from the
cohort of the French hematologic society, 5-year survival
of transplanted patients was 68±3% in the transplanted
group (54±7% in patients with thromboembolic presenta-
tion, 69±5% in patients with aplastic anemia presentation
and 86±6% in patients with hemolytic presentation).
Patients with thromboembolic presentation did not benefit
from transplantation, whereas in patients presenting with
aplastic anemia, a matched pair analysis could not be per-
formed. The outcome of these patients is, however, similar
to other patients reported to the registries. Interestingly,
most of these patients were treated prior to the availability
of complement inhibitors.

Congenital marrow failure

A considerable number of transplants are performed for
marrow failure other than AA. In the 2011 European
Group for Blood and Marrow Transplantation (EBMT)
activity survey,24 499 allogeneic HSCT were for AA and
177 for other marrow failure syndromes. Most of these
include the congenital marrow failure of Fanconi anemia,
a DNA repair defect disease associated with increased
cancer risks and other congenital defects. The EBMT data-
base contains over a 1000 cases transplanted for Fanconi
anemia. Other diseases are much rarer and include the
Dyskeratosis congenita (a defect of telomere elongation),
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Shwachman-Diamond syndrome, and pure red cell apla-
sia, mainly Diamond Blackfan anemia and few cases of
congenital neutropenia, amegakaryocytic thrombocytope-
nia and others. It is beyond the scope of this paper to
address details of transplantation of these diseases, as each
of these entails particular considerations and transplants
should be performed in specialized centers.  

In a recent survey of patients with Fanconi anemia25 ana-
lyzed 795 patients. Survival at 20 years was 49%; more
recent year of transplant, younger age and marrow as a stem
cell source was associated with better outcome. Chronic
GvHD and secondary tumors were deleterious. In patients
with Fanconi anemia, the choice of conditioning is of par-
ticular importance because of sensitivity to toxicity, chronic
GvHD is poorly tolerated, and secondary tumors, in partic-
ular of the oral cavity problematic. Timing of HSCT for
Fanconi anemia is crucial, particularly in patients with mod-
erately severe marrow failure. Once transformation to MDS
or leukemia has occurred outcome is impaired.26 The choice
of conditioning avoiding TBI, of preferable marrow stem
cell source and of a well-matched donor have been dis-
cussed above. Cord blood transplantation from mismatched
unrelated donors has been used with varying results27,28 in
patients with congenital marrow failure.
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Immune signaling in chronic lymphocytic leukemia

Introduction

CLL is a relatively indolent B-cell tumor
with a variable clinical course. It may be pre-
ceded by B-cell expansions, termed mono-
clonal B-cell lymphocytosis (MBL), a finding
difficult to define, since it includes patients
with early disease and also those who do not
develop overt tumors.1 Even clear cases of
CLL can occasionally regress.2,3 This range of
features. and the fact that many patients
remain untreated, at least for some time,
allows investigation of the pathogenetic steps.
Chromosomal changes are quite limited in
early disease, the most common being deletion
at 13q14, a region which encodes two micro-
RNAs, miR-15a/miR-16-1.4 This deletion can
be detected at the stage of MBL and, since the
miRNAs are apparently negative regulators of
BCL-2, the consequence is to up-regulate
BCL2 expression.5 There may be an analogy
here with follicular lymphoma, where the first
step toward tumor development, insufficient
by itself, is the t(14;18) translocation which
also up-regulates BCL-2 expression.6-8

A further advantage of CLL for the investi-
gator is that, although cases look similar by
routine hematologic investigation, the disease
can be divided into two major subsets. These
are distinguished by the level of somatic

hypermutation (SHM) in the Ig variable (V)
region genes, into so-called unmutated CLL
(U-CLL) (approx. 40% of cases) and mutated
CLL (M-CLL) (approx. 60%).9,10 This feature
indicates that the B cells of origin of the two
subsets had reached distinct points of differen-
tiation. U-CLL is likely to derive from a pre-
germinal center (GC) B cell, whereas M-CLL
appears to have undergone the normal process
of SHM and antigen selection in the GC prior
to transformation. This is not just a biological
curiosity but has profound effects on clinical
behavior, with U-CLL being more aggressive.
Although this is proving clinically useful,
there are some exceptions, such as the relative-
ly rarely used IGHV3-21 gene. Usage of this
gene seems to mark an aggressive tumor even
when classified as M-CLL; however, the
mutational frequency does tend to be quite
low, falling at the border between the two sub-
sets.11

The two subsets are not interconvertible and
use different IGV genes, indicating separate
development. There is differential asymmetry
of IGV (H and L) gene usage, with the most
dramatic being the increased level (20-30%)
of IGHV1-6912 in U-CLL.9,10 Conservation of
HCDR3 sequences is also evident, especially
in U-CLL, and the various conserved
sequences, suggestive of common antigen

Chronic lymphocytic leukemia

Surface Ig (sIg), the key receptor for normal B cells, is retained by the majority of B-cell malignancies.
In CLL, sIgM appears to influence tumor cell behavior via transient engagement with antigen in lymphoid
tissue. Importantly, inhibitors of sIgM-activated intracellular pathways are showing clinical promise.
However, CLL includes two major prognostic subsets that differ in mutational status of the Ig V-genes.
The sIgM of unmutated (U) CLL is less down-regulated by antigen, with cells remaining more responsive
to stimulation in vitro, and possibly in vivo. Downstream effects of sIgM signaling include upregulation
of MYC proto-oncoprotein expression and induction of MYC-regulated targets, including cyclin D2, with
both proteins detected in proliferation centers. Cell survival is also promoted, with inactivation of the
pro-apoptotic activity of BIM(EL) via enhanced phosphorylation. The ability to phosphorylate BIM(EL) was
highly correlated with mutational status and with requirement for treatment. U-CLL also preferentially
expresses CXCR4 and CD49d, both important in migration to tissue. Intraclonal analysis of individual CLL
cases reveals small subgroups with high sIgM/CXCR4, apparently dangerously primed for tissue-based
proliferative stimulation. Unlike normal B cells, this is an iterative process exposing proliferating CLL cells,
especially U-CLL but some M-CLL cases, to further genetic change.    

Learning goals

At the conclusion of this activity, participants should be able to:
- understand the role of the B-cell receptor in CLL and to gain insight into the signals mediated via

engagement of surface Ig;
- use that knowledge to interpret the clinical outcome of BCR pathway inhibitors.
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recognition, have been defined as ‘stereotypes’.13,14 We
used the conserved sequences of the IGHV1-69 gene to
probe for the potential B cells of origin of U-CLL, and
detected them in the normal naïve B-cell population in
blood.15 This has been confirmed by recent gene expres-
sion profiling data, which also found that the cells are
CD5+CD27-.16 The origin of M-CLL is more difficult to
track by V-gene analysis, but GEP suggests that this subset
may be derived from a circulating CD5+CD27+ B-cell pop-
ulation.16 Further differences between the two subsets
have emerged, with ZAP-70 expression detected mainly in
U-CLL.17 The function of this protein in CLL cells
remains unclear but it has potential effects on signaling,18

sIgM endocytosis19 and migration.20 CD38 is also more
often expressed in U-CLL and tends to be up-regulated in
tissue sites, appearing as a marker of cell division and
growth in vivo.21 While these two proteins are useful prog-
nostic indicators, their association with U-CLL underlines
the differential biology of the two subsets. Understanding
this biology, and the changes that occur during circulation
through tissue sites, should reveal new ways of specific
drug targeting of CLL cells.

CLL in tissue sites

CLL cells of both subsets proliferate in tissue sites,
mainly lymph nodes, and migration from blood to tissue is
clearly required. For normal B cells, this involves first,
extravasation from blood vessels via interaction with L-
selectin, chemokines and adhesion molecules, and second,
following chemokine gradients along the fibroblastic
reticular cell network to the follicle (reviewed in 22). If
antigen and CD4+ T cells are engaged, a GC will be
formed and B cells will undergo antigen selection and dif-
ferentiation. The picture for CLL cells indicates exclusion
from follicles, a likely outcome in the absence of cognate
T-cell help.  Exposure to antigen can still occur in the
extrafollicular site, and proliferating CLL cells efface fol-
licular structures, forming loose aggregates containing Ki-
67+ cells together with stromal cells and T cells, termed
proliferation centers.23

The antigens recognized by CLL cells are probably not
a single entity but, from the pattern of follicular exclusion
of tumor cells and from the apparently persistent stimula-
tory effects, they are most likely to be autoantigens, with
several candidates already identified.24,25 One possibility is
that they are not the antigens which stimulated the B cells
of origin, but are cross-reactive substitutes of lower affin-
ity. However, specificity for the initiating antigen may be
retained, as illustrated by the finding that a small number
of cases of U-CLL encoded by the IGHV1-69 gene react
with a phosphoprotein of cytomegalovirus.26 For M-CLL,
a recent analysis found that a proportion of CLL IgM mol-
ecules encoded by the IGHV3-7/IGKV2-24 genes recog-
nized fungal β-(1,6)-glucan.27 Following antigen engage-
ment, CLL cells may proliferate, die or be anergized. Exit
from the lymph node requires desensitization of
chemokine receptors and upregulation of the sphingosine-
1-phosphate receptor. There is some evidence that the lat-
ter may be less efficient in U-CLL.28 It is the cells which
enter the blood and circulate which are usually available
for study and these retain a temporary imprint of events in
the tissue.   

Signaing via the B-cell receptor

The signaling pathways activated in CLL cells by
engagement of sIgM in vitro have been described,29 and
the links between positive signals, downstream events and
biological outcome are summarized in Figure 1. Signaling
may be modulated either positively or negatively by co-
receptors, and can be curtailed either by endocytosis of the
receptor or by intracellular phosphatases. BCR-induced
membrane-proximal events include LYN-mediated phos-
phorylation of Igα/β followed by recruitment of the tyro-
sine kinase Syk. Signal propagation then involves various
effectors, including BTK, PLCg2 and BLNK. LYN-depen-
dent phosphorylation of CD19 also triggers the recruit-
ment and activation of PI3K that plays a central role in
promoting cell survival in CLL. Inhibitors aimed at the
BCR-associated tyrosine kinases LYN (dasatinib), Syk
(fostamatinib) and BTK (ibrutinib, CC-292), or at phos-
phatidylinositol 3-kinase (GS-1101), are all in clinical tri-
als for CLL. The interesting outcome of treatment with the
latter three inhibitors is to reduce lymph node size and
cause a temporary lymphocytosis which generally clears
over time.30 This strongly suggests that chemokine-
induced migration and BCR-mediated events are critical
for maintenance of CLL cells.

BCR-signaling in CLL subsets

The consequence of antigen encounter in tissue sites is
low level proliferation, but also the induction of anergy.
One of the features of anergy in normal human B cells is
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Figure 1. Downstream effects of positive B-cell receptor sig-
naling in CLL.  Activation via the signalosome comprising
LYN, SYK, BLNK, BTK, PLC-g2 and PI3K, leads to multiple
downstream effects, including Ca2+ mobilization, ERK1/2
phosphorylation, upregulation of MYC, and phosphorylation
of BIM (EL), with effects on a range of cell functions.



downregulation of expression of sIgM, but not of sIgD.31

This ‘endocytosis in vivo’ is evident in blood cells of both
U-CLL and M-CLL, and the fact that it is antigen driven
is clear from the finding that sIgM expression can recover
in vitro.32 Recovery argues against the concept that CLL
cells are responding to neighboring IgM-derived peptides
either in cis or in trans,33 unless that interaction is distinct
from the downregulation of sIgM. Reversal of antigen-
induced changes affecting the N-glycosylation status of
the sIgM is also apparently occurring to variable extents in
vivo.34 However, there is a difference between U-CLL and
M-CLL in that signaling ability as measured in vitro by
intracellular Ca+2 mobilization or by ERK1/2 phosphory-
lation is higher in the former, due either to a weaker aner-
gizing signal in the tissue, or to a more rapid recovery
from the signal. The outcome is retention of signal capac-
ity by U-CLL cases32 and this has clinical significance.35 It
may be that this subtle difference accounts for the differ-
ential clinical behavior of the two subsets.

The functional significance of positive BCR signaling
can be assessed by analyzing downstream events (Figure
1). We have detected BCR-mediated upregulation of MYC
proto-oncoprotein expression and induction of MYC-reg-
ulated target genes including cyclin D2,36 with both pro-
teins detected in proliferation centers.37 This induction is
relevant since MYC is pivotal for controlling cell prolifer-
ation, apoptosis and metabolism.38 Pathways to increased
cell survival are BCR-mediated increase of the anti-apop-
totic MCL1 protein and inactivation of the pro-apoptotic
activity of BIM(EL) via enhanced phosphorylation.39 The
ability to phosphorylate BIM(EL) was highly correlated
with mutational status and with requirement for
treatment.39 Interestingly, this also appeared to identify
cases of M-CLL which progressed. These findings indi-
cate that BCR engagement can lead to expression of func-
tionally important molecules, preferentially in U-CLL,
and that this is occurring in tissues.

Expression of CXCR4 in CLL

Trafficking of CLL cells through tissue sites is of obvi-
ous importance and the complex array of interacting mol-
ecules involved has been elegantly reviewed.40

Chemokine receptors are involved and CLL cells express
a range of these including CXCR4, CXCR5 and CCR7,
which bind to CXCL12 (SDF-1), CXCL13 (BCA-1) and
CCL19/21, respectively, all secreted by stromal cells.
CXCR4 expression in CLL is labile and rapidly down-reg-
ulated by its ligand CXCL12, as expected for a receptor
which has to respond to a chemokine gradient. Once in tis-
sue sites, CXCL12, held on stromal cell surfaces by bind-
ing to heparan sulphate, stabilizes the gradient, so that
cells can migrate in an orientated manner.41 Consistent
with this interaction, expression of CXCR4 is lower in tis-
sue sites than in blood.42 Our reciprocal finding is that
CLL cells in blood rapidly increase expression of CXCR4
when incubated in vitro in the absence of ligand (data not
shown). Even though expression of CXCR4 is labile, a
higher expression on circulating cells has been found to be
associated with stage IV disease42 and correlates negative-
ly with survival.43 In the overall analysis, although most
cases of U-CLL expressed higher levels, there was no sig-
nificant correlation with mutational status.  In common

with some other features, this might be due to heterogene-
ity within M-CLL, since analysis of this subset alone
revealed a negative correlation with survival (CS Pepper
and FK Stevenson, unpublished observations, 2013). 

Intraclonal subgroups within CLL cases

Expression of sIgM clearly varies within CLL cases and
we used non-endocytosable Dynabeads covalently linked
to F(ab’)2 anti-IgM to probe this heterogeneity. When we
exposed the CLL cells to a 2:1 ratio of beads:cells, we
were able to separate the clones into 4 major intraclonal
subgroups (SG 1-4) of increasing sIg expression (Figure
2). As expected, signaling mediated by the bead-bound
anti-IgM, detected by phosphorylation of ERK1/2 or
PLCg was highest in the small high sIgM subgroup, SG4.
It was inhibitable (75-100%) by the BTK inhibitor ibruti-
nib. SG4 also had a higher expression of CXCR4.
Interestingly, the lowest subgroup (SG1) included the Ki-
67+ population, leading to the suggestion that these are
cells that have divided, presumably in tissue sites, and
then entered the circulation as an ex-proliferative popula-
tion. The fate of cells in SG1 could be apoptosis, or sur-
vival with re-expression of sIgM and CXCR4. Recovered
cells could potentially repopulate the small CSG4 popula-
tion of potentially dangerous cells ready for migration to
tissue and for BCR stimulation. SG1 appears to relate to
that identified by (2)H-labelled DNA, which was also
CXCR4 (dim).44 Although sIgM expression was not ana-
lyzed in that study, there was a CXCR4 (bright) population
which was CD5 low. In a preliminary analysis, expression
of CD5 on SG4 was, in fact, higher than in SG1; this sug-
gests that our clonal dissection based on sIgM is revealing
different subpopulations.

Functional linkage between sIgM and CXCR4

Functional connection between sIgM and CXCR4 is
evident from the co-downregulation of expression of the
two molecules on BCR engagement.45 The loss of CXCR4
expression also occurred using solid phase anti-IgM46

which is unlikely to endocytose and provides a persistent
signal. In this case, there was a concomitant decrease in
migration to CXCL12. However, although the weaker sig-
nal mediated by soluble anti-IgM also decreased expres-
sion of CXCR4, migration was increased rather than
decreased.47 While functional outcome remains uncertain,
both groups show that BCR-mediated signals can affect a
remote receptor. CXCR4 is not the only receptor affected
by BCR signaling since expression and function of the
integrin VLA-4 α4β1 (CD49d/CD29) is also down-regu-
lated.48

Receptor crosstalk in anergic B cells and in
CLL cells

The influence of BCR engagement on CXCR4 in CLL
cells is reminiscent of crosstalk described in normal B
cells anergized by chronic engagement of the surface Ig by
self antigen. The anergic state in normal B cells involves
direct effects on the BCR with downregulation of sIgM,
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Figure 3. A working model of the dynamics of the B-cell receptor in CLL.  Interaction with antigen and with microenvi-
ronmental elements occurs in tissue sites and activates proliferative and survival events, but also can lead to anergy.
Downregulation of sIgM and CXCR4, apparently greater in M-CLL, is followed by release into the blood and recovery of
expression. Subgroup 4 is a small population within each CLL clone which appears most recovered and primed for re-
entry to tissue. BTK inhibitors will affect both BCR signaling and chemokine-induced migration. 

Figure 2. Functional analysis of intraclonal subgroups. (A) Separation of CLL cells from a representative case into sub-
groups (SG), based on the ability of CD19+ cells to bind beads coated with (Fab’)2 anti-IgM. (B and C) Phosphorylation  of
PLCg (B) or ERK1/2 (C) induced by binding of beads for 30 min at 37°C, with levels at O°C subtracted. (D)  Expression
of CXCR4 (MFI) detected by FACS, and (E) percentage of Ki-67-positive cells, in SGs from individual cases.



but not sIgD,31 exactly as seen in CLL cells.32 However,
anergy also involves a more global indirect inhibitory
influence on other remote receptors. This trans-inhibition
is known to affect chemokine receptors such as CXCR4
and can occur by downregulation of receptor expression or
by reduction in function. Evidence from mouse models
points to the inositol phosphatase SHIP-1 as a major medi-
ator of these effects.49 In a preliminary study of CLL,
SHIP-1 levels, together with activating phosphorylation,
were found to be higher in ZAP-70-negative (presumably
mainly M-CLL) cases.50

Conclusions

The unfolding story of CLL is an example of how bio-
logical understanding can inform clinical strategies. The
B-cell receptor is now center stage, both as a driver of
tumor cell responses and as a target for inhibitory drugs.
Perhaps because of this, there is a multitude of papers
describing components of the intracellular pathways, and
the ability of drugs to inhibit these. Since tissue-based
events are of obvious importance,51 and appear to be
affected by the drugs, there is interest in the cell surface
molecules involved in migration and tissue location as
well as in the interactions operating in the microenviron-
ment.52 Genomic studies and deep sequencing are also
revealing details of chromosomal lesions, and locating
significant mutations which could affect disease develop-
ment and progression.53 It is clearly impossible to review
this vast and expanding literature. Instead, this
Educational Review provides a synthesis of how the BCR
might be influencing tumor behavior. An analogy with
normal anergic B cells can be drawn, recognizing that
these would be susceptible to death due to high levels of
pro-apoptotic BIM.54 The key to survival of anergized
CLL cells is likely to be the increase in BCL-2 which
opposes the action of BIM by sequestration.55 Targeting of
BCL-2 is, therefore, another attractive therapeutic
approach. However, clinical effectiveness of an inhibitor,
navitoclax (ABT-263), in CLL was limited by its effects
on BCL-X(L) which led to on-target  thrombocytopenia.56

A modified version (ABT-199), more specific for BCL-2,
is now being tested with encouraging preliminary
results.57

Biologically, U-CLL and M-CLL are different and
reflect the properties of their cell of origin. Clearly, anti-
gen-induced anergy is more complete in M-CLL, but this
subset is particularly heterogeneous both in sIgM expres-
sion and in clinical behavior; therefore, more insight into
the reasons for this is required. It is the tumor cells that
escape from anergy and are open to positive BCR signal-
ing which represent the challenge. However, CLL is not a
static disease, since cells engage antigen in tissue sites,
proliferate and then exit to blood where they recover their
potential to respond (Figure 3). These processes are
accompanied by many reversible phenotypic and function-
al changes making investigation of circulating populations
difficult to quantify. This iterative process appears to
depend on interaction with an autoantigen and it is possi-
ble that CLL cells are selected for these specificities and
for their ability to respond in this way. It will be interesting
to look for any flaring effect on CLL of re-exposure to the
initiating antigen, such as the fungal glycan described for

M-CLL.27 Paradoxically, it might be the success of the
new drugs in the clinic which will close down the investi-
gations of the natural pathogenesis of CLL. Hopefully, it
will reveal the major pathways activated via the BCR that
are successfully subverted by malignant B cells.
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Do we need novel prognostic markers?  

Why do we need prognostic factors?

The introduction to the majority of papers
on chronic lymphocytic leukemia (CLL)
includes a statement on the heterogeneity of
the disease both in terms of its natural history
and the variable outcome of patients receiving
identical treatments. This heterogeneity has a
number of causes. It partly reflects the arbi-
trary time of diagnosis, as more than 80% of
patients are identified following a routine
blood count performed for an incidental rea-
son. Heterogeneity between patients, includ-
ing genetic factors, age at diagnosis and the
presence of co-morbidities, is a further potent
factor accounting for variable outcomes.
However, even among fit, younger patients
with a similar tumor burden, differences in the
rate of disease progression and response to
therapy persist. This has provided the stimulus
for identifying both prognostic factors
(defined as those which distinguish the clinical
outcome of patients in the absence of any
future therapies) and predictive factors (those
which identify patients who will or will not
derive substantial benefit from treatment). The
potential benefits of these factors are well rec-
ognized. For patients with no immediate indi-

cation for treatment, they can provide informa-
tion about the likelihood of their condition
subsequently affecting their quality of life
and/or requiring treatment. They can inform
the need for and frequency of follow up and
can identify patients at high risk of disease
progression who may be suitable for trials of
early treatment, especially with novel agents
that have a low risk of both short- and long-
term toxicity. In contrast, predictive factors
can be used to influence the nature, dose and
duration of treatment and avoid the use of
either ineffective or excessively toxic therapy.
They also enable patient stratification within
clinical trials to ensure compatibility between
patient groups.

Why are so few prognostic/
predictive biomarkers used 
in routine practice?  

Despite the enthusiasm for research into
prognostic factors and the number of papers
published, it is salutary to reflect that less than
1% of published cancer biological factors
(biomarkers) enter clinical practice. This is
also evident in CLL in which TP53 loss or
mutation is currently the only biomarker rec-

Chronic lymphocytic leukemia 

Factors able to predict the rate of disease progression and/or response to treatment are particularly
valuable in heterogeneous diseases such as chronic lymphocytic leukemia (CLL). Although many such
factors have been identified in CLL, current management is predominantly based on clinical factors,
and loss or mutation of the TP53 gene is the only biomarker recommended for routine use. Although
many other potentially valuable biomarkers have been reported, evidence for clinical utility is fre-
quently lacking, often due to lack of precision. Novel markers, especially acquired genomic abnormal-
ities and detection of minimal residual disease, offer the prospect of individualized patient manage-
ment but their eventual role will require evaluation in large validated studies and will also depend on
the effectiveness of emerging novel therapies.

Learning goals

At the conclusion of this activity, participants should know that:
- to be clinically useful, prognostic factors must predict the natural history and/or response to treat-

ment of individual patients with a high degree of accuracy;
- currently, patients should be screened for a TP53 abnormality prior to treatment with standard

chemotherapy or chemo-immunotherapy regimens;
- a panel of biomarkers including IGHV sequencing, CD38 expression and a screen for 11q loss and
TP53 abnormalities can provide additional prognostic information in patients with early stage dis-
ease;

- in the future, screening patients for driver mutations pre-therapy and at relapse, and testing for
minimal residual disease post therapy offers the potential for personalized treatment.  

A B S T R A C T



ommended for routine clinical use.1,2 The journey between
an initial exploratory study indicating a possible associa-
tion between a biological factor and a clinically important
outcome and its routine clinical application is both long
and arduous. Figure 1 describes the various steps involved
in evaluating novel biomarkers. There are many reasons
why initially promising biomarkers are either not adopted
into routine practice or subsequently lose their value.3
Many studies suffer from incomplete or flawed evaluation
due, for example, to problems with study design, statisti-
cal methods, data analysis or reporting biases although,
paradoxically, the value of the most powerful prognostic
markers may be evident even from imperfect studies. A
further problem is failure to demonstrate clinical utility
despite evidence for biological, analytical and clinical
validity. This in turn has a number of possible causes. 1)
Many prognostic factors lack precision such that a single
or group of prognostic markers may enable the subdivi-
sion of  patient populations into risk groups but do not
predict with sufficient accuracy the outcome of an individ-
ual patient. This is especially important for predictive
markers. 2) There may be a surfeit of markers providing
comparable information such that the new marker has no
added value. 3) The introduction of a new therapy may
obviate the need for a predictive biomarker for a previous
therapy. 4) Despite predicting a poor outcome, there may
be no good alternative treatment. 5) Finally, the inability
to demonstrate both validity and utility may also reflect
difficulties in obtaining funding for prognostic marker
studies and in overcoming regulatory hurdles. 

These problems are well documented and considerable
effort has been and continues to be expended on measures
to overcome them and avoid the expenditure of time,
expertise and money on prognostic markers that have a

very small chance of being clinically useful.4-11

These initiatives include:
- the publication of standards for the reporting of bio-

marker studies (Remark) and sample collection and
storage (BRISq) with shared responsibility between
researchers, editors and funders to ensure these recom-
mendations are implemented;  

- the use of comparative effectiveness research utilizing
‘real-world data’ and ‘patient-reported outcomes’ to
supplement conventional clinical trial data. Randomized
clinical trials (RCT) are indispensable for evaluating
novel agents and have been improved by the introduc-
tion of adaptive designs. However, too many new bio-
markers are being identified for them all to be evaluated
in RCTs and the latter frequently have restricted entry
criteria such that patients who may benefit from novel
therapies are excluded from them; 

- the creation of a regulatory and funding environment
that would promote collaboration among national and
international research groups, facilitate sample
exchange between cell banks, and enable large well con-
ducted and, ideally, prospective studies with external
validation to be undertaken; 

- a recommendation to establish an International registry
of biomarker studies analogous to the clinical trials reg-
istry to avoid duplication of studies.
An additional and sometimes neglected issue is to

ensure that prognostic information given to patients is
done so in a comprehensible and compassionate manner.12

Current use of prognostic and predictive 
factors in CLL 

The current management of CLL routinely utilizes a
series of prognostic and predictive factors that are com-
monly classified as patient, disease or treatment-related.
Patient-related factors include age, performance status and
co-morbidities, and can either directly affect overall sur-
vival or limit the use of effective therapies. Disease-relat-
ed factors include tumor burden, marrow failure, the rate
of disease progression, immunodeficiency, lymphomatous
transformation, and loss/mutation of the TP53 gene, while
treatment-related factors include the type of treatment, and
the degree and duration of response. 

Although useful, the factors listed above have important
limitations. Measurement of tumor burden and marrow
failure encapsulated in the Binet and Rai staging systems
have been the main tools for predicting outcome in CLL
and remain key elements in the current International
Workshop on Chronic Lymphocytic Leukemia (IWCLL)
guidelines on indications for treatment. However, both
staging systems are insensitive to the heterogeneity within
cases presenting with a low tumor burden and are poor
predictors of response to treatment. TP53 loss /mutation
identifies a group of patients who fail to benefit from treat-
ment with alkylating agents, purine analogs with or with-
out anti-CD20 antibodies and for whom alternative treat-
ments are recommended. However, only approximately
50% of patients refractory to a purine analog-containing
regimen have a TP53 abnormality.13 In addition, there is
heterogeneity among patients with a TP53 abnormality in
that some are unresponsive to treatment while others
respond but have a short progression-free survival (PFS)
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suggesting that other factors such as clone size, the site
and/or functional consequence of the TP53 mutation, or
co-existing genomic abnormalities may be important.
These observations highlight the potential value of better
prognostic and predictive factors.

The potential role for new prognostic and 
predictive markers in CLL

Advances in the understanding of the biology of CLL
have highlighted the importance of the cell(s) of origin,
the ability of leukemic cells to respond to antigen, the
interaction of leukemic cells with their microenvironment,
and the acquisition of genomic abnormalities as key fac-
tors determining the rate of disease progression and
response to therapy. A list of biomarkers frequently meas-
ured in patients entered into clinical trials (B2M, IGHV
mutational status and IGHV3-21 use, CD38 and ZAP70
expression, fluorescence in situ hybridization (FISH) for
chromosome 11q, 13q, 17p loss and 12 gain using the
Dohner hierarchical model), together with some of the
more recently described markers and methods for their
detection (serum free light chains,14-16 gene mutations,17-20

genomic complexity,21 epigenetic abnormalities,22-26 gene
expression,27-31 telomere abnormalities,32-35 BcR stereo-
typy36,37 and functional assays38-41) is given in Table 1.
Recently, many excellent reviews have covered both the
range and potential use of biomarkers in CLL.42-46 I will
briefly review recent data on novel genomic abnormali-
ties, summarize the results of studies using both estab-
lished and newer prognostic and predictive markers, and
then consider the role of minimal residual disease (MRD)
detection. 
Acquired genomic abnormalities

The application of single nucleotide polymorphism

(SNP) and comparative genomic hybridization  (CGH)
arrays and next generation sequencing (NGS) technologies
to CLL has enabled high-resolution genome-wide screening
for genomic loss, gains, rearrangements, loss of heterozy-
gosity, gene mutations, abnormal DNA methylation and
aberrant transcription. Although the number of genomic
abnormalities per case detected in CLL is low compared to
some other hematologic malignancies and solid tumors,
novel prognostic indicators are being identified. Recent
SNP array studies indicate that gains of 8q24 or 3q26.3
involving the PIK3CA gene, genomic complexity and chro-
mothripsis may all have prognostic or predictive signifi-
cance in univariate analysis.47,48 NGS studies on small dis-
covery cohorts has revealed an increasing number of novel
mutations in CLL clustered within well-defined pathways
such as NOTCH, WNT, NFKB, TLR and BcR signaling,
DNA repair and RNA splicing. Targeted resequencing of
the commoner mutations, involving the NOTCH1,
SF3B1and BIRC3 genes in larger cohorts consistently
shows associations with poor outcome in univariate analy-
ses.49-52 These studies also enable the prognostic value of
established genomic abnormalities, such as deletions of 13q
and 11q, to be refined and show that clone size, deletion size
and mutations of genes on the remaining allele may all have
prognostic significance.  
Clonal evolution

Sequential cytogenetic and/or FISH studies demonstrat-
ed clonal evolution in up to 30% of patients, indicating
that heterogeneity exists not only between patients but
also between leukemic cells from the same individual. A
linear pattern of evolution was usually observed in which
new subclones show additional abnormalities while retain-
ing those present in the original clone. Clinically, both
clonal evolution and genomic complexity have been asso-
ciated with poor outcome independent of a TP53 or 11q
abnormality. Newer technologies have provided a more
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Table 1. Biological prognostic markers in CLL.

Serum markers B2M, STK, sCD23, sFLC

Genomic abnormalities Copy number variation del 13q, del 11q, p53 loss, gain8q24, +12
Genomic complexity
Chromothripsis
Genetic mutations TP53, ATM, NOTCH1, SF3B1, BIRC3
Gene SNPs

DNA methylation Global arrays
Specific genes ZAP 70

Gene expression mRNAs CLLU1, LPL, AID
miRs 21, 29c,34a, 181b,223
Protein CD38, CD49d, CD69, ZAP70, TCL1
Global assays Gene expression profiles, proteomics

IGVH genes Mutational load, VH gene usage, stereotypye

Telomere abnormalities Telomere length
Telomerase activity

Functional assays BCR, CD40 signaling
P53 function



accurate picture of the incidence and patterns of clonal
evolution in CLL.53-55 Comparable to other tumor types, a
branching pattern of evolution is frequently observed in
which small subclones present early in the disease may
emerge as dominant clones or subclones following therapy
or at transformation to diffuse large B-cell lymphoma
(Figure 2).  

Schuh et al.56 performed whole genomic sequencing on
peripheral blood leukemic cells and buccal cells from 3
patients at five separate time points for a period of up to
seven years. All patients received several courses of ther-
apy, and based on standard biomarkers all would have
been predicted to respond to standard chemo-immunother-
apy. In each case, driver mutations were found in all cells
(representing founder events) and also in emerging sub-
clones. Interestingly, the relative frequency of various sub-
clones prior to therapy and following relapse varied
among cases. In one case, the predominant pre-treatment
clone was almost completely replaced, in relapse, by a
subclone that was present as a small subpopulation pre-
treatment, while in another patient, all five subclones pres-
ent pre-treatment re-emerged following therapy.

Landau et al.57 performed whole exomic sequencing and
SNP arrays in 149 patients with CLL. Twenty putative
cancer driver genes were identified of which trisomy 12,
del 13q and mutations of MYD88 were present in the
majority of cells indicating that these were early events in
leukemogenesis while mutations of ATM, TP53 and

SF3B1 were present only in subclones consistent with
their acquisition later in the course of the disease.
Subclonal mutations were associated with a shorter time
from sample collection to first therapy and shorter PFS
indedendent of IGHV mutational status, del 11q or TP53
loss. Among the 18 cases tested sequentially clonal evolu-
tion was detected in 10 of 12 who received intervening
therapy but in only one of 6 who were not treated.
Subclones present pre- treatment tended to become clonal
on re-testing post therapy.  

Studies performed in CLL and other malignancies have
also found subclones emerging post therapy that could not
be detected earlier in the disease, indicating that treatment
itself may be mutagenic. These types of study require
replication in larger cohorts, both at diagnosis and within
clinical trials, and have important implications for the use
of genomic screening as a prognostic and predictive mark-
er. Although clonal evolution is most often detected in
patients who relapse following treatment, it also occurs in
untreated patients and can limit the ability of genomic
screening at a single time point to predict the long-term
natural history of the disease. Whilst clonal evolution is
more common in patients with unmutated IGHV genes, a
TP53 abnormality or deletion of 11q, the mechanism(s)
underlying genomic instability in an individual patient is
frequently unclear. Of the many factors that have been
associated with genomic instability, expression of AID58

and short telomere length34,35 are promising candidates. 
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Figure 2. (a) Tumor slowly increasing in size. (b) Tumor increasing in size and acquiring genomic abnormalities sequen-
tially (shown by colored circles), given rise to multipe sub-clones. (c) Tumor unchanging over time. (d) Post therapy , MRD
small resisant sub-clones remain (e) At relapse resitant clones expand and new sub-clones may emerge.



A recent study suggests  that very short telomeres
detectable using the STELA assay may be a more power-
ful predictor of TTFT than established biomarkers (D
Baird, personal communication, 2013). For patients
requiring initial or subsequent treatment, screening for
recurring genomic abnormalities and detection of sub-
clones pre-treatment, at relapse and conceivably in MRD
positive disease post-treatment, may have implications for
the choice and duration of treatment, particularly if thera-
pies targeted to specific genomic abnormalities become
more widely available.59,60

Role of predictive markers
Clinical and biomarkers have been evaluated both retro-

spectively and in phase III trials for their ability to predict
treatment response, progression-free (PFS) and overall
survival (OS). In the UK LRF CLL4 trial61,62 which ran-
domized 777 patients to fludarabine alone, in combination
with cyclophosphamide or to chlorambucil, 3 risk groups
were identified: poor risk (6%) with  TP53 loss >10%;
intermediate risk (72%) without TP53 loss and with at
least one of: unmutated IGHV genes and/or IGHV3-21
gene usage, 11q deletion, β2M >4 mg/L; good risk (22%)
with mutated IGHV genes and none of the above factors.
Neither CD38 nor ZAP70 expression retained prognostic
significance in multivariate analysis, consistent with other
studies suggesting that markers reflecting cell activation
and proliferation are more predictive of TTFT than out-
come following treatment (see below). The phase III
GSGCLL8 trial63 randomized 817 previously untreated,
predominantly Binet stage B/C patients to receive FC with
or without rituximab (FCR). In a multivariate analysis,
age, gender, FCR treatment, sTK, β2M, unmutated IGHV
genes and del(17p) were all independent factors predicting
PFS or OS. Of particular interest was the observation that
del(11q) was not associated with shorter PFS or OS in the
FCR arm. The predictive value of TP53 mutations has
been confirmed in both the UK CLL4 and GCLLSG CLL4
studies64,65 and in the UK CLL4 trial, patients with ATM
loss and mutation had a shorter PFS and OS than cases
with monoallelic ATM abnormalities.66.In the UK CLL4
trial, NOTCH1 and SF3B1 mutations were detected in
10% and 17% of patients, respectively.  Both were inde-
pendent factors for PFS and OS, but TP53 abnormalities
remained the strongest adverse prognostic factor.67

Similarly, NOTCH1 and SF3B1 mutations were found in
10% and 18.4% of patients in the GCLLSG CLL8 trial and
both were independent markers for PFS. NOTCH1 muta-

tions appeared to identify a subgroup of patients who did
not benefit from the addition of rituximab to FC.68

Neither TP53, NOTCH1 nor SF3B1 mutations affected
OS in patients with fludarabine-refractory CLL treated
with alemtuzumab in the GCLLSG 2H trial,69 nor those
receiving allogeneic transplantation in the GCLLSG
CLL3X trial,70 highlighting the importance of evaluating
predictive markers within a clearly defined clinical con-
text. 
Role of prognostic markers 

Many studies have sought to identify factors that predict
time to first treatment (TTFT) and/or overall survival from
diagnosis, especially for patients with no immediate indi-
cation for treatment. Table 2 lists the ‘established’ prog-
nostic factors that have remained independent markers for
TTFT in recent publications.72-76 These studies differ in a
number of important respects, such as whether they
include all or only early stage patients and whether they
are derived from a local community or referred to a spe-
cialist center. But a number of interesting points emerge.
1) Only a single factor (IGHV mutational status) is consis-
tently represented among all 6 studies. 2) TP53 status
appears to be less important as a prognostic than a predic-
tive marker, partly reflecting a subgroup of early stage
patients with TP53 abnormalities and mutated IGHV
genes who have stable disease.77,78 3) The Rai staging sys-
tem provides prognostic information in patients with Binet
stage A disease. 4) Easily measured parameters such as B-
cell count and lymphocyte doubling time retain prognostic
significance in multivariate analyses that include large
panels of biomarkers (Table 2).  

Although the panel of markers used in the above studies
can identify the majority of patients at high risk of early
progression, they are less useful for distinguishing
between patients (most of whom have mutated IGHV
genes) destined to have either stable or slowly progressive
disease. Preliminary studies of newer biomarkers indicate
that they may be clinically useful predictors of progressive
disease. Expression of CD38, and the more recently
described markers, CD49d30 and CD69,31 reflect cellular
activation and both recent cell proliferation and a higher
incidence of genomic abnormalities are associated with
cells expressing CD38.79,80 It is, therefore, unsurprising
that their expression correlates with disease progression.
However, there is still uncertainty as to the level of expres-
sion that best predicts outcome and expression of both
CD38 and CD49d are higher in patients with trisomy 12,
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Table 2. Independent risk factors for TTFT in multivariate analyses.

Study N. of patients Stage Rai stage ALC B2M IGVH CD38 ZAP-70 del 11q del 17p Other

Shanafelt71 2010 585 all √ √ N/A √ √ X X X

Wierda72 2011 687 all X X X √ X X √ √

Pepper73 2012 1154 A N/A N/A N/A √ √ X X X ≥3 node sites, LDH

Bulian74 2012 291 A< 70 yrs N/A X √ √ √ X √ X Age, LDT

Molica75 2012 328 A √ √ √ √ X X X X

Scarfo76 2012 614 Rai 0 cMBL N/A √ N/A √ X N/A X X B-cell count >10.37x109



including some with stable disease.81 Approximately 30%
of cases have closely related (stereotyped) BcR sequences
and several subsets show characteristic antigen reactivity,
gene expression and epigenetic profiles and clinical
behaviour.36,37 Larger studies are in progress to determine
whether stereotypes are independent markers of disease
progression. Recently, the prognostic significance of
NOTCH1 and SF3B1 mutations has also been evaluated in
retrospective studies of patients at diagnosis.82,83 Although
the incidence of mutations is lower than in patients with
advanced disease, they are independent factors for TTFT
and OS, and enhance the prognostic value of the Dohner
hierarchical model. As an example, Rossi et al.84 were able
to identify a subgroup of patients with del13q as their only
abnormality whose 10-year survival was similar to that of
the matched general population.

Evidence that biomarkers can identify patients who ben-
efit from early treatment awaits the results of randomized
studies, such as the CLL7 trial of the German and French
CLL study groups, in which Binet stage A patients with a
high risk of disease progression (defined as having at least
2 of the following 4 parameters: sTK >10U/l, unmutated
IGHV genes, del11q, del17p, trisomy12 or a lymphocyte
doubling time of <12 months) were randomized to obser-
vation or treatment with FCR.84 It is important to recog-
nize that markers predicting TTFT based on IWCLL crite-
ria may be insensitive to other CLL-related problems that
can arise in patients with no indication for immediate
treatment; these include infections secondary to hypogam-
maglobulinemia, an increased risk of secondary malignan-
cies and transformation to high-grade lymphoma (see
below). 
Prediction of CLL transformation to Richter’s syndrome

Rossi et al. studied 185 consecutive CLL cases in whom
the actuarial incidence of RS (all DLBCL) was 16.2% at
ten years.85 Univariate analysis of both clinical and biolog-
ical parameters showed that unmutated IGHV genes,
IGHV4-39 usage, absence of del(13)(q14), CD38>30%
ZAP70>20%, size  and number of lymph nodes, advanced
Binet stage and LDH were predictive of transformation to
RS. In a multivariate model, only lymph node size over 3
cm and absence of del(13)(q14) remained significant.
Subsequent studies incorporating newer biomarkers have
shown that short telomere length, single nucleotide poly-
morphisms within the CD38 and low density lipoprotein
receptor 4 (LRP4) genes, stereotyped BCRs (especially
subset 8 which utilizes the IGHV4-39/IGHD6-13/IGHJ5
genes) and NOTCH1 mutations are additional risk factors
for transformation RS.17,86,87. Interestingly, these risk fac-
tors differ from those predicting progression of CLL.
Detection of minimal residual disease

One of the best predictors of overall survival is response
to treatment. The introduction of sensitive clone-specific
PCR and 4-color flow cytometric assays has enabled the
reproducible detection of one leukemic cell in a back-
ground of 104 normal B cells.88,89 Cases in which residual
disease post therapy  is either undetectable or present in
less than 1 in 104 cells are currently considered to be  min-
imal residual disease negative (MRD negative). Many stud-
ies have shown that MRD negativity following either initial
treatment with chemotherapy, alemtuzumab for
relapsed/refractory disease, autologous or allogeneic trans-

plantation is associated with a longer PFS and OS.90-92

MRD levels were measured in the GCLLSG CLL8
Trial, comparing FC with FCR, and patients categorized
into low (<10-4), intermediate (>10-4 to <10-2) and high
level (>10-2) groups.93. Low MRD levels were predictive
of longer PFS and OS independent of TP53 abnormalities,
IGHV mutation status and treatment arm, although a high-
er percentage of patients treated with FCR achieved a low
MRD level. These results have important implications for
patients receiving intensive therapies and raise the possi-
bility of using MRD levels and kinetics to influence the
duration of therapy, the need for maintenance treatment
and the early treatment of relapse.94 These issues are start-
ing to be addressed in randomized clinical trials. The
GCLLSG CLLM1 trial randomizes patients with high
MRD levels or those with intermediate levels and either a
TP53 abnormality or unmutated IGHV genes to receive
lenalidomide or placebo following first-line therapy. In the
UK, the CLARET study will randomize patients with a
good response to previous treatment and who remain
MRD positive to either obinutuzumab or placebo. 

Conclusions

Prognostic factors are generated from 3 main sources:
from data collected as part of routine management, from
focused research into the mechanisms underlying treat-
ment resistance and, most frequently, as a by-product of
advances into the biology of CLL. Unless treatments
become available that are non-toxic, universally effective,
affordable and to which resistance does not occur, there
will continue to be a need for predictive markers.95,96

Similarly, for the majority of patients presenting with early
disease, there is a continuing need for the more precise
identification of those at high risk of disease progression
and those destined to have stable asymptomatic disease in
whom over-diagnosis, over-investigation and over-treat-
ment must be avoided. Prognostic and predictive factors
with the potential to achieve these goals are becoming
available and will continue to be discovered, enabling a
shift from the allocation of patients to risk groups to indi-
vidualized risk assessment. However, it will remain
important to use markers in well-defined clinical contexts,
and to base clinical decisions on all available clinical and
laboratory data, using a panel rather than a single biomark-
er. The greater challenge is in performing the studies
demonstrating that these factors have clinical utility.
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Old and new treatments for relapsed chronic 
lymphocytic leukemia 

Front-line therapy

In the past ten years, the combination of flu-
darabine, cyclophosphamide and rituximab
(FCR) has become the standard front-line
treatment for most patients with chronic lym-
phocytic leukemia (CLL). This regimen was
developed at the MD Anderson Cancer Center
where a large phase II trial was conducted and
produced the highest complete response (CR)
rates seen for any regimen used in CLL.1 The
German CLL Group subsequently performed a
randomized trial, CLL8, comparing FCR to
FC chemotherapy.2 FCR produced an overall
response (OR) rate of 95%; the CR rate seen
with FCR was double that seen with FC (44%
vs. 22%). A recent update showed that the
median progression-free survival (PFS) with
FCR is five years,3 thus, remissions are quite
durable. In addition, this was the first trial to

show a survival advantage for a front-line reg-
imen in the treatment of CLL. 

In Europe, this regimen is the standard of
care for most patients with CLL; the exception
would be in elderly or infirm patients where
chlorambucil remains the standard. Although
FCR is the most commonly used regimen in
the Unites States, the off-label use of drugs
allows utilization of other regimens such as
fludarabine and rituximab (FR)4 and ben-
damustine and rituximab (BR).5 The
Intergroup is conducting a randomized trial
comparing FCR to FR for front-line treatment
of CLL.6 However, given the importance of
the alkylating agent in patients with 11q dele-
tion, these patients receive FCR followed by
lenalidomide maintenance. Although this trial
reached accrual in 2012, data has not yet been
presented. The current front-line German CLL
trial is randomizing patients to FCR versus

Chronic lymphocytic leukemia 

Fludarabine, cyclophosphamide and rituximab (FCR) is the standard of care for most patients with
chronic lymphocytic leukemia (CLL) requiring treatment. This regimen achieves high overall response
rates (ORR) and complete response (CR) in 50-70% of patients with durable remission durations.
Treatment of relapsed CLL is less standardized; repeat therapy with FCR is possible and bendamustine
combined with rituximab is also a popular regimen. Once chemo-immunotherapy is no longer a viable
consideration, the only other approved drug that is readily available is ofatumumab, the humanized
monoclonal antibody to CD20.  However, this drug has a very limited label, being approved for patients
previously refractory to fludarabine and alemtuzumab.  Several new agents with completely different
mechanisms of action are in clinical trials and appear promising. Lenalidomide is an approved agent
for the treatment of multiple myeloma and myelodysplastic syndrome.  It has good efficacy in patients
with CLL; phase II trials suggest enhanced efficacy when lenalidomide is combined with an anti-CD20
antibody. The B-cell receptor inhibitors include ibrutinib, which targets Bruton’s tyrosine kinase, and
idelalisib, targeting P13K delta.  Both are oral agents that are not myelosuppressive, have excellent
efficacy and good tolerability; they are both currently in randomized trials. The excitement generated
by these new agents also leads to the consideration of how effective non-toxic drugs might be easily
incorporated into front-line regimens. Several publications have stressed the importance of minimal
residual disease (MRD) in CLL and its excellent correlation with progression-free survival (PFS) and
overall survival (OS).  Such end points should be incorporated into clinical trials and discussed with
the American and European authorities as viable surrogates to move forward with registration trials
in previously untreated patients with CLL. Chimeric antigen receptors (CARs) redirect T cells in an
effort to eradicate CLL cells. This approach has great potential but further development is needed to
abrogate toxicities and ramp up for large-scale usage.

Learning goals

At the conclusion of this activity, participants should be able to: 
- describe current and emerging therapies for patients with CLL;
- discuss oral agents currently in registration trials for the treatment of CLL;
- discuss side effects and pattern of activity with the oral agents, and differentiate those patterns

from early progressive disease signs;
- describe the use of chimeric antigen receptor (CAR) T cells in CLL, side effects, and early efficacy

data. 
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BR.7 Thus, 2 other commonly used chemoimmunotherapy
regimens are being compared to the standard of care and
have the potential for changing this standard.

Therapy for relapse

Whereas there is a relative standard of care in the front-
line treatment of CLL, there is arguably no standard
relapse regimen. This is partly due to the fact that the
choice of regimen is dictated by several factors, including
length of the first remission, the patient’s ability to tolerate
chemoimmunotherapy, and fluorescence in situ hybridiza-
tion (FISH) results. Use of FCR as a salvage regimen was
recently described by Badoux et al. in 234 previously
treated patients with CLL.8 Seventy-eight patients had
received prior multi-agent chemotherapy, predominantly
fludarabine-based, including prior FCR. The overall
response rate was 74% with a median progression-free
survival (PFS) of 21 months. Only 42% of patients were
able to complete 6 cycles and a substantial number needed
dose reduction. As expected, patients older than 70 years
were less likely to complete 3 or more courses of therapy
compared with younger patients. In patients who had pre-
viously received fludarabine-based therapy, the OR rate
was 73% and median PFS was 19 months, so this is still a
reasonable option for patients who received FCR upfront.

FCR has also been compared to FC in a randomized trial
for relapsed patients with CLL.9 In the REACH trial the
response rate with FCR and FC were 70% and 58%
respectively (P=0.003); CR rates were 24% and 13%
(P=0.0007). The primary end point of PFS was longer in
the FCR arm at 30.6 months versus 20.6 months with FC.
However, the REACH trial excluded patients who had
received more than one prior treatment and those previ-
ously treated with FC or rituximab.

BR is a commonly used salvage regimen, particularly in
patients receiving fludarabine-based therapy initially. The
frequent use of BR (as opposed to repeating FCR) is likely
related to the fact that this is a significantly less myelosup-
pressive regimen, a factor that becomes more relevant in a
relapsed patient population. The use of BR in the treat-
ment of relapsed CLL was investigated in a retrospective
analysis conducted in 24 Italian centers.10 Eighty-seven
patients received the BR combination and 22 patients
received bendamustine alone (this was not a randomized
trial). The overall response rate was 70%; CRs were sig-
nificantly higher with BR (34%) compared to bendamus-
tine (14%). The median PFS for the whole group was 16
months and the median duration of response was 13
months; patients in CR had a significantly longer duration
of response than those in PR. Of note, this population was
fairly heavily pre-treated with a median of 3 prior regi-
mens; more than one-third of the cases had received flu-
darabine (38%) in combination with alkylating agents
and/or rituximab (39%).

Fischer treated 78 patients with BR in a prospective
clinical trial.11 The OR rate was 59% and the CR rate was
9%. Patients who were fludarabine sensitive were more
likely to respond (60.5%) than those who were fludarabine
resistant (46%). The median event-free survival was 14.7
months. Eighty-one percent of the patients had previously
received fludarabine alone and/or fludarabine containing
combination therapies although only 7 patients (9%) had

received ritixumab-containing therapies.
Once patients have failed chemoimmunotherapy,

options are limited. Alemtuzumab, a monoclonal antibody
targeting CD52, was previously approved for the treat-
ment of CLL but is no longer commercially available; it is
only available by compassionate investigational new drug
(IND) applications.12 Ofatumumab, a humanized mono-
clonal antibody targeting CD20, has been approved in
both the United States and Europe.13 This drug is given
weekly for eight weeks and then monthly for four weeks.
In a patient population that was both fludarabine and
alemtuzumab refractory, this agent produced a 50%
response rate. It was well tolerated with infusion reactions
being the predominant side effect. Importantly, even
though this was a heavily pre-treated population, the drug
was not myelosuppressive. Although the response rate was
impressive given such a refractory patient group, remis-
sions were partial and the duration of response was six
months. In other words, once the monthly treatments were
stopped, most patients began to relapse. One of the limita-
tions of using this drug is that both in the United States and
in Europe the label is restricted to the patient population
treated in the pivotal trial, i.e. those refractory to both
alemtuzumab and fludarabine. Interestingly, given the lack
of availability of alemtuzumab, one wonders how this will
or could impact the use of the drug, since it would be
almost impossible to fulfill the requirements of the label. 

However, ofatumumab is currently being compared to
Physicians’ Choice in a randomized trial in patients with
CLL and bulky fludarabine refractory disease being con-
ducted in Europe.14 The Committee for Medicinal
Products for Human Use (CHMP) required that such a
trial be conducted (a randomized trial) as a condition of
approval for ofatumumab in the European Union (EU).
Patients progressing on the control arm will have the
option of receiving ofatumumab.

Ofatumumab is in a pivotal trial that could potentially
lead to approval in a front-line setting (Table 1). In a ran-
domized trial, previously untreated patients with CLL
receive chlorambucil or chlorambucil plus ofatumumab.15

Patients eligible for the trial are those who are considered
inappropriate for fludarabine-based therapy, so this trial
will likely be enriched for an older population where FCR
would not be considered standard of care.  

Ofatumumab is also being evaluated as maintenance
therapy in patients with CLL in second or third remis-
sion.16 The randomization is to observation as there is no
standard maintenance strategy in CLL, and this trial, if
successful, could provide another approved use for the
agent in CLL. Of interest are a number of promising oral
agents in clinical trials for the treatment of CLL. This
review will focus on several that are oral and further along
in development.

Oral agents in clinical trials

Lenalidomide, a second-generation imid, is an approved
drug for the treatment of multiple myeloma and myelodys-
plastic syndrome with 5q- abnormality.17,18 It is an oral
agent that is given either at 25 mg daily for three out of
four weeks (myeloma schedule) or 10 mg daily continu-
ously (MDS schedule). The most common side effect of
this drug is neutropenia and this is the most frequent rea-

| 132 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



son for dose reduction. Other side effects include gastroin-
testinal complaints, rash, and fatigue. Several trials have
documented the efficacy of this drug in the treatment of
CLL in the relapsed setting where doses ranged from 10-
25 mg daily;19,20 increased efficacy of lenalidomide
appeared to be associated with a higher dose. Although
response rates are greater with higher doses of lenalido-
mide, most patients are unable to tolerate more than 5-10
mg a day. The neutropenia seen with lenalidomide is easi-
ly abrogated by the use of colony stimulating factors and
the use of such agents is an alternative to dose reduction.
Some toxicities appear particular to patients with CLL;
one of these is tumor lysis.21 This is actually uncommon
when beginning the treatment with doses at 5 or 10 mg
daily but frequent with initiation of therapy at higher
doses. Tumor lysis can also occur during dose escalation.
Another interesting toxicity is tumor flare.22 This syn-
drome is associated with lymph node swelling, which is
sometimes painful, rash, and low-grade temperature. It
tends to occur early in treatment or at a time when the dose
is being increased. It is important to recognize this phe-
nomenon and not diagnose this as tumor progression with
subsequent cessation of the treatment.  Some data suggest
that the occurrence of the flare may be associated with a
higher likelihood of CR. The exact mechanism of the flare
is not known. 

Lenalidomide is currently in a number of pivotal trials
(Table 1). These include a randomized trial of lenalido-
mide versus placebo as maintenance therapy for patients
with CLL in second remission.23 One of the attractions of
using this drug in the maintenance setting is that the issues
of tumor lysis and tumor flare become almost irrelevant
since patients are already ‘debulked’ by their prior therapy.
Similarly, the German CLL Study Group is conducting a
randomized trial of lenalidomide versus placebo in high-
risk patients in first remission.24 Lenalidomide is also
being compared to chlorambucil in a trial for previously
untreated older patients with CLL (>65 years) with the
hypothesis that this would be better tolerated as compared
to chemoimmunotherapy, and more effective than chlo-
rambucil in that group of patients.25

Lenalidomide has also been combined with anti-CD20
B-cell monoclonal antibodies in relapsed patients with
CLL. Ferrajoli et al. compared their results using ritux-
imab and lenalidomide to the results from their prior trial
using single agent lenalidomide in a similar relapsed
patient population.26 The ORR with the combination was
64%; this is double the response rate that they had seen
with single agent lenalidomide. In addition, the schedule
that was developed, which gave 2 doses of rituximab prior
to the lenalidomide, reduced the severity of tumor flare.
The CLL Consortium also presented data combining ritux-
imab with lenalidomide using a different schedule wherein
lenalidomide was initiated prior to rituximab; the inci-
dence of flare was greater than seen when the rituximab
preceded lenalidomide.27 Lenalidomide has also been
combined with ofatumumab in relapsed patients with
CLL.28 Response rates looked identical to those seen with
lenalidomide and rituximab. 

Another exciting class of agents that are being devel-
oped in CLL, as well as in lymphoma, are the B-cell recep-
tor inhibitors. Ligation of the B-cell receptor provides a
strong proliferation and survival signal to both normal and
malignant B cells. Thus interfering with such signaling
could have a positive effect on B-cell diseases. Ibrutinib is
an oral agent which irreversibly binds to Bruton’s tyrosine
kinase (BTK), a kinase in the B-cell receptor signaling
pathway.29 A phase I trial with this agent showed that the
receptor site on BTK was completely occupied by
Ibrutinib at doses of over 2.5 mg/kg/day.30 No dose-limit-
ing toxicity was seen and the most common side effect
was mild diarrhea which was often self-limited. The phase
Ib trial was conducted in patients with relapsed and refrac-
tory CLL or in a treatment naïve cohort of patients over
the age of 65 years. Data from this trial were recently pre-
sented at ASH 2012.31 In 85 relapsed/refractory patients,
the ORR was 71% with 2% CR. These values were 68%
and 10% in the treatment naïve group. The pattern of
activity of the drug is interesting; initially there is rapid
and significant shrinkage of lymph nodes while simultane-
ously the absolute lymphocyte count increases. To some
extent this represents a compartment shift, although not

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 133 |

Stockholm, Sweden, June 13-16, 2013

Table 1. Agents in pivotal randomized trials in CLL.  

Agents in pivotal randomized trials in CLL

Population Trial NCT#

Ofatumumab – anti-CD20 Fludarabine refractory Ofatumumab vs. Physician's Choice 01313689
monoclonal antibody Untreated; inappropriate for fludarabine-based therapy Chlorambucil alone vs. chlorambucil + ofatumumab 00748189

2nd or 3rd remission vs. observation as maintenance 01039376

Lenalidomide – IMID 2nd remission vs. placebo as maintenance therapy 00774345
1st remission in high risk vs. placebo as maintenance 01556776
Untreated >65 years old vs. chlorambucil 00910910

Ibrutinib – BTK inhibitor Relapsed/refractory vs. ofatumumab 01578707
Relapsed/refractory BR +/- ibrutinib 01611090
Untreated vs. chlorambucil 01722487

Idelalisib – P13K kinase delta Relapsed/refractory; not fit for chemotherapy Rituximab +/- idelalisib 01539512
isoform Relapsed/refractory Ofatumumab +/- idelalisib 01659021

Relapsed/refractory BR +/- idelalisib 01569295



fully, since the increase in the lymphocyte count is not
proportional to the amount of shrinkage in the lymph
nodes. Over time, this lymphocytosis gradually resolves.
Early on in the assessment period, patients may have 70-
80% reduction in lymph nodes but may not qualify as a PR
using the IWCLL criteria because their baseline lympho-
cytosis has not decreased by more than 50%. This group
of patients are sometimes referred to as nodal responders
or those with PR with lymphocytosis. If one adds this
group to the patients achieving PR, then the ORR for
relapsed/refractory patients becomes 89% and for the
treatment naïve it is 81%. Importantly, known poor prog-
nostic factors for either response or remission duration
after chemoimmunotherapy are not associated with a
reduced response rate to ibrutinib. This is particularly
striking in a very poor prognostic group, namely those
with a 17p deletion. Twenty-eight of the 85 patients with
relapsed/refractory disease had a 17p deletion; the overall
response rate in this group was 68%. At 26 months, the
progression-free survival of the treatment naïve group was
96%; it was 75% in the relapsed/refractory patients. These
are very durable remission durations for a heavily pre-
treated group of patients (median number of prior regi-
mens 4.)  Although the PFS curve for patients with
relapsed 17p deletion disease is somewhat lower, 57%
were progression-free at 26 months, which is still better
data than those seen for any published survival curves for
patients with relapsed 17p deletion disease. 

Ibrutinib has been combined with BR chemotherapy in
a phase II trial in patients with relapsed CLL.32 The results
indicated that using chemotherapy with ibrutinib resulted
in much more rapid reduction in lymphocytosis than was
seen with single agent ibrutinib. No additional toxicities
were noted over those expected with chemotherapy; the
response rate of 83% appeared higher than the published
response rate for a previous trial with BR alone. Ibrutinib
has also been combined with rituximab and, as expected,
addition of the antibody also abrogates the lymphocytosis
such that remissions occur more quickly; a response
assessment at 3-6 months in 40 relapsed patients with CLL
showed an ORR of 91% lymphocytosis, with 3% CR, 80%
PR and 8% PR.33

There are currently four clinical trials with this agent for
potential registration in the United States and Europe
(Table 1).34-37 These include two trials in relapsed/refracto-
ry patients; one trial randomizes relapsed patients who are
not good candidates for chemotherapy to ofatumumab or
ibrutinib. The second trial is a randomized trial of BR +/-
ibrutinib. The front-line trial is a randomized trial of ibru-
tinib versus chlorambucil and, finally, there is a single arm
trial of ibrutinib in patients with relapsed 17p deletion
CLL. In this group, there is considered to be no standard
of care to which these patients could be randomized
because all therapies are inadequate and the expected out-
come is poor.

Another oral B-cell receptor inhibitor currently in FDA
pivotal trials is idelalisib (GS-1101, CAL-101) (Table 1).
This agent targets PI3K kinase, another enzyme in the B-
cell receptor signaling pathway. This inhibitor specifically
binds to the delta isoform which is a prevalent isoform in
hematologic malignancies.38,39 Other drugs including pan
PI3 kinase inhibitors are in clinical trials for the treatment
of solid tumors; some data suggest that these pan
inhibitors may cause hyperglycemia, probably related to

the fact that the alpha isoform is involved in insulin signal-
ing. Idelalisib is given twice daily and in a phase I trial
marked activity was seen in patients with lymphomas as
well as CLL.40,41 There was no maximum tolerated dose
(MTD), but one of the more common toxicities was eleva-
tion of transaminases.  When this occurred, the drug was
held and the transaminitis promptly resolved; the drug
then was resumed at the same or lower dose.  In the phase
Ib trial in CLL, 55 highly refractory patients were treated
(medium number of prior regimens, 5) with idelalisib.42

Similarly to ibrutinib, the initial response is manifested by
increasing lymphocytosis and rapid and dramatic shrink-
age in lymphadenopathy. Eighty-four patients had a nodal
response (at least 50% reduction of lymphoid mass) and
24% had a PR using IWCLL criteria. Thus, the majority of
responders had some degree of lymphocytosis.  Medium
progression-free survival appeared to be about 18 months.
Idelalisib has been combined with ofatumumab; the latter
was given after an initial 300 mg dose at 1,000 mg weekly
for eight weeks and then monthly for 4 more doses.43

Patients continued on idelalisib after completion of ofatu-
mumab. As expected, with the addition of the antibody the
lymphocytosis was rapidly resolved, and the overall
response rate was 94% (n=15). Thus, in contrast to the use
of the single agent, the use of the combination results in
more responses by IWCLL criteria because of the eradica-
tion of lymphocytosis. Idelalisib has also been combined
with rituximab, bendamustine, and bendamustine plus rit-
uximab.44 These were small pilot trials evaluating the tox-
icity of the combinations. Treatment with idelalisib con-
tinued after completion of chemotherapy/antibody.  No
new toxicities were noted with any of the combinations
and, as expected, the most common side effects with the
chemotherapy regimens were myelosuppression and
infection. The ORR to idelalisib plus rituximab was 79%
(n=19), with bendamustine 78% (n=18), and with ben-
damustine and rituximab 87% (n=15).  Median PFS was
not reached and 1-year PFS was 68.7%. Grade 3-4
transaminase elevation was seen in 10% of patients.

Idelalisib is also in pivotal registration trials in Europe
and the United States.  Both trials are in the
relapsed/refractory population of patients with CLL. For
patients who are not good candidates for chemotherapy,
there are two trials. One trial is rituximab +/- idelalisib.45

The other trial is ofatumumab versus ofatumumab and ide-
lalisib.46 For patients who are good candidates for
chemotherapy, the trial design is BR +/- idelalisib.47

Clinical trial end points 

As exciting as it is to have these relatively non-toxic and
highly effective oral drugs in clinical trials, one of the
issues of bringing them forward into the front-line setting
is the fact that the medium PFS with front-line FCR is 5-6
years. Thus, any attempt to conduct a randomized trial to
compare FCR to either another regimen, or FCR in com-
bination with an investigational agent, would necessitate
very large trials with very prolonged time to completion
and, consequently, would be very expensive.  Alternative
options for pharmaceutical companies seeking to have ear-
lier employment of their agent would be to pick a popula-
tion where FCR would not be considered the standard of
therapy, such as elderly/infirm patients or patients with
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17p deletion, to give just two examples. However, 17p
deletion is an uncommon abnormality in patients who
were previously untreated, representing only around 5-
10% of front-line patients. Thus, the applicability of the
results to other front-line patients would be very restricted.
In addition, although FCR produces high response rates
and durable remission durations, PFS curves continue to
decline. Although it may take more extended follow up to
ascertain whether there is a cure fraction, it is clear that
such a cure fraction will encompass a minority of patients
and most likely those with mutated IGVH genes. In addi-
tion, FCR has significant short-term toxicities as well as
late toxicities. There is a lot of interest, even for patients
who might successfully be treated with FCR, in develop-
ing novel regimens that avoid the use of chemotherapy.
This may be especially important in patients with CLL
who have a higher incidence of second malignancies just
by virtue of having the disease, and DNA damaging agents
are inherently unattractive in this setting. Thus, in order to
be able to conduct front-line trials in patients with CLL
that are not limited to a small patient population, the CLL
community will need a surrogate end point that clearly is
associated with PFS.  

Emerging data indicates that minimal residual disease
(MRD) is likely to be that end point. Several trials have
been published with various treatments including alem-
tuzumab, FC, and FCR, clearly indicating a strong corre-
lation between PFS, OS and MRD. MRD can be measured
by both PCR and/or flow cytometry but most published
data have used flow cytometry; there are also commercial
assays for immunophenotypic detection of MRD.
Recently, the MRD data from the CLL8 trial, the random-
ized trial of FCR to FC, were published.48 MRD levels
were prospectively quantified in over 1,700 blood and
bone marrow samples from 493 patients, randomized to
either FC or FCR. Patients were categorized into MRD
low (less than 10-4), intermediate (≥10–4 to <10–2) and high
level (≥10–2). Median PFS was estimated to be 68.7, 40.5
and 15.4 months for low, intermediate and high MRD lev-
els, respectively, when assessed two months after comple-
tion of therapy. Median OS was 48.4 months in patients
with high MRD and not reached for the lower MRD lev-
els. Importantly, MRD remained predictive for OS and
PFS in multivariate analyses that included the most impor-
tant pre-treatment risk factors. Another crucial point is that
PFS and OS did not differ between the treatment arms
within each MRD category. In other words, although
patients randomized to FC were less likely to achieve the
best MRD status, patients who did achieve such status
behaved exactly as those who had received FCR (in the
same MRD category.) This is important because it clearly
suggests that this is not a regimen-related marker but
rather truly an assessment of residual disease. Other trials
have also found MRD to be a significant predictor of out-
come after treatment with alemtuzumab, the humanized
monoclonal antibody to CD52.49

Immunological therapy

The fact that allogeneic hematopoietic stem cell trans-
plant (HCST) can cure some patients with CLL indicates
the powerful therapeutic effect of T cells.50, 51 The potency
of this therapy has also been shown in the form of donor

lymphocyte infusions (DLI) which effectively treat
patients with relapsed CLL post HCST.52 However, graft-
versus-host disease (GVH) following HCST and DLI
illustrates one of the most significant limitations of non-
directed cellular therapy. Single-chain chimeric antigen
receptors (CARs) can re-direct T-cell specificity to a
tumor-derived antigen expressed on the cell surface,
which is independent of HLA.53, 54 The CAR fuses a mouse
monoclonal antibody that binds to a tumor antigen, trig-
gering activation and effector functions. The specificity of
the CAR is achieved by the antigen-binding motif, usually
a monoclonal antibody that links VH and VL sequences
resulting in a single chain fragment variable (scFv) region.
The most common antigen targeted on CLL thus far has
been CD19. CD19 is B-cell surface antigen that is
expressed on CLL cells as well as the cells from most B-
cell malignant disorders. It is not expressed on cells other
than those of B lineage, is not shed into the circulation,
and pre-clinical studies have shown that CD19 positive
tumor cells can be lysed by T cells expressing CD19-spe-
cific CAR. The exodomain of the CAR is completed by a
hinge and is expressed on the T-cell surface via a trans-
membrane domain.

After binding to the targeted antigen the CAR activates
T cells via an endodomain that typically includes cytoplas-
mic domains from CD3 or high affinity receptor FcεRI.
There are now 1st, 2nd and 3rd generation CARs designed
with 1, 2 or 3 signaling motifs within the endodomain.
Most trials in CLL thus far have administered T cells that
are 2nd generation CAR designs. Savoldo et al. adminis-
tered a mixture of CARs containing either T cells with
both CD3 zeta endodomain and CD28, or only the CD3
zeta endodomain, to 6 patients with relapsed lymphoma.
They showed that CARs containing the CD28
endodomain had enhanced expansion and persistence,
confirming the superiority of CARs with dual signal
domains.55

There have been several clinical trials targeting CD19
on CLL cells by CAR positive T cells. Kochenderfer et al.
used an anti-CD19 CAR joined to part of the CD28 mole-
cule and the signaling domains of the CD3 zeta molecule
to treat a patient with B-cell lymphoma after a lympho-
cyte-depleting regimen of cyclophosphamide and fludara-
bine.56 They also administered IL-2 after the T-cell infu-
sion. Although an impressive PR was seen, this remission
was short lived at 32 weeks.  

Brentjens et al. reported on 10 patients with chemo-
refractory CLL or ALL treated with an anti-CD19 CAR
that also included CD28 in the signaling domain.57 The
first cohort of 3 patients who were treated without
cyclophosphamide conditioning had no evidence of dis-
ease response. Subsequent patients received cyclophos-
phamide chemotherapy prior to the CAR infusion. In these
patients, T cells were more readily detected over time in
the blood and bone marrow consistent with previously
published reports indicating enhanced persistence of adop-
tively transferred tumor-specific T cells after chemothera-
py. Porter et al. administered CARs targeting CD19 that
included the co-stimulatory receptor 4-1BB as well as
CD3 zeta.58 They reported on an initial patient with refrac-
tory CLL who had expansion of T cells in vivo to more
than 1,000 times as high as the initial engraftment level.
This was associated with the delayed tumor lysis as well
as CR. A specific toxicity associated with this eradication
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of B cells was loss of normal B cells and hypogammaglob-
ulin that was treated with IVIG. The remission was ongo-
ing ten months after treatment. Genetically modified cells
were present in the bone marrow at high levels for at least
six months after the infusion.

One difference in this CAR compared to the others pre-
viously described is that this is a 2nd generation CAR
based on the incorporation of CD137 (4-1BB). The
authors hypothesize that it is the presence of this 4-1BB
signaling domain that is responsible for the prolonged per-
sistence of the CARs. Additionally, they also hypothesize
that CAR mediated elimination of normal B cells facilitat-
ed the development of tolerance to the CAR, since the
CAR cells that expressed a single chain Fv antibody frag-
ment and contained murine sequences were not rejected.
An update of this trial was recently presented at ASH in
2012.59 Ten patients received CAR T19 cells including 9
adults with refractory CLL and one child with relapsed
refractory ALL. All the patients with CLL received
chemotherapy 4-6 days before the infusion. Median fol-
low up was 5.6 months.  There were no deaths and no infu-
sional toxicities greater than Grade 2. Four of the 9
patients achieved CR (3 CLL, 1 ALL). The patients who
achieved remission appeared to have a higher level of
expansion of the CARs in the blood than those achieving
a PR or not responding. No patient with CR has yet
relapsed. All patients developed cytokine release syn-
drome manifested by fever with variable amounts of nau-
sea, anorexia, hypotension, and hypoxia. This cytokine
release syndrome was temporally associated with signifi-
cant elevations in serum IL-6. Four patients were treated
with the IL-6 receptor antagonist tocilizumab on Days 3-
10 with prompt resolution of symptoms.  Persistence of
the anti-CD19 CAR was seen for up to two years.

Conclusion

Fludarabine, cyclophosphamide and rituximab remains
the standard of care for most patients with CLL, and does
produce high response rates and durable remission dura-
tion. But it is unlikely to result in cure in the majority of
patients. Several new, non-chemotherapy agents are in
clinical trials. Only 3 of them have been mentioned in this
review due to space limitations and because these are the
ones in pivotal registration trials that are likely to make
them available within the next 2-3 years. In order to move
such agents, as well as other exciting new agents in clini-
cal trials, forward into the front-line treatment of CLL, we
will need surrogate end points to avoid conducting very
large, very long randomized trials. Enough data are now
available to suggest that MRD should be exactly that end
point and an important component of future trial design.
Chimeric antigen receptors (CARs) harness the power of
T cells to eradicate CLL cells by targeting a B-cell related
antigen. Excitement is high regarding this approach,
although more needs to be done to standardize this tech-
nique and make it more amenable to large-scale therapy.
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Recent advances in understanding chronic myeloid
leukemia biology

Introduction
The major clinical challenges in CML are

related to the two extremes of the response
spectrum to TKIs.1 On one end there is the
majority of patients with excellent responses,
in whom the CML clone (measured by quanti-
tative PCR for BCR-ABL1) has been sup-
pressed to low, sometimes undetectable levels,
a state referred to as a complete molecular
response (CMR). Numerous studies have
shown that these patients have an excellent
long-term outcome. In fact, a multicenter
study demonstrated that patients with chronic
phase CML (CML-CP) who achieve a com-
plete cytogenetic response (CCyR) and main-
tain this response for two years have a survival
that is identical to that of an age- and sex-
matched control population.2 The challenge is
the need to continue therapy indefinitely,
sometimes despite significant side effects.
Moreover, the growing prevalence of CML
poses a significant health-economic problem.3
At the other extreme are patients with TKI
resistant blastic phase CML (CML-BP); most
of these patients are incurable even with allo-
geneic stem cell transplantation. At the molec-
ular level, there is increasing evidence that
BCR-ABL1 independence is involved at both
ends of the response spectrum. This suggests
that the extremes of the clinical disease may be
beyond the reach of single-agent BCR-ABL1

TKIs. Progress has been made in several
important areas of CML biology, such as the
role of autophagy4,5 and genetic instability6-8 in
disease pathogenesis and as modulators of
response to TKIs. Several deep sequencing
studies have implicated various mutations
reported in myelodysplastic syndromes or
acute myeloid leukemia in the progression
from CML-CP to CML-BP,9 although it
remains to be seen how precisely they drive
disease progression. However, the most
important advances from an applied science
perspective were made in CML-SC biology as
it relates to TKI resistance and the persistence
of MRD despite long-term TKI treatment. In
this update on the biology of CML we will
focus on pathways in CML-SCs that may be
involved in resistance and MRD and provide
potential targets for therapy.

Persistent CML stem cells

Several studies of patients with CMR have
demonstrated BCR-ABL1-positive cells with-
in functionally defined hematopoietic cell
compartments, including colony forming units
granulocyte macrophage (CFU-GM), long-
term culture initiating cells (LTC-IC) and
Lineage-CD34+38- cells.10,11 The SC potential
of the latter was elegantly demonstrated by
their multilineage engraftment capacity in

Chronic myeloid leukemia 

Progress has been made towards understanding the biology of chronic myeloid leukemia (CML).
Areas of active research include the role of microRNAs in CML pathogenesis and resistance to tyrosine
kinase inhibitors (TKIs), the mechanisms of genetic instability in CML cells and the role of autophagy.
Next generation sequencing has revealed that multiple different mutations can co-exist with BCR-
ABL1 at the time of blastic transformation, but not in the chronic phase (CP), painting a complex
molecular picture for advanced CML, while confirming the notion that BCR-ABL1 alone is sufficient
to induce CML-CP. Arguably the greatest advances were made in revealing the pathways and condi-
tions that promote the growth and survival of CML stem cells (SCs) upon exposure to TKIs. Evidence
is accumulating that the bone marrow microenvironment plays a central role in mediating CML-SC
resistance to TKIs and that the combination of extrinsic and intrinsic mechanisms accounts for the
persistence of fully leukemogenic SCs despite long-term TKI therapy.  

Learning goals

At the conclusion of this activity, participants should be able to:
- acquire an understanding of the basic properties of CML-SCs;
- understand the major pathways involved in CML-SC survival; 
- understand the mechanistic basis for residual leukemia in CML and the role of the microenviron-

ment in facilitating CML-SC survival;
- learn about approaches to target CML-SC.
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immunodeficient mice, which led to the estimate that
patients with MMR or CMR on imatinib harbor 0.09-
1.61% BCR-ABL1+ cells in the CD34+/CD38- fraction,
consistent with the very low percentage of BCR-ABL1+

cells detected by fluorescence in situ hybridization in
CD34+38- cells.11,12

Studies of residual human CML are hampered by the
lack of markers that distinguish between normal and
leukemic cells within the CD34+38- fraction. This might
change with recently identified candidates such as IL-1
receptor accessory protein (IL1RAP) and dipeptidylpepti-
dase IV (CD26).13,14 At this point, however, it is custom to
use Lineage-CD34+38- cells from newly diagnosed
patients that survive ex vivo TKI exposure, to model resid-
ual leukemia cells that persist in vivo.15 Since in vivo expo-
sure to TKIs may select cells with characteristics not
reflected in the bulk population of primitive Lineage-

CD34+38- cells at diagnosis, these cells may not necessar-
ily reflect residual disease in patients on therapy. While it
is clear that primary CML cells as a model of residual dis-
ease have limitations, the same must be said for murine
models. In particular, the retroviral transduction/transplan-
tation system frequently employed produces a disease that
behaves more aggressively than chronic phase CML,
although on morphological grounds it does not meet blas-
tic transformation criteria.16 Perhaps the best murine
model currently available is the BCR-ABL1 transgenic
mouse developed by the Tenen laboratory.17

CML progenitor cells or CML-SCs could conceivably
survive in vivo TKI exposure due to high BCR-ABL1
expression (maintaining some kinase-active protein in the
presence of TKIs) or low BCR-ABL1 expression (identi-
fying themselves as less BCR-ABL1 dependent). Several
labs showed higher levels of BCR-ABL1 in primitive lin-
eage-CD34+38- cells than lineage-CD34+38+ progenitor
cells,18,19 suggesting primitive cells may be TKI resistant
due to maintenance of BCR-ABL1 activity. Conversely,
BCR-ABL1 mRNA expression in myeloid colonies cul-
tured from patients with TKI-induced MMR was found to
be lower than in colonies cultured from untreated patients,
consistent with in vivo selection of progenitors that are
less reliant on BCR-ABL1.20 Analogous results were seen
in normal human CD34+ cells infected with BCR-ABL1
retrovirus.21

There is consensus that TKIs inhibit BCR-ABL1 kinase
activity in primitive lineage-CD34+38– cells.22,23 However, in
contrast to progenitor cells, these cells undergo little apop-
tosis upon TKI exposure, and prolonged survival of clono-
genic cells is seen even in the absence of cytokines,23 indi-
cating that the critical cells are not (or not completely)
addicted to BCR-ABL1. At closer view, this is in accor-
dance with some fundamentals of CML biology. The pres-
ence of BCR-ABL1 in all hematopoietic lineages is evi-
dence that the initial Philadelphia translocation occurs in a
pluripotent HSC.24 Consistent with this, a murine CML
model demonstrated that BCR-ABL1 does not confer self-
renewal capacity to committed progenitor cells, suggesting
CML originates from a cell with intrinsic self-renewal
capacity.25 At diagnosis, the majority of LTC-ICs is fre-
quently Ph– 26 in contrast to the largely Ph+ myeloid progen-
itor cell population. Thus, the initial proliferative drive is
directed almost exclusively at the progenitor cell compart-
ment, establishing the clinical phenotype with expansion of
myeloid cells, but maintaining hierarchy of myeloid differ-

entiation.26 The situation changes at time of transformation
to CML-BP, when granulocyte-macrophage progenitor cells
acquire self-renewal capacity, presumably due to activation
of β-catenin.27 These biological fundamentals are reflected
in the clinical responses to TKIs. First, inhibition of BCR-
ABL1 is predicted to roll back the progenitor cell expan-
sion, clinically evident by the rapid hematologic and pro-
found cytogenetic responses to TKIs. Second, the limited
effects of BCR-ABL1 on CML-SCs may explain why they
are largely insensitive to BCR-ABL1 inhibition, explaining
disease persistence or MRD. Nonetheless responses are
often durable, as few residual CML-SCs equate with little
opportunity for additional mutations; additionally TKIs
may mitigate genetic instability caused by BCR-ABL1
kinase activity.28 Third, once acquisition of self-renewal
capacity at the level of progenitor cells27 has undermined
the hierarchical structure of CML hematopoiesis, the pool
of fully leukemogenic cells at risk for resistance mutations
multiplies and unsurprisingly CML-BP poorly responds to
TKI therapy.

Targeting CML stem cells

Conceptually, one can approach the phenomenon of
CML-SC resistance to TKIs by identifying the factors that
render CML progenitor cells TKI sensitive. One possible
explanation is that simultaneous inhibition of BCR-ABL1
and KIT, the receptor for stem cell factor (SCF), is syner-
gistic toward CML progenitor cells. In support of this
effective elimination of BCR-ABL1-expressing murine
myeloid progenitor cells requires inhibition of both KIT
and BCR-ABL1,29 and imatinib effects on human CML
progenitor cells are mimicked by combining a KIT block-
ing antibody and BCR-ABL1-specific TKI.30 Nilotinib
effects on CML CD34+ cells at concentrations that do not
inhibit KIT are mitigated by SCF. Bosutinib, which lacks
direct anti-KIT inhibitory activity, may intercept signaling
downstream of the receptor by blocking Src kinases,31,32

Thus, fortuitous BCR-ABL1/KIT dual inhibitory activity
in the same TKI may generate synthetic lethality33-35 in
CML progenitor, but not stem cells, and underlie hemato-
logic and cytogenetic responses. Suppression of BCR-
ABL1 and a second pathway other than KIT may be nec-
essary to eliminate CML-SCs and identifying such a path-
way is of major therapeutic interest.  

Inhibition of BCR-ABL1 activity could convert a CML-
SC into a loss-of-function, gain-of-function or neutral
variant compared to a normal CML-SC. A loss-of-function
variant would result if pharmacologically silenced BCR-
ABL1 acted in a dominant-negative manner. In view of the
well-documented ability of primitive CML cells to
respond to cytokines upon BCR-ABL1 inhibition this
seems unlikely.36 On the other hand, functions of BCR-
ABL1 that persist despite effective suppression of kinase
activity could confer a gain of function phenotype. For
example, it has been shown that a kinase-inactive BCR-
ABL1 mutant enhances migration and reduces adhesion,37

and activation of SRC family kinases can persist in the
presence of TKIs.36,39 Elegant studies in a murine CML
model have revealed that BCR-ABL1 enhances the
expression of several genes in a kinase independent fash-
ion, including Alox5, IL1R2 and ASPRV1.40 Another
mechanism to consider is epigenetic changes imparted by

| 140 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



active BCR-ABL1 that persist despite subsequent effec-
tive kinase inhibition. For example, BMS-214662, a com-
pound originally developed as a farnesyl transferase
inhibitor (FTI), selectively induces apoptosis in lineage-

CD34+38+ CML cells in a PKCβ-dependent fashion, with
or without concomitant inhibition of BCR-ABL1, and it
has been suggested that this particular sensitivity might be
due to prior exposure to BCR-ABL1 activity.41,42

Alternatively, BMS-214667 may impair nuclear-cytoplas-
mic transport.43 As a third possibility, inactive BCR-ABL1
could be neutral, producing an CML-SC that is biological-
ly indistinguishable from a normal HSC and making selec-
tive elimination of residual leukemia through biochemical
means impossible. Although speculative, these considera-
tions point to a sometimes neglected factor that is likely to
impact clinical responses in CML. Elimination of
leukemic hematopoiesis may ultimately depend on the fit-
ness of the normal HSCs; if the size of the HSC pool is
controlled by the number of available niches, then a
healthy normal HSC compartment is critical to replace the
leukemic cells in the niches.44

The bone marrow microenvironment as a 
protective factor for CML stem cells

The term ‘microenvironment’ describes a complex
assortment of specialized cells (osteoblasts, osteoclasts,
endothelial cells, stromal/mesenchymal cells, amongst
others), extracellular matrix (e.g. collagen, fibronectin)
and diffusible factors (cytokines, chemokines, oxygen)
that regulate hematopoiesis.45 An important concept is the
niche, a physicochemical space that protects HSC, con-
trols their numbers and regulates their initial initial steps
of differentiation.46 Current thinking holds that in
leukemia normal HSC are replaced by LSC.47 Significant
progress has been made toward understanding the role of
the bone marrow microenvironment as a critical factor for
CML-SC survival. Diffusible factors generated by CML-
SC have profound effects on the bone marrow stroma,
resulting in abnormal trafficking as well as less habitable
conditions for competing normal HSC. An elegant study
using transgenic mice with a tetracycline-repressible
BCR-ABL1 transgene showed that long-term HSCs (LT-
HSC) are reduced in the bone marrow but enriched in the
spleens of leukemic mice. This is caused by reduced
CXCL12 expression by bone marrow stromal cells, which
in turn is the result of GSCF production by CML cells.48

CML cell-conditioned medium from leukemic mice or
untreated CML patients inhibited the proliferation of nor-
mal progenitor cells, indicating that CML-derived factors
such as TNF-α, MIP-1β and others influence the competi-
tion between leukemic and CML progenitor cells in favor
of leukemic cells. This confirms earlier data in CML49 and
is reminiscent of a recent observation in JAK2V617F

induced murine myeloproliferative disease50. In CML,
imatinib partially restored the homing defects; increased
but still subnormal CXCL12 expression was seen in CML
patients with a complete cytogenetic response to ima-
tinib.48 The same murine model was used in another study
that implicated IL-6 as a mediator of myeloid versus lym-
phoid expansion driven by BCR-ABL1.51 Lastly stromal
derived placental growth factor (PlGF) was shown to sup-
port the expansion of CML progenitor cells and absence of

this cytokine prolonged survival in a murine leukemia
model.52 Defects in CD44 and β-integrins have also been
described in CML and are thought to contribute to abnor-
mal SC trafficking,53,54 but the CXCR4/CXCL12 axis has
attracted most attention due to the availability of clinical
antagonists such as plerixafor. Previous studies had shown
that BCR-ABL1 kinase activity inhibits CXCR4 expres-
sion and interferes with signaling downstream of the
receptor, suggesting that in CML this system is impaired
at several levels.55,56 Ironically, restoration of
CXCR4/CXCL12 function may not be desirable, since it
enhances homing of CML cells to the protective environ-
ment of the bone marrow.57 Intercepting the
CXCR4/CXCL12 interaction with plerixafor was shown
to sensitize leukemia cells to the effects of TKIs in mice
transplanted with 32Dcl3 cells engineered to express
BCR-ABL1.58 On the other hand, prolonged plerixafor
treatment in combination with TKIs failed to significantly
reduce leukemia burden in a retroviral CML model, but
caused an increase in extramedullary hematopoiesis and
central nervous system involvement.59 While it is possible
that this adverse effect was due to the aggressive nature of
the retroviral model and that beneficial effects would be
observed in a state of MRD, this study nonetheless calls
for caution when manipulating hematopoietic cell traffick-
ing over prolonged periods of time. 

Targeting CML stem cells through synthetic
lethality

Combinatorial approaches targeting CML-SCs are
implicitly based on induction of a lethal phenotype by
simultaneous inhibition of BCR-ABL1 kinase and one or
more additional pathways.33,60 These pathways may be
redundant or even inactive in the presence of uninhibited
BCR-ABL1, and assume an essential role only in the pres-
ence of TKIs. For instance, upon treatment with imatinib,
CML CD34+ cells can enhance survival by activating
MAP kinases in the presence of cytokines.61 Similarly,
CML cell lines cultured on HS-5 bone marrow stromal
cells are partially protected from TKI-induced apoptosis
by JAK kinase-dependent upregulation of phosphorylated
STAT3.62,63 A recent study reported that abnormally
spliced anti-apoptotic BCL2 family proteins are expressed
by quiescent niche-resident CML-BC SCs and confer
resistance to TKIs.64 For obvious reasons, pathways with
an essential role in CML as well as normal cells are less
preferred as therapeutic targets, although a degree of
selectivity toward CML-SCs may still be exploitable. On
the other hand, pathways activated as part of a stress
response to TKIs should be particularly attractive as ther-
apeutic targets. Here we will focus on four major path-
ways that are supported by independent studies. 
Wnt/β-catenin

β-catenin, the central mediator of canonical Wnt signal-
ing, has a dual function as an adhesion-related tight junc-
tion protein and a transcriptional co-activator that recruits
cAMP response element binding protein (CBP) to lym-
phoid enhancer factor/T-cell factor (LEF/TCF) binding
sites to activate developmentally regulated transcriptional
programs. Without active Wnt signaling, cytoplasmic β-
catenin outside of tight junctions is phosphorylated by
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glycogen synthase kinase 3β (GSK3β) and subsequently
degraded by a multimeric destruction complex whose rate-
limiting component is Axin.65 Unlike in several solid
tumors, in CML there is no evidence for somatic muta-
tions in proteins involved in the canonical Wnt pathway.66

Nuclear β-catenin is required for self-renewal and via-
bility of normal HSCs.67 Several studies have implicated
nuclear β-catenin in aspects of CML pathogenesis and
response to TKIs. Lack of β-catenin attenuates disease in
a murine CML model by impairing self-renewal of CML-
SCs.68 However, in a recent study, deletion of β-catenin
after CML initiation did not significantly increase survival
in mice.69 Rather, pharmacological inhibition of β-catenin
through block of prostaglandin signaling resulted in great-
ly reduced numbers of LSCs. In support of an important
role of nuclear β-catenin in TKI resistance, we have found
that gene expression in imatinib-naive CD34+ cells from
patients with primary cytogenetic resistance may be par-
tially regulated by β-catenin.70 Lastly, activation of
nuclear β-catenin in granulocyte-macrophage progenitor
cells is associated with myeloid blastic transformation,27

which may be due to inactivation of GSK3β by abnormal
splicing.71 or conformational changes of β-catenin as a
result of BCR-ABL1-induced tyrosine phosphorylation
that prevents Axin binding.72 Paradoxically pharmacolog-
ical inhibition of GSK3β in combination with imatinib,
but not dasatinib, was effective at targeting CML-SCs.73

This is, at least on the surface, hard to reconcile with pre-
vious data, but could suggest that the intensity of the β-
catenin signal must be tightly controlled to support opti-
mal CML-SC survival. 

Several pathways have been implicated in Wnt signal-
ing in CML-SCs (Figure 1A). First, ligand-induced CD27
signaling may enhance extrinsic and intrinsic activation of
nuclear β-catenin. In support of an important role for this
pathway, blockage or the absence of CD27 was shown to
prolong survival in a murine CML model.75 A second non-
canonical Wnt/Ca2+/NFAT pathway was recently identi-
fied by a synthetic lethal screen; this pathway mediates
TKI resistance through upregulation of IL-4, and is inhib-
ited by cyclosporine A.76 Lastly, BCR-ABL1 was shown
to up-regulate arachidonate 5-lipoxygenase (5-LO)
(Alox5) in a kinase-independent fashion, which is associ-
ated with increased levels of its metabolic product
leukotriene B4 (LTB4).74 Lack of Alox5 prolongs survival
in a murine CML model, apparently by promoting gradual
depletion of CML-SCs, and this may be due to a failure of
Alox5-/- LSCs, but not Alox5+/+ HSCs, to up-regulate β-
catenin. Interestingly, treatment with the 5-LO antagonist
zileuton prolonged survival of mice with BCR-ABL1-
induced leukemia alone and especially in combination
with imatinib. The pivotal role of nuclear β-catenin in the
pathogenesis of colon cancer has sparked great interest in
development of β-catenin inhibitors, but β-catenin
remains a challenging target and no clinical compounds
have emerged.65 While most studies have focused on
nuclear β-catenin, there is recent evidence that the cyto-
plasmic fraction, which is associated with N-Cadherin, is
indirectly involved in TKI resistance conferred by the
microenvironment. N-Cadherin-mediated adhesion to
stroma was associated with increased cytoplasmic N-
Cadherin-β-catenin complex formation, but also with
enhanced β-catenin nuclear translocation and transcrip-
tional activity.91 Although the precise mechanism by

which N-Cadherin-bound β-catenin up-regulates the
nuclear pool is unclear, one could imagine that the degra-
dation complex may become over-saturated by intracyto-
plasmic β-catenin released from the receptor. β-catenin is
an example of the co-operation of extrinsic and intrinsic
mechanisms in activating identical cellular TKI resistance
programs, and that mechanisms engaged at the extremes
of the response spectrum in CML may overlap.
Hedgehog

Hedgehog (HH) signaling is essential for primitive fetal
hematopoiesis77 but seems to be dispensable for adult HSC
function.78 HH binding to its cell surface receptor
(Patched, PTCH), induces a conformational change in a
downstream intermediate termed Smoothened (SMO),
thereby releasing the transcriptional activator GLI1
(Figure 1B). Two independent studies have implicated HH
signaling in the self-renewal of CML-SCs and identified
SMO as a critical mediator.79 HH signaling in CML-SCs is
inhibited by HH blocking antibodies80 but not BCR-ABL1
TKIs,79 consistent with a BCR-ABL1 kinase-independent
mechanism of HH activation by ligand. Just as in the case
of β-catenin, mutations in HH pathways were found in
various malignancies, but have not so far been reported in
CML. At present, the bulk of data implicating HH in
CML-SC survival is based on mouse models or advanced
CML, and its role in CML-CP is less well defined.
Compared to Wnt/β-catenin, the HH pathway is a more
accessible drug target. Cyclopamine, an alkaloid that sta-
bilizes SMO in an inactive conformation, selectively tar-
gets CML-SCs over normal HSCs, alone and in combina-
tion with BCR-ABL1 TKIs. The discovery of PTCH
mutations in other malignancies has stimulated the devel-
opment of inhibitors of SMO, including PF-04449913,
LDE225 and BMS-833923. Several clinical trials are
underway in TKI-resistant CML, with a suggestion of
activity.81

TGF-β/Foxo3a/BCL6
In CML progenitor cells, BCR-ABL1 activates AKT,

which in turn phosphorylates the transcription factor
Foxo3a, promoting its cytoplasmic retention and subse-
quent degradation. TKI-induced Foxo3a activation leads
to expression of p27 and Bim, with subsequent cell cycle
arrest and apoptosis (Figure 1C).83 Surprisingly, it was
found that Foxo3a is nuclear in lineage-CD34+38- CML
cells even in the absence of TKIs, raising the question why
AKT signaling is turned off despite active BCR-ABL1.84,92

Studies in a murine CML model demonstrated TGF-β
inhibition of AKT, suggesting that TGF-β signaling is
responsible for maintaining LSC in a quiescent, TKI inac-
cessible state.84 Consistent with this, loss of Foxo3a does
not impair leukemogenesis in primary transplantations,
but impairs leukemogenicity in subsequent transplanta-
tions. Inhibitors of TGF-β (e.g. LY364947) combined with
imatinib prolonged survival of leukemic mice compared to
imatinib alone. At this point it is unclear whether TGF-β
signaling in CML-SC is cell-autonomous or driven by
microenvironmental factors. Foxo3A provides a link to
BCL6, another transcription factor with a critical role for
CML-SC survival and response to TKIs that may regulate
key downstream effects of Foxo3A (Figure 1C).85 BCL6
seems to play the role of a thermostat that calibrates cellu-
lar responses according to the level of BCR-ABL1 activi-
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ty. Upon TKI inhibition of BCR-ABL1, AKT inhibition
promotes Foxo3a activation, which results in strong
upregulation of BCL6. BCL6 in turn suppresses the acti-
vation of p53 that would otherwise result in apoptosis. In
contrast, under basal conditions even low BCL6 levels are
sufficient to repress p53 and ARF. If the TKI-induced
upregulation of BCL6 is blocked, CML cells are sensitized
to BCR-ABL1 TKIs in a p53/ARF-dependent manner.
Thus, BCL6 is central to a stress response by which CML
cells escape the execution of a p53/ARF-dependent apop-
totic program. Inhibition of AKT has a critical role in acti-
vating this pathway, as the PI3K/AKT suppressor PTEN is

sufficient to induce BCL6. Additionally, recent reports
have implicated the SIRT1 deacetylase in suppression of
p53 activity in CML-SCs. SIRT1 deacetylates multiple
substrates, including p53, FOXO1 and Ku70. TKIs only
partially suppressed SIRT1 activity, but inhibition of
SIRT1 with the small molecule tenovin-6 in combination
with TKIs led to increased apoptosis in a p53 dependent
manner.60,93 Conversely, lack of SIRT1 attenuated BCR-
ABL1 leukemogenesis in a murine model. Similarly
absence of BCL6 from lineage-KIT+Sca1+ (LSK) cells (the
murine equivalent to human lineage-CD34+38- HSCs)
infected with BCR-ABL1 retrovirus blocks leukemogene-
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Figure 1. Pathways active in CML-SCs that are possibilities for therapeutic targeting. (A) β-catenin stabilization through
Wnt3a binding Frizzled (FZD) and lipoprotein receptor-related protein (LRP) binding Disheveled (DVL) and subsequently
sequestering Axin antagonizes destruction complex assembly (red: Axin, APC, casein kinase 1a (CK1a), glycogen syn-
thase kinase 3β (GSK3β)). Extrinsic stabilization through activation of CD27 by CD70 and intrinsic stabilization through
tyrosine phosphorylation by BCR-ABL1 preclude Axin binding and promote β-catenin stabilization. Additionally, BCR-
ABL1-induced Alox5 upregulation increases β-catenin mRNA.74 Stabilized, nuclear β-catenin engages lymphoid enhancer
factor/T-cell factor (LEF/TCF) and CBP on target gene promoters. Non-canonical Wnt5a signaling activates a phospholi-
pase C (PLC) and calcineurin (CCN) dependent pathway that enhances expression of nuclear factor of activated T cells
(NFAT)-regulated genes (e.g. IL-4).67,75,76 (B) Hedgehog (HH) binding to Patched (PTCH) activates Smoothened (SMO),
thereby activating GLI transcription factors, reducing Numb expression and increasing MDM2-induced p53 degradation.
Similarly, Msi2 inhibits Numb to suppress p53.77-82 (C) In CD34+38+ progenitors, BCR-ABL1 activates PI3K, promoting
AKT phosphorylation by 3-phosphoinositide-dependent kinase 1 (PDK1). AKT phosphorylates Foxo3a, preventing its
nuclear translocation. In CD34+38- cells, TGF-β signaling inhibits AKT, permitting Foxo3a translocation and activation of
transcriptional targets, including p27 and possibly BCL6.83-85 (D) BCR-ABL1 suppresses PP2A by activating two negative
regulators, SET and CIP2A. SET expression is promoted by hnRNP A1. BCR-ABL1 kinase dependent and independent
functions and extrinsic signals regulate JAK2 activity, which in turn controls SET. PP2A, a serine/threonine phosphatase,
negatively regulates BCR-ABL1 phosphorylation, activity and stability through SHP1 tyrosine phosphatase. PP2A may
dephosphorylate and inactivate additional signaling proteins such as STATs.86-90 Adapted from O’Hare et al.1



sis in vivo by inducing cell cycle arrest and apoptosis, sug-
gesting that BCL6 may be a viable therapeutic target. A
peptide inhibitor of BCL6, known as RI-BPI, prolonged
survival in a human CML cell line xenograft model.85

Several issues regarding the role of BCL6 and its regula-
tion remain incompletely understood. For example, as
Foxo3a is active in primitive CML cells but not progeni-
tors,84 one would predict differential expression of BCL6,
which is not the case.85

JAK2/PP2A 
Several years ago studies from the Perrotti laboratory

first implicated the serine/threonine phosphatase PP2A in
CML-BP.86 Mechanistically, high levels of BCR-ABL1 in
advanced CML cells enhance the expression of hnRNP
A1, an RNA binding protein that increases expression of
the PP2A inhibitor SET132. Interestingly, this appears to
require activation of JAK2.86,87 Additionally, in patients
with a high risk of progression to CML-BP, high levels of
cancerous inhibitor of PP2A (CIP2A) may further sup-
press PP2A activity (Figure 1D).88 SET knockdown
restores PP2A activity, thereby decreasing BCR-ABL1
tyrosine phosphorylation and expression in conjunction
with inhibition of downstream effectors such as STAT5,
AKT and ERK.86 These effects are dependent on SHP-1
tyrosine phosphatase, a negative regulator of cytokine sig-
naling in CML cells.86 The PP2A pathway is an accessible
drug target. Reactivation of PP2A in CML CD34+ cells by
forskolin induces apoptosis irrespective of BCR-ABL1
activity86 and independent of adenylate cyclase
activation.86 Another PP2A activator, the immunosuppres-
sant FTY720 (approved for the treatment of multiple scle-
rosis), has similar PP2A-activating effects on CML pro-
genitor cells.94 Non-immunosuppressive FTY720 deriva-
tives that activate PP2A are currently being tested.89

Another option to activate PP2A may be JAK2 inhibition.
In lineage CD34+38- CML cells, JAK2 is activated by
BCR-ABL1 in a kinase-independent fashion, suggesting
that combined inhibition of JAK2 and BCR-ABL1 may be
synergistic.90 In contrast, another recent study concluded
that JAK2 is not required for disease maintenance and
hence not a therapeutic target in CML.95 Given that differ-
ent models were used, more experimentation and clinical
trials are required to clarify the role of JAK2 as a target in
CML.

Conclusion

Due to the efficacy of TKIs, therapeutic objectives in
CML have shifted. While preventing blastic transforma-
tion for as long as possible, not infrequently at the cost of
low quality of life, was the paramount goal in the pre-TKI
era, we are now in the privileged position of discussing
strategies to eradicate CML-SCs by drug therapy.
Incremental yet significant progress has been made in tar-
geting BCR-ABL1 kinase activity. Ponatinib, the recently
approved 3rd generation BCR-ABL1 TKI, has activity
against all single mutants of BCR-ABL1, including the
T315I mutant that is resistant against imatinib, dasatinib,
nilotinib and bosutinib.96,97 Preliminary data from a large
phase II study (PACE trial) showed that ponatinib is effec-
tive in many patients who failed 3 or more TKIs, including
nilotinib and dasatinib.98 At the other end of the spectrum,

i.e. MRD, progress is less obvious. While some patients
have maintained CMR after discontinuation of imatinib
therapy, for the moment this is only a small minority and
we may face the reality that persistent disease is largely
beyond the reach of TKIs.99 Although numerous pathways
have been implicated in CML-SC survival in the presence
of TKIs, no clear winner has emerged and clinical transla-
tion is largely lacking. While the increasing prevalence of
CML3 is testimony to the success of TKI therapy, it has
also placed significant strain on health care resources.
Developing rational strategies to eliminate residual dis-
ease is clearly the most important clinical challenge in
CML. 
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Molecular monitoring of chronic myeloid leukemia
patients

Response assessment in CML

The unique genetic hallmarks of CML,
Philadelphia translocation and BCR-ABL
gene, allow an accurate quantification of
tumor burden and treatment response down to
very low levels of leukemia activity. While in
numerous hematologic neoplasias the cyto-
morphological assessment of bone marrow
smears is a predominant method to track the
course of disease, this classical method of
hematology has taken a back seat as far as
well-responding CML is concerned. No cytol-
ogy will tell if an individual CML patient
achieves only a superficial or a profound
response. More sensitive methods are required
to detect minimal residual disease (MRD).
They are provided by the cytogenetic analysis
of the number of Philadelphia chromosome-
positive metaphases and by the quantification
of BCR-ABL fusion gene expression in rela-
tion to a reference gene. Thereby the measure-
ment of BCR-ABL expression represents not
only the most sensitive method by far, but also
delivers an absolute value on a ratio scale suit-
ed for statistical analyses. In the last two
decades, molecular monitoring has become an
important tool to track the course of response
and is indispensable in state of the art monitor-
ing of CML.

Multiplex PCR

CML is routinely diagnosed by detection of

the t(9;22)(q34;q11) translocation via cytoge-
netic analysis of bone marrow aspirate or by
detection of a BCR-ABL fusion gene tran-
script by qualitative polymerase chain reac-
tion (PCR) from peripheral blood.
Approximately 90% of patients presenting
with the cytomorphological phenotype of
CML are found to be Philadelphia-chromo-
some positive (Ph+), approximately 95% are
BCR-ABL positive, while the others are
termed atypical CML.1 Molecular diagnosis
uses a multiplex PCR with different primer
pairs to detect different types of BCR-ABL
fusion gene transcripts.2 The vast majority of
patients express either the e13a2 or the e14a2
BCR-ABL transcript or both of them since
they are considered splice variants of the
same genomic breakpoint.3

The routine multiplex PCR assay reported
by Cross et al.2 also detects rarer transcripts
such as e19a2, e13a3, e14a3 or the e1a2
BCR-ABL transcript which is predominant-
ly associated with Ph+ acute lymphoblastic
leukemia (ALL). If CML is suspected from
cytological phenotype and BCR-ABL is
negative in routine multiplex PCR it is
important to exclude rare transcripts, e.g.
e6a2 or e8a2 using specific primer pairs.4

The identification of the individual BCR-
ABL transcript type is a prerequisite for
quantitative monitoring and detection of
MRD later in the course of disease because
a specific assay might be needed. Its identi-
fication is mandatory at the onset of treat-
ment since BCR-ABL transcripts might
become undetectable for multiplex PCR
under treatment of CML.

Chronic myeloid leukemia  

Standardized molecular monitoring of BCR-ABL mRNA transcripts has been established as the most
sensitive technique of diagnosis and follow up in chronic myeloid leukemia (CML) patients. Its prog-
nostic impact on outcome has been demonstrated by independent groups using several tyrosine kinase
inhibitors. Nevertheless, laborious harmonization efforts are necessary in order to guarantee compa-
rability of molecular results between different laboratories. Current efforts concentrate on increasing
the sensitivity of the results in order to meet the requirements of persistent deep molecular response
as a prerequisite for participation in treatment discontinuation trials. 

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the benefits and limitations of molecular monitoring in CML patients:
- interpret molecular results in terms of prognostic significance;
- discuss the importance of harmonization of technologies according to the International Scale (IS);
- reasonably use derived techniques in case of resistance or unsatisfying response.

A B S T R A C T



Quantitative real-time PCR
The quantification of BCR-ABL transcripts using real-

time polymerase chain reaction (quantitative RT-PCR)
after isolation of total leukocyte RNA and cDNA synthesis
represents an accurate method to determine tumor load in
patients with CML.5 Different quantitative RT-PCR assays
using different platforms (e.g. LightCycler, TaqMan,
Rotor-Gene) are established in specific laboratories indi-
cating the need of a standardization to establish compara-
ble reporting of results. Most of the assays apply the
absolute quantification method using a dilution series of
plasmid standards containing the gene sequence of inter-
est. Therefore, BCR-ABL transcript types differing in
length from the used standards, e.g. e1a2 or e19a2, will
result in biased quantification due to differing PCR effi-
ciencies using a standard PCR assay.6 For these transcript
types, specific PCR assays are available in specialized lab-
oratories. 

BCR-ABL transcript levels have been shown to corre-
late with cytogenetic response: the 10% BCR-ABL level is
considered equivalent to partial cytogenetic response
(PCyR) given by a reduction to 35% or less Ph+ metaphas-
es,7 the 1% BCR-ABL transcript level is supposed to be a
molecular correlate of complete cytogenetic remission
(CCyR), given by the absence of Ph+ metaphases.
Therefore, the European LeukemiaNet (ELN) recom-
mends bone marrow aspiration and cytogenetic diagnos-
tics until CCyR is reached. In case of the additional
achievement of a major molecular remission (MMR, i.e.
BCR-ABL transcript level ≤0.1%) no further cytogenetic
assessments are needed since they are not expected to pro-
vide additional information.8 However, clonal evolution,
i.e. the emergence of additional cytogenetic aberrations
(ACA) in the Ph+ clone can only be detected by cytogenet-
ics. Hence, in case of suspected resistance or loss of
molecular response levels additional cytogenetic diagnos-
tics again becomes necessary. 

Routine molecular diagnostics are performed as RT-
PCR (‘RT’ may stand for ‘real-time’ and ‘reverse tran-
scriptase’) from cDNA and not from genomic DNA. This
approach has been chosen due to the wide range of break-
points on the genomic DNA level. However, a higher sen-
sitivity can be reached using a patient-specific PCR,9
which is of growing importance if treatment discontinua-
tion is being considered.

Bone marrow versus peripheral blood

PCR for BCR-ABL can be performed using either
peripheral blood or bone marrow, while peripheral blood
is preferred due to easier access and more exact assess-
ment of the number of leukocytes contained. Furthermore,
it has been shown that comparable results were received
using parallel measures from bone marrow and peripheral
blood in chronic phase CML patients.10 For other BCR-
ABL positive diseases like ALL, it is recommended to use
bone marrow instead of peripheral blood which represents
a general rule for monitoring other molecular targets in
acute leukemias (e.g. acute myeloid leukemia, AML) due
to higher tumor load in the marrow.

Reference genes and pre-analytics
Quantification of BCR-ABL has to be complemented by

the quantification of an internal control gene that most
often is ABL, GUS or BCR. The value of these housekeep-
ing genes is proportional to the amount and integrity of
RNA extracted from the blood sample. In order to achieve
a sufficient number of housekeeping gene copies, a mini-
mum volume of 10 mL EDTA-anticoagulated PB is rec-
ommended.11 A huge variety of procedures are being per-
formed in molecular laboratories since multiple commer-
cial kits are available for RNA extraction, cDNA synthesis
and PCR conditions. Generally commercial easy-to-use
RNA extraction kits reach lower amounts of RNA than
laborious phenol-chloroform-based methods like
TRIzol.12 Since sample sensitivity is of increasing impor-
tance, the main focus of molecular laboratories should be
on increasing the RNA yield in order to be able to measure
small amounts of BCR-ABL. It should be kept in mind
that negative BCR-ABL results are achieved earlier and
more frequently if samples do not for any reason meet
high sensitivity criteria. A negative BCR-ABL-PCR,
either qRT-PCR or nested PCR, can only be interpreted in
relation to the expression of a reference gene representing
the yield of mRNA transcripts from total leukocyte RNA. 

It should be mentioned that BCR-ABL harmonization
can be achieved using different housekeeping genes as
internal control. Nevertheless, ABL is by far the most
commonly performed control gene besides BCR and GUS
(beta-glucuronidase) because it has been shown to be
comparably expressed in both normal and leukemic sam-
ples.13

Standardization process, International Scale (IS)

The International Randomized Study of Interferon and
STI571 (IRIS) was the first global multicenter study that
aimed to follow up patients not only by conventional cyto-
genetics but also by molecular diagnostics from peripheral
blood. Therefore the main three monitoring laboratories
(Adelaide, Australia; London, UK; Seattle, USA) shared
samples from 30 patients at initial diagnosis and per-
formed quantitative RT-PCR. In order to be able to com-
pare results from different laboratories around the world,
the median BCR-ABL expression level of these samples
was determined at each site and a conversion factor was
derived to transform this median to a 100% level which
from there on has been considered as standardized IRIS
baseline.14

In 2006, an expert panel agreed on continuing to use this
baseline as an anchor from which the definition of a MMR
as a 3-log reduction was derived.15 From then on a world-
wide harmonization approach was performed, starting
from the Australian laboratory in Adelaide, by performing
control rounds using spiked cell line dilutions and patient
leukocytes.16 This was extended to other regions, such as
the European approach with extension to more than 60
laboratories in 28 European countries.17 The aim of these
sample exchanges is the calculation and validation of con-
version factors which can be used to multiply local BCR-
ABL expression results and provide BCR-ABL expression
results according to the international scale (BCR-ABLIS).
This approach has been shown to be a valuable tool to
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enable different laboratories to speak the same language. 
Nevertheless, the sample exchanges represent a cumber-

some procedure which might be substituted within the
coming years by the introduction of commercially avail-
able secondary reference materials derived from a primary
reference material described by White et al.18

Confounding variables

Even small changes in the procedures, e.g. change of the
RT enzyme, use of another RNA extraction kit, or change
of PCR primers, can lead to a considerable change in the
local conversion factor.19 Nevertheless, it takes much more
to make a good molecular laboratory than renewing their
conversion factor every year. Thus, it is of utmost impor-
tance that thorough protocols are being followed guaran-
teeing reproducible steps and enabling false negative or
false positive results to be checked by implementing neg-
ative and positive controls for several facets of the proce-
dure. The presence of these protocols and rules within the
setting of a laboratory certification and/or accreditation
represents an important and helpful base for delivering
reliable results and minimizing the risk of misinterpreta-
tion or misjudgments.

Molecular response landmark according 
to ELN recommendations

The ELN recommendations on treatment and diagnos-
tics of CML include the proposal to use molecular moni-
toring every three months on tyrosine kinase inhibitor
(TKI) treatment until a MMR is achieved. Maintaining
this depth of response might prolong the intervals of meas-
urements up to six months.8 Achieving MMR by 18
months on imatinib treatment is considered to classify for
an optimal response that in turn means that there is no
indication that a change of therapy may improve the sur-
vival of the patients. In contrast, failure to achieve MMR
by 18 months is considered to indicate a suboptimal
response that is associated with a risk of not achieving an
optimal outcome, and thereby suggests that alternative
treatment approaches should be considered. 

The prognostic significance of early BCR-ABL
transcript levels

In recent years, the prognostic impact of the reduction in
BCR-ABL transcript levels at specific treatment periods
has become more and more important. Distinct molecular
landmarks have been defined that allow the individual
treatment situation to be interpreted. The identification of
a response situation associated with inferior survival can
bring clinicians to change the TKI in use or to evaluate
stem cell transplantation. A 7-year update of the IRIS trial
revealed that the achievement of a BCR-ABL expression
below 1% after 12 months on imatinib therapy is associat-
ed with significantly higher rates of event-free (EFS) and
progression-free survival (PFS) compared to the cohort of
patients which remained above 1% BCR-ABLIS.20

Furthermore, it has been shown that the achievement of a
molecular response of below 1% BCR-ABLIS at 12

months is reassuring for a good risk cohort on imatinib
treatment concerning overall survival, which in general is
considered the molecular response level corresponding to
CCyR.21 Evaluating molecular response levels after six
months on imatinib showed significant benefits in terms of
EFS and PFS in patients below 10% BCR-ABLIS,20 or in
terms of overall survival (OS) which was even more pro-
nounced having reached a reduction to below 1% BCR-
ABLIS.22 Prognostic data have recently been published
from different groups concerning the early 3-month time
point on imatinib therapy. Thus, the failure to achieve a
molecular response below 10% BCR-ABLIS has been
shown to be associated with significantly lower PFS and
OS.22,23 Even though the observation time of the phase III
trials DASISION (dasatinib vs. imatinib in first-line treat-
ment) and ENESTnd (nilotinib vs. imatinib in first-line
treatment) have been rather short (3 years), it has been
shown that the 10% BCR-ABLIS level after three months
has similar prognostic implications. Dasatinib treated
patients experienced significantly worse 3-year PFS (68%
vs. 93%) and OS (86% vs. 96%) in case of failing the 3-
month criterion. Less patients were in this high-risk group
after three months on dasatinib (16%) compared to
patients on imatinib (36%).24 In addition, remaining above
10% BCR-ABLIS after three months led to a significantly
lower chance to achieve a MMR within the first two years
(~20% vs. >50%). Nilotinib-treated patients also showed
significantly lower 3-year PFS (91% vs. 98%) and overall
survival (87% vs. 98%) if 10% BCR-ABLIS after three
months have not been met.25 This group of patients only
had a chance of 29% to achieve a MMR within two years
compared to over 70% in the good risk group.
Nevertheless, a marked difference was demonstrated
regarding the frequency of ending up in the high-risk
group after three months between nilotinib-treated (9%)
and imatinib-treated (33%) patients. The cited data clearly
indicate that future recommendations will include molec-
ular hallmarks not only for the 18-month time point but
also for 12 months, six months, and three months.

Definitions of deep molecular response

The term complete molecular response (CMR) has been
critically evaluated and discussed over the last couple of
years since there are some intrinsic issues. The ELN rec-
ommendations define a CMR as follows: undetectable
BCR-ABL mRNA transcripts by real time quantitative
and/or nested PCR in two consecutive blood samples of
adequate quality (sensitivity >104).8 Rates of CMR within
trials have been published using multiple criteria of sensi-
tivity and therefore have not been comparable. One essen-
tial reason for high rates of CMR in patients measured by
certain laboratories is the generally low sensitivity of sam-
ples being reflected by low numbers of housekeeping gene
transcripts. In such samples, even relatively high numbers
of BCR-ABL cannot be detected. Therefore, it is crucial to
care about aiming for high-sample quality. Recently, it has
been proposed to qualify the depth of the response rather
than to use statements like ‘complete’ molecular response
or ‘negative’ PCR. This concept introduces MR4, MR4.5,
and MR5 as response equal or below 0.01%, 0.0032% and
0.001% on the international scale. These can be achieved
by either showing a positive result below the respective
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values by quantitative PCR or scoring BCR-ABL negative
by quantitative and/or qualitative PCR and achieving a
sample quality of above 10000, 32000 or 100000 ABL
copies.5

Stopping the TKI

The French STIM trial looked at 100 patients for the
possibility to stop imatinib treatment in patients who had
achieved and maintained a MR5 for at least two years.
Besides the pharmaco-economic implications of this con-
cept, it was shown that approximately 40% of the patients
remained in deep molecular response without treatment,
whereas about 60% experienced a molecular relapse.
None of the patients with a molecular relapse suffered
from a disease progression and all were remitted by read-
ministration of imatinib or another TKI.26 The prerequisite
to stop TKIs within current stopping trials (e.g. EURO-
SKI) are adapted to the definition of a MR4 in order to
evaluate if more conservative levels might be enough to
safely stop a TKI.

Achieving a very deep response (MR4, MR4.5, MR5) is
becoming more prevalent on 2nd generation TKIs nilotinib
and dasatinib compared to imatinib and this has increased
the hope that more patients could qualify for a treatment
discontinuation in the future. Stable deep molecular
responses without treatment might be called ‘operational
cure’ for a rising number of CML patients, and so help to
ease the burden of rising costs for health care systems.

Monitoring of TKI-resistance, BCR-ABL kinase
domain mutations

Different genetic mechanisms may contribute to the
emergence of TKI-resistant Ph+ clones resulting in molec-
ular, cytogenetic and, finally, hematologic and clinical
relapse. Approximately 50% of resistant patients harbor
point mutations of the BCR-ABL kinase domain that abro-
gate tyrosine kinase inhibition. Over 100 different muta-
tions have been described, most of which can be treated
efficiently with 2nd generation TKI.27 The first herald of
resistance is an increase in BCR-ABL transcript levels
reflecting the proliferating mutant clone. Different
approaches have been made to define the rise in BCR-
ABL levels that should trigger a mutation analysis. A 2-
fold rise has been shown to be a usable indicator to test
patients for BCR-ABL kinase domain mutations.28 A com-
parable rise has been confirmed by a more recent analysis
that found a 2.6-fold increase in BCR-ABL levels an opti-
mal predictor.29 According to the current recommenda-
tions of the ELN expert panel, mutation analysis should be
performed if a landmark defining optimal response is not
achieved (i.e. CHR at 3 months, PCyR at 6 months, CCyR
at 12 months and MMR at 18 months of treatment) or if
any of these landmarks is lost during the course of
disease.30 A two-step PCR amplification process allows a
specific amplification of the ABL alleles rearranged to the
fusion gene. A first PCR step is spanning the BCR-ABL
fusion sequence, the subsequent second PCR step targets
the ABL kinase domain. While mutation analysis is rou-
tinely performed by conventional Sanger sequencing, with
a sensitivity of 10-20% mutant alleles, deep sequencing

assays using next generation sequencing platforms pro-
vide a highly sensitive technique that will allow an earlier
mutation detection and selection of an efficient TKI.31
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Deciding to continue or discontinue therapy 
in chronic myeloid leukemia

Discontinuation of TKI treatment is
possible in clinical trials 

The National Comprehensive Cancer
Network (NCCN) guideline on CML and the
expert panel of the European LeukemiaNet
(ELN) recommend continuation of TKI treat-
ment indefinitely in all responding patients.1,2

However, in recent years a variety of clinical
studies have explored the option to discontinue
TKI therapy in patients with sustained molecu-
lar responses.3 First, a pilot study was reported
where it was proposed to discontinue imatinib
in 12 patients with CML treated and main-
tained in complete molecular response (CMR)
for at least two years. In that study, and at that
time, CMR was defined by undetectable
molecular response (UMR) with PCR sensitiv-
ity between 4.5 and 5 log. After a median fol-
low up of 18 months, 50% of patients remained
off therapy without confirmed reappearance of
peripheral blood BCR-ABL transcripts.4

Updated results confirmed that 50% of patients
off therapy had an undetectable level of BCR-
ABL transcripts after a median follow up of 7.5
years (range 4.4-8.4 years).5 In that study, the
patients who did not exhibit relapse, had been
previously treated with interferon (IFN). This
pilot study provided a proof-of-concept that
imatinib discontinuation could be achieved in
selected patients. This pilot study was followed
by a multicenter study: the ‘Stop Imatinib’

(STIM) trial. This was a prospective trial
including 100 patients with chronic phase
CML on imatinib therapy with the same crite-
ria, i.e, undetectable peripheral blood BCR-
ABL transcripts for at least two years (with an
assay sensitivity close to a 5 log reduction).
Fifty-one per cent of the patients had been pre-
viously treated with IFN, and the other half
were treated with imatinib only. Molecular
relapse, which was arbitrarily defined as two
positive RQ-PCR results over a period of one
month showing a significant rise (1 log) in
BCR-ABL transcripts, was a trigger for ima-
tinib resumption. An interim analysis yielded
promising results with a 12-month molecular
relapse-free survival rate of 41%.6 A recent
update of that study showed that the overall
probability of maintaining CMR at 36 months
was 39% (95%CI: 29-48); 3 cases of late
relapse were observed at 19, 20 and 22 months,
respectively.7 Most patients who experienced
molecular relapse did so within six months of
imatinib cessation and remained responsive to
re-treatment with imatinib, as we had observed
in the pilot study. Similar results were reported
in the Australasian Leukaemia and Lymphoma
Group (ALLG) CML8 study (TWISTER),
which used very similar criteria, i.e. UMR with
a PCR sensitivity of 4.5 log treated on imatinib
for more than two years as an entry criterion.8,9

After a median of 36 months of follow up, 45%
of patients had stable CMR off therapy, while

Chronic myeloid leukemia  

In current clinical practice, the treatment of chronic myeloid leukaemia (CML) with tyrosine kinase
inhibitors (TKI) is continued indefinitely. Several studies show that TKI therapy yields durable responses
and prolongs survival. Despite the outstanding efficacy of TKI in CML, their curative potential remains
uncertain. Recently, preliminary results of trials stopping TKI have modified the horizon of CML therapy
and so the issue of treatment cessation has become of utmost importance for both patients and physi-
cians. Today, several clinical trials propose the interruption of TKIs for patients in sustained deep
molecular response. We know that most TKI-treated patients retain residual leukemic cells detected
by means of real time polymerase chain reaction (PCR), depending on the sensitivity of this test. After
stopping treatment, more than half of the patients exhibit a molecular relapse, which does not lead
automatically to disease relapse of CML. Therefore, the decision to continue or discontinue therapy in
CML is a key question. By asking these questions, we set ourselves on the path of finding the answer
that encompasses both clinical research and philosophical consideration on the issue of cure.

Learning goals

At the conclusion of this activity, participants should know that:
- the main clinical studies of TKI discontinuation;
- TKI discontinuation requires a sustained deep molecular remission; 
- interruption of TKI should only be considered in a clinical trial with strict molecular monitoring.
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55% had relapsed.9 A nationwide survey in Japan identified
50 patients who had discontinued imatinib for at least six
months, 43 of whom were analyzed. Molecular recurrence
was detected in 19 patients, and the CMR rate following
imatinib discontinuation was estimated to be 47%.10

Several other studies, including the ‘According to STIM’
and KEIO STIM, have evaluated imatinib discontinuation
after sustained, deep molecular response, and in all cases
significant percentages of patients have been able to
remain relapse-free off therapy.11,12 It is important to note
that ‘molecular relapse’ and, therefore, the trigger for rein-
troduction of TKI therapy, in these studies has often been
defined differently (Table 1). For example, in the STIM
study, molecular relapse was defined as two positive RQ-
PCR results over a 1-month period.6,7 In contrast, in the
‘According to STIM’ study, molecular relapse was less
stringently defined as loss of MMR at any time or a 1-log
increase or over in BCR-ABL on two consecutive assess-
ments.11 Many other studies investigating discontinuation
of TKI are in progress or will start soon as discussed in the
following paragraphs.13-15

The need to achieve a sustained deep molecu-
lar response 

The criterion of sustained UMR for at least two years is
of major importance in planning TKI discontinuation stra-
tegies (Figure 1). Other attempts at imatinib discontinua-
tion that did not fill this criterion exhibited rapid molecu-
lar relapses.16-19 Different TKI discontinuation studies
confirmed and suggested that the duration of response,
especially the duration of CMR was important. Takahashi
et al. reported that a significant difference in the estimated
molecular relapse free survival rates at five years follo-
wing discontinuation between patients in whom CMR was
sustained for more than 24 months prior to imatinib dis-

continuation and those sustaining a CMR for less than 24
months (78% vs. 15%, P=0.0002).10 In the Australasian
TWISTER study, a sustained UMR for at least two years
was also used as a criterion.8 The validation of this crite-
rion was reinforced using mathematical models confir-
ming a biphasic dynamic of BCR-ABL transcript decline
with a 2-slope model of imatinib response: the α slope cor-
responded to the rapid initial decrease in BCR-ABL tran-
script levels (cycling cells) after the start of treatment, and
the β slope corresponded to the longer-term BCR-ABL
dynamics (less proliferative cells).20

Another model recently reported based on the biphasic
decline of BCR-ABL transcript levels suggested that 31%
of the patients will remain in deep molecular remission
after treatment cessation after a fixed period of two years
in MR5, whereas 69% are expected to relapse.21

However, in the STIM study, when we analyzed factors
which potentially predicted molecular relapse by univari-
ate analysis, the duration of molecular remission was not
significant.6 This may be due to the low power of the sta-
tistical analysis. In France, an STIM2 trial has started
which includes patients with chronic phase CML treated
initially with imatinib as a single agent and with a sus-
tained CMR for at least two years. At the last update, 120
patients have been recruited out of a planned 200.22 The
identification of patients who would benefit most from
discontinuation of imatinib remains a key issue and the
question of the duration of molecular response before dis-
continuation is crucial. It is also one of the objectives of
the European Stop Kinase Inhibitor (EURO-SKI) trial
from the European LeukemiaNet (ELN) that is in progress
in several countries. The criteria for discontinuation are
less strict than in the STIM studies: duration of TKI treat-
ment before enrolment of at least three years, no PCR-
results over 0.01% within the last year. ELN plans to
recruit 500 patients to a discontinuation study that will
address the following questions. 1) How long should treat-
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Figure 1.General design for discontinuation of trials.  



ment with TKIs last? 2) What level of MR is required? 3)
Do gender, combination therapy or the type of TKI influ-
ence the chance of relapse after diccontinuation of TKIs?
4) Does the type of TKI used for treatment influence the
relapse rate? 

The depth of response is an important factor in the deci-
sion to discontinue TKI treatment. The definition of
molecular response and the standardisation of BCR-ABL
transcript measurement remain a concern. For this reason,
the CML Working Group of the ELN has recently pro-
posed revised definitions of molecular response (MR) tak-
ing into account the sensitivity of molecular test: 

MR4 indicates ≥ 4-log reduction (BCR-ABLIS≤ 0·01%); 
MR4.5 indicates ≥4.5-log reduction (BCR-ABLIS≤
0·0032%); and 
MR5 indicates ≥5-log reduction (BCR-ABLIS

≤0·001%).23

Like CMR, undetectable levels of minimal residual dis-
ease (UMRD) indicates a negative RQ-PCR result and
must be associated with a defined PCR assay sensitivity;
however, it should be noted that leukemic cells may still
be present even if RQ-PCR results are negative.24 Current
RQ-PCR methods can reliably detect up to a 5-log reduc-
tion in BCR-ABL, but newer techniques, such as DNA-
based PCR, RNA-based digital PCR, and replicated PCR
have demonstrated increased sensitivities and may enable
the assessment of even deeper levels of molecular
response.25 However, it should be noted that using an
ultrasensitive PCR technique, a low level of BCR-ABL
transcripts has been found in the blood of normal individ-
uals, suggesting that a complete absence of transcripts
may not be required to eradicate the disease.26,27 We still
do not know the threshold of residual disease which will
allow us to safely stop TKI without molecular recurrence.

Analysis of other factors to define the best
candidates for stopping TKI

Beside the duration and deep of response, which other
factors may be used to suggest the possibility of interrupt-
ing TKI treatment? In the STIM study, several potential
factors for prediction of molecular relapse were retrospec-
tively assessed.6 The probability of remaining in stable
CMR after discontinuation was favorable in the low Sokal
risk group when compared to the intermediate or high
Sokal risk groups. Using multivariate analysis and logisti-
cal regression at eight months, Sokal risk and imatinib
therapy duration were confirmed as two independent prog-
nostic factors for prediction of molecular relapse after
imatinib cessation. Despite the low number of patients,
Yhim and colleagues also confirmed that high Sokal risk
was associated with a higher rate of molecular relapse
after imatinib discontinuation.13 Using univariate analysis
Ross and colleagues in the TWISTER study found that
high Sokal risk score at diagnosis was the strongest pre-
dictor of molecular recurrence.8 It is of some interest to
note that a factor such as the Sokal score illustrating the
aggressiveness of the disease at diagnosis is still signifi-
cant.28 The identification of other predictive factors of
molecular recurrence depends on the power of the statisti-
cal analysis which requires the analysis of a larger cohort
of patients. As mentioned before, this is one of the goals of

the EURO-SKI and the STIM2 studies.
Using the criteria of the STIM and TWISTER studies, it

should be possible to predict which patients are ideal can-
didates for discontinuation of TKIs. Recently Branford
and colleagues found in a study of 415 patients treated
with imatinib for eight years, that the cumulative rate of
stable MR4.5 (for at least 2 years) was 43%. In these
patients, the time to achieve MMR was correlated with the
time to achieve stable MR4.5.29 In addition, the only two
independent factors, i.e, female gender and a low level of
BCR-ABL1 value at three months were strongly statisti-
cally linked to the prediction of sustained MR4.5. Factors
associated with sustained MR4.5 and undetectable tran-
scripts induced by TKI (imatinib, dasatinib and nilotinib)
were also analyzed in a multivariable analysis (n=495) by
Falchi and colleagues from the MD Anderson Cancer
Center (MDACC) in Huston. They showed that older age,
higher baseline hemoglobin, higher baseline platelets, TKI
modality and response at three months were significant.30

A larger cohort of patients would be necessary to validate
and refine this analysis. This is also one of the aim of the
STIM2 study for imatinib and the EURO-SKI for other
TKI. 

Increase the number of patients who might
stop TKI  

The possibility of discontinuing IFN treatment for very
good responder CML patients was reported ten years ago.
At that time, it was shown that IFN α treatment could be
stopped after a complete cytogenetic response (CCgR)
was achieved and the rate of persistent CCgR depended on
time elapsed between CCgR achievement and treatment
discontinuation. The authors concluded: “If the cytogenet-
ic responses are confirmed in the future, the issue of cur-
tailing treatment might also become relevant in patients in
CCR after STI571”.31 In 2010, stopping treatment in CML
patients after imatinib, formerly named STI571, became a
reality. 

With the STIM study, criteria for discontinuation were
defined: a state likely to be stable with undetectable BCR-
ABL1 transcripts for at least 24 months with an appropri-
ate PCR sensitivity below 4.5 and 5 logs. These criteria
could be modified particularly if the question of stopping
treatment with more powerful drugs such as 2nd generation
TKIs is addressed. The more potent 2nd generation TKIs,
such as nilotinib, dasatinib, bosutinib, have been shown to
induce faster, higher and deeper molecular responses com-
pared with imatinib.32 Three randomized, phase III clinical
studies comparing imatinib with the 2nd generation TKIs
nilotinib, dasatinib and bosutinib (ENESTnd, DASISION
and BELA, respectively)33-35 demonstrated that use of 2nd

generation TKIs as initial therapy is associated with faster
and higher rates of MR compared with imatinib In
ENESTnd, patients achieved higher rates of MR4 and
MR4.5 by one, two, and three years with nilotinib compared
with imatinib.36 Improved rates of MR4, and MR4.5 by one,
two, and three years were also observed with dasatinib
compared with imatinib in DASISION.37 In the BELA
phase III study of bosutinib versus imatinib, the primary
end point (CCgR rate at 12 months) was not met; however,
bosutinib did show a higher MMR rate at 12 months (41%
vs. 27%; P<0·001) compared with imatinib.35 CMR (in
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this study, equivalent to MR4) rate at 12 months was also
higher with bosutinib (12% vs. 3%, P<0·001). Several
other single-arm trials of 2nd generation TKIs as initial
therapy have also assessed deep molecular response end
points, including the Italian (GIMEMA) nilotinib phase II
study, the MDACC nilotinib phase II study, the MDACC
dasatinib phase II study, and ENEST1st.38-42 It may be also
beneficial if patients are switched to 2nd generation TKIs
after imatinib. This is one of the aims of the ENESTcmr
study. The increasing importance of deep molecular
response in CML therapy has prompted the question:
should patients with CCyR who do not achieve these deep
levels of molecular response be switched to an alternate
therapy? In ENESTcmr, patients with detectable BCR-
ABL after 2 years or over on imatinib were randomized to
receive either continued imatinib or nilotinib. After 12
months of follow up, nilotinib demonstrated significantly
higher rates of MR4, MR4.5, and CMR (≥4·5-log assay sen-
sitivity) compared with continued imatinib.43 Results after
24 months of follow up continued this trend, with 32.7%
and 16.5% of patients in the nilotinib and imatinib arms,
respectively, achieving CMR.44

All of these studies confirm that 2nd generation TKI are
able to induce deeper molecular response in CML patients,
which is sine qua non condition for discontinuation of
treatment. However, so far, only limited experience is
available with nilotinib or dasatinib.45 Rea and colleagues
from the FILMC (French CML Group) study reported 34
patients with a minimum follow up of six months (median
14, range 7-33)46 (Table 1). The criteria of discontinuation
were those used in the STIM. Two patients discontinued a
2nd generation TKI in the front-line setting, 29 in the sec-
ond-line setting, and 3 in the third-line setting. The last

reported follow up showed 18 patients with stable MMR
remaining off therapy for a median of 16 months (range 7-
33); of these patients, 7 had stable undetectable BCR-ABL
and 11 had at least one instance of weakly detectable
BCR-ABL. The 12-month probability of remaining in sta-
ble MMR was 58.3% (95%CI: 41.5%-75%). the rate of
relapse according to STIM and CML8. The corresponding
12-month probabilities were 55.8% (95%CI: 39.2%-
72.6%) according to the definition of relapse in the STIM
(detectable BCR-ABL on 2 consecutive tests with at least 1
log increase between the 2) and 44.1% (95%CI: 27.4%-
60.8%) according to TWISTER (detectable BCR-ABL on
2 consecutive tests at any level). After a median follow up
of 14 months, 13 of 15 patients regained MMR and 10 of
13 patients regained CMR after relapse.46 Many other
studies are now in progress aiming to explore the possibil-
ity of safely stopping 2nd generation TKI including the
EURO-SKI study. The Pharma industry has defined a
path-to-cure or a what is called ‘TFR, treatment free
remission’ program on the basis of reported data, indicat-
ing that a sustained deep molecular response may become
the next molecular end point in future trials. Novartis
Pharma has built a program with nilotinib and extended
ENEST to different trials such ENESTPath, ENESTop,
ENESTfreedom. Bristol Myer Squibb (BMS) also propos-
es a phase II study (Dasatinib Functional Cure CA180-406
Study) evaluating dasatinib therapy discontinuation in
patients with CML with stable deep molecular responses. 
Combination studies may increase molecular responses.
IFN combined with TKI may have a synergistic effect. In
the French SPIRIT trial, the addition of pegylated IFN
alfa-2a to imatinib therapy for chronic-phase CML
patients resulted in significantly higher rates of MR4.47
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Table 1. Clinical studies of TKI discontinuation in patients with CML-CP.

Study N Treatment before Response required for Definition of relapse Patients free from Patients 
discontinuation discontinuation relapse responding to TKI 

(median follow-up time) after relapse

Trials of imatinib discontinuation

STI 6,7 100 Imatinib for ≥ 3 years MR5 for ≥ 2 years Confirmed loss of MR5 39% (30 months) 56/61 regained MR5

ALLG CML88,9 40 Imatinib for ≥ 3 years MR4.5 for ≥ 2 years Confirmed loss of MR4.5 45% (3 years) 22/22 regained MMR or better

According to STIM11 66 Imatinib for ≥ 3 years MR4.5 for ≥ 2 years Loss of MMR or ≥ 1-log 64% (23 months) 24/24 regained MMR or better
increase in BCR-ABLa

Korean15 40 Imatinib for ≥ 3 years CMR for ≥ 2 years Confirmed loss of MMR 77% (7.9 months) 4/6 regained MMR or better

Yhim et al.13 14 Imatinib for median CMR for ≥ 1 years Confirmed loss of CMR 28.6% at 1 year 7/10 regained CMR
56.4 months (23 months)
(range 26.2-82.0)

KEIO STIM12 30 Imatinib for median UMRD for ≥ 2 years Loss of MMR 46.8% at 6 6/11 regained UMRD 
92 months (< 100 copies by TMA) months (5 months)
(range 32-114)

Trials of nilotinib/dasatinib discontinuation

STOP 2G-TKI46 42 Nilotinib or dasatinib CMR for median Loss of MMR 58.3% (12 months) 13/15 regained stable MMR; 
for median 35 months 29 months 10/13 regained UMRD 
(range 21-72) (range 21-39)

UMRD: undetectable minimal residual disease.



Burchert and colleagues reported results of IFN mainte-
nance therapy after induction therapy with imatinib plus
IFN.48 This induced stable long-term molecular remissions
and may be helpful in increasing the number of patients
who can safely discontinue TKIs, particularly if immuno-
logical responses are achieved. Despite the fact that the
mechanism underlying the anti-leukemic effect of IFN in
CML is unknown, a single-arm phase II study started
recently to evaluate pegylated IFN in association with
nilotinib in newly diagnosed CP-CML patients. The pre-
liminary results with the highest rate of MR4.5 at 12
months (21%) were presented recently but need to be con-
firmed.49 A phase III randomized study, the TIGER study,
is evaluating nilotinib versus nilotinib plus PEG-IFN, and
asking the question of discontinuation in newly diagnosed
CML patients is in progress in Germany (A Hocchaus et
al., personal communication, 2013). 

Increase the rate of treatment free remission:
targeting leukemic stem cells?  

We have learnt from discontinuation studies that the loss
of CMR is observed in approximately 60% of patients. In
spite of questions about the definition of cure, we should
strive to reduce the rate of molecular recurrence after dis-
continuation of treatment. In the future, CML treatment
could be considered in 3 steps: induction, consolidation
and sustained CMR (Figure 2). The concept that a patient
can only be considered cured of leukemia if every
leukemia cell has been eradicated has evolved in recent
years. We may cure CML patients, but we may never
know whether all leukemic cells have been completely
eradicated. In addition, we still do not know if leukemic
stem cells (LSC) are really the true enemies because pro-
gression to AP may occur at the level of a more committed
progenitor cell.50 In spite of these considerations, if we
want to decrease the rate of molecular recurrence after
stopping TKI, we need to understand why quiescent LSCs
are insensitive to TKIs, which is illustrated by the large
number of publications focused on targeting the LSCs.51.52

Compared to normal stem cells, LSC exhibit aberrant or

non-regulated self-renewal, survival and dormancy
(Figure 2). Several strategies have been proposed, includ-
ing inhibiting survival/renewal pathways, sensitizing LSC
(cycling or differentiating), immune targeting, or modify-
ing the bone marrow niche (Figure 2). JAK/STAT, JAK2
kinase, the protein phosphatase 2A (PP2A), arachidonate
5-lipoxygenase gene (ALOX5), histone deacetylases
(HDACs), Sirtuin 1 (SIRT1), and BCL6 are among the
most relevant targets for such a strategy.53-57 Two of the
most important pathways for self-renewal of CML LSCs
are the Wnt-b-catenin and the Hedgehog (Hh) path-
ways.58,59 Targeting of the Hh pathway in solid tumors has
been attempted by smoothened homolog (SMO)
inhibitors.60 Different Phase I or phase II trials have begun
in CML with low level of residual disease in combination
with TKI, but toxicity may inhibit the development of
SMO inhibitors drugs for this indication. 

Having shown that RAD52 is necessary to repair numer-
ous reactive oxygen species (ROS)-induced DNA double-
strand breaks (DSBs) in LSCs to promote leukemogene-
sis, Skorski and colleagues demonstrated the possibility of
using this specific property to target LSC. Using peptide
aptamer to target the DNA binding domain of RAD52,
they reported a specific effect on CML LSC in mouse
models.61 One promising development is represented by
new data which support selective targeting of LSC by
small molecule antagonists of anti-apoptotic BCL2-family
proteins.62,63 It has been reported that LSCs from patients
with advanced phase CML are quiescent,TKI-resistant in
the marrow niche and  Sabutoclax, a pan-BCL2 inhibitor,
enhances TKI sensitivity of bone marrow BC LSCs.64

Other considerations and other questions for
the future

Until recently, discontinuing imatinib has been limited
to a few CML patients with undetectable BCR-ABL1 tran-
scripts. In the STIM trial in France, we estimated that 10%
of patients might be candidates for discontinuation of
TKIs. We know that the depth of molecular response to
imatinib increases with time. Recently, the Australian
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Figure 2. Strategies
of CML stem cell tar-
geting. LSC:
Leukemic stem cell;
GMP: granulocyte
macrophage progen-
itor, BM Bone mar-
row differentiated
cells; PB: peripheral
blood cells.



group examined 415 patients with de novo CML in chron-
ic phase enrolled in consecutive clinical trials of imatinib
since July 2000, and estimated that after eight years of
imatinib therapy the cumulative incidence of stable
UMR4.5 would be 43%.29

The achievement of deep molecular responses with 2nd

generation TKI may provide a hope of increasing the num-
ber of candidate who can safely stop TKI. We still do not
know if the rate of molecular relapse will be improved
with 2nd generation TKI. Studies with less stringent defini-
tions of molecular relapse have reported lower relapse
rates so it is very important to use the same criteria to com-
pare the different studies. Other questions remain, such as
how can we treat molecular recurrence?

Legros and colleagues described 16 patients with CML
in MR4.5 to imatinib who underwent a second trial of treat-
ment discontinuation after the first attempt had failed (i.e.
they had experienced a molecular relapse and regained
CMR).65 Twelve of the patients had a rapid return of
detectable disease and were successfully re-treated, 2
patients maintained CMR, and 2 had a rise of transcripts
but maintained MMR. The kinetic of the first relapse gen-
erally differed to that of the second. The authors conclude
that while the success rate of this maneuver is only 25% it
is safe to discontinue therapy for a second time once CMR
is re-established. It would be interesting to know what
would happen if we treat patients with 2nd generation TKI
for a second time. Such studies with nilotinib have started
in France (NilopostSTIM). 

The economic implications of TKI treatment cessation
are very important. In the STIM, the savings were estimat-
ed to be over 5 million Euros at the latest analysis. A for-
mal and rationally designed medico-economic study tak-
ing into account different aspects of dealing with CML as
a chronic disease, including the quality-of-life parameters,
is currently in progress.

Treatment-free remission for patients with CML is a
new topic which has been developing over the last few
years, re-enforcing the notion that CML is a model for
other cancers and, more particularly, for hematologic dis-
orders. While the subset of patients achieving molecular
remission leading to cessation of treatment is heteroge-
neous, CML remains an extraordinary model both for rais-
ing awareness about ‘curability’ as well as thought pro-
voking questions about medicine as a whole. What is the
definition of ‘cure’? Is it necessary to eradicate the last
leukemic (stem) cell? Deciding to continue or discontinue
therapy in patients with CML  is a Shakespearean question
reflecting what is in every patient’s mind: to be or not to
be cured. However, from a physician’s perspective, “to
thine own self be true” is truer more than ever. 
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Molecular pathology of diffuse large B-cell lymphomas 

Introduction

Diffuse large B-cell lymphomas (DLBCL)
constitute the most common type of adult non-
Hodgkin’s lymphomas (NHL) and account for
30-40% of cases.1 When discussing the molec-
ular pathology of DLBCL, it is important to
realize that the World Health Organization
(WHO) classification defines a relatively large
number of diverse DLBCL subgroups that all
differ with regard to their morphological, genet-
ic, immunophenotypic and, importantly, also
their clinical features. For example, T-cell/histi-
ocyte-rich large B-cell lymphomas, cutaneous
forms of DLBCL, central nervous system
(CNS) DLBCL, EBV-associated DLBCL of the
elderly or plasmablastic lymphomas all have
their own morphological characteristics, differ
in underlying biological, immunophenotypic
and molecular features, and present in different
clinical settings.1 Thus, all of these subgroups
have their ‘own molecular pathology’.
Moreover, the biological and clinical borders
between DLBCL and Burkitt’s lymphoma (BL)
and between DLBCL and classic Hodgkin’s
lymphoma (cHL) are not clear resulting in pro-

visional gray zone categories termed B-cell
lymphoma unclassifiable with features interme-
diate between DLBCL and Burkitt’s lymphoma
and B-cell lymphoma unclassifiable with fea-
tures intermediate between DLBCL and
Hodgkin’s lymphoma, respectively.2 Never -
theless, the vast majority of DLBCL belong to
the category of DLBCL not otherwise specified
(NOS) and this subgroup will be the subject of
this educational review. 

DLBCL NOS, however, are not a homoge-
neous lymphoma entity which is highlighted by
the fact that DLBCL remains incurable in at
least 30% of patients, while in the remainder a
long-term remission or cure can be achieved.
This clinical heterogeneity is attributed to the
diversity of underlying genetic and molecular
features of this neoplasm that, at present, cannot
easily be recognized in the routine diagnostic
setting at the time of diagnosis.

This review will summarize genetic features
of DLBCL, the current view on the gene
expression-based distinction into the germinal
center B-cell like (GCB) and activated B-cell
like (ABC) DLBCL, the role of the NFkB-path-
way, and results from recent, high-throughput
next-generation sequencing studies.

Diffuse large B-cell lymphoma

Diffuse large B-cell lymphomas (DLBCL) are clinically and biologically heterogeneous. Despite
improved therapeutic options, a significant proportion of DLBCL patients cannot be cured with current
treatment regimens. On the molecular basis, several DLBCL subtypes can be discerned including the
germinal center B-like (GCB) and activated B-like (ABC) DLBCL. GCB and ABC DLBCL are associated
with varying underlying genetic alterations. GCB DLBCL carry BCL2 translocations in a subset of cases
as well as alterations affecting the PTEN/PI3K pathway, whereas BCL6 translocations, deletions of the
CDKN2A locus and deregulation of PRDM1 are more frequent in ABC DLBCL. Activation of NFkB, a
hallmark feature of ABC DLBCL, is accomplished through mutations of positive and negative regulators
of this pathway (A20, TRAF2, TRAF5) and through deregulation of Toll-like receptor signaling (MyD88
mutations). CARD11 mutations as well as mutations affecting B-cell receptor signaling also contribute
to the pathogenesis of DLBCL. Next-generation sequencing studies highlight a novel pathogenetic
aspect in DLBCL, the perturbation of chromatin biology, since frequent mutations in MLL2, CREBBP
and MEF2B affect epigenetic features (methylation, acetylation). Finally, deregulation of MYC on the
genetic or protein level plays an important role in a subset of DLBCL and is associated with an inferior
prognosis.  

Learning goals

At the conclusion of this activity, participants should:
- be aware of the complexity of the molecular pathogenesis of diffuse large B-cell lymphomas

(DLBCL);
- be aware of the most frequent genetic alterations, mutations and some of the affected molecular

pathways in DLBCL;
- be aware of the role of MYC deregulation in DLBCL.

A B S T R A C T



Basic genetic alterations in DLBCL
During various stages of B-cell development, DNA

modifications of the genes that encode the variable regions
of the heavy and light chains forming part of the B-cell
receptor (BCR) occur that enhance the risk of the intro-
duction of potentially oncogenic DNA recombinations.
Specifically, the recombination activating genes 1 and 2
(RAG1, RAG 2) are involved in the V(D)J recombination
process of the heavy chain genes at early stages of B-cell
development by inducing double strand breaks.3,4 During
the germinal center reaction, a specific enzyme termed
activation-induced cytidine deaminase (AID) mediates the
somatic hypermutation (SHM) and class switch recombi-
nation (CSR) processes that lead to increased affinity of
produced antibodies.5,6 Errors in these DNA recombina-
tion processes are thought to result in several recurrent
chromosomal translocations that can be found in DLBCL.
The translocation t(14;18), the hallmark translocation of
follicular lymphoma leading to upregulation of BCL2, can
be detected in approximately 20% of DLBCL7 and occurs
almost exclusively in the GCB DLBCL subtype.8 Less
than 10% of DLBCL carry the Burkitt’s-typical transloca-
tion t(8;14) involving the MYC oncogene.7,9,10 The most
common translocation in DLBCL involves BCL6 (30% of
DLBCL).7,11 Of note, this translocation is more frequent in
the ABC DLBCL subtype.12 In these translocation events,
the BCL6 locus is juxtaposed downstream of alternative
promoters or enhancers, usually including the
immunoglobulin loci, that prevent the physiological
downregulation of BCL6 when germinal center B cells
exit the germinal center reaction to mature into plasma
cells. Thus, deregulated expression of BCL6 is believed to
block terminal B-cell differentiation and to maintain a pro-
proliferative phenotype of the neoplastic B-cell clone that
is characteristic of normal germinal center B cells.7

Accordingly, in a mouse model, deregulated BCL6
expression leads to a B-cell lymphoma that appears to
recapitulate the pathogenesis of human DLBCL.13

Additional genetic alterations that are repeatedly detected
in DLBCL include amplifications of the BCL2 locus
(18q21), amplification of the REL locus (2p13), homozy-
gous CDKN2A deletions, gains of the SPIB locus (19q13),
PRDM1 (Blimp-1) mutations/deletions and trisomies of
chromosome 3.12,14-18 PRDM1 mutations or deletions
affect approximately 25% of ABC DLBCL, as do SPIB
gains/amplifications. Since PRDM1 is a master regulator
of plasma cell differentiation and SPIB represses PRDM1,
both genetic events lead to a block of terminal plasma cell
differentiation in the neoplastic DLBCL cells thus con-
tributing significantly to the pathogenesis.

Gene expression profiling

Analyses of global gene expression profiles have
defined two major subtypes of DLBCL, the germinal cen-
ter B-cell like (GCB) and the activated B-cell like (ABC)
subtypes.19 GCB and ABC DLBCL are molecularly dis-
tinct and their gene expression profiles suggest that they
are pathogenetically linked to different stages of B-cell
differentiation. Specifically, GCB DLBCL expresses
many genes that are physiologically expressed in normal
germinal center B cells including CD10 and BCL6.

Moreover, the process of somatic hypermutation of the
immunoglobulin genes appears to be ongoing in GCB
DLBCL that constitutes another characteristic feature of
germinal center B cells.20 In contrast, ABC DLBCL dis-
plays a gene expression phenotype that is closely linked to
a post-germinal center stage of B-cell differentiation. In
this subtype, key regulators of plasma cell differentiation
including IRF4 and XBP-1 are highly expressed, and the
potent oncogenic NFkB pathway is activated (see
below).19 There is no ongoing somatic hypermutation of
the immunoglobulin genes and immunoglobulin class
switch recombination shows aberrant features.21

It is important to note that the gene expression-based
distinction into GCB and ABC DLBCL is supported by
several other genetic and molecular features. As men-
tioned before, the translocation t(14;18) involving BCL2
occurs almost exclusively in GCB DLBCL.14 Likewise,
gains or amplifications of the REL locus in 2p, a feature of
germinal center-derived lymphomas, are also predomi-
nantly detected in the GCB DLBCL subtype.14 Genetic
alterations involving the phosphatase and tensin homolog
(PTEN) pathway also preferentially affect the GCB
DLBCL subtype. Approximately 10% of GCB DLBCL
show genomic deletions in the PTEN locus and a negative
regulator of PTEN, the microRNA (miR)-17-92, is ampli-
fied at the genomic level in another 10-15% of this sub-
group. Taken together, the PTEN- and, therefore, the phos-
phatidylinositol 3-kinase (PI3K)-pathway appears to be
deregulated in roughly 30% of GCB DLBCL.16 Finally,
recent high throughput sequencing studies identified
somatic mutations of the histone methyltransferase EZH2
in a small subset of follicular lymphomas, but also in a
considerable proportion (~20%) of GCB DLBCL.22

EZH2, the catalytic subunit of the polycomb repressive
complex 2, plays a role in the regulation of the chromatin
structure and, thus, gene expression by catalyzing
trimethylation of histone H3 lysine 27 (H3K27).
Subsequently, point mutations in EZH2 in a subset of
GCB DLBCL lead to H3K27 hypertrimethylation.
Remarkably, recent reports suggest that small molecule
inhibitors of EZH2 may reduce H3K27 hypertrimethyla-
tion in various lymphoma cell lines and inhibit the growth
of EZH2-mutated cell lines or DLBCL xenografts in
mice.23,24

ABC DLBCL is also characterized by distinct genetic
abnormalities. While BCL2-translocations, as mentioned
before, are a hallmark feature of GCB DLBCL, gains or
amplifications of the BCL2 locus in 18q are observed in
approximately 30% of ABC DLBCL. The CDKN2A
(INK4A-ARF) locus is homozygously deleted in a subset
of ABC DLBCL, and gains/amplifications of SPIB, a
member of the E26 transformation-specific family of tran-
scription factors, in concert with deregulation of PRDM1
(Blimp-1) contributes to the pathogenesis of ABC DLBCL
by blocking terminal differentiation.16 The important role
of the NFkB-pathway in ABC DLBCL will be discussed in
a separate paragraph (see below). 

The aforementioned biological and genetic features that
distinguish GCB and ABC DLBCL also influence the clin-
ical course of DLBCL patients. By multi-agent
chemotherapy (cyclophosphamide, doxorubicin, vin-
cristine and prednisone, CHOP), but also with combined
immunochemotherapy including the anti-CD20 antibody
rituximab (R-CHOP), the overall survival of GCB
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DLBCL patients is much more favorable compared to
ABC DLBCL patients and, even with current treatment
regimens, 50% of ABC DLBCL patients will succumb to
their disease.14,19,25 Thus, innovative therapeutic approach-
es in DLBCL will have to specifically address the compa-
rably poor clinical outcome of ABC DLBCL patients. It
should be noted that gene expression profiling studies also
revealed an important role for the composition of the
microenvironment in predicting survival times.
Specifically, stromal signatures encompassing gene
expression of macrophages, extracellular matrix deposi-
tion and endothelial/vascular elements, as well as a host of
inflammatory responses, are associated with clinical out-
come in DLBCL patients.25,26

Given the fundamental differences in the biology of
GCB and ABC DLBCL with strong clinical impact on
overall survival, many attempts have been made to estab-
lish a robust immunohistochemical test that can be reliably
used in everyday practice. Since the description of the
Hans-classifier in 200427 that uses antibodies against
CD10, BCL6 and MUM1/IRF-4 to distinguish between
GCB and non-GCB DLBCL, this algorithm, with or with-
out modifications, has been applied in many DLBCL
cohorts treated in the CHOP and R-CHOP treatment eras
with vastly different results. While some studies establish
an association between an immunohistochemical algo-
rithm and clinical outcome, others fail to do so.28-41 Thus,
eight years after the initial description of the Hans algo-
rithm, one has to conclude that we still have no robust
immunohistochemistry-based classifier that can reliably
identify the gene expression-based GCB and ABC
DLBCL subgroups. This may, at least in part, be due to
the, at most, semi-quantitative nature of immunohisto-
chemical approaches (in contrast to more quantitative
measurements of gene expression in array-based technolo-
gies) and intra- and inter-laboratory technical variations in
the measurement of the antibodies used.42 Interestingly, a
simple morphological feature, namely the immunoblastic
appearance of DLBCL tumor cells, has been associated
with inferior outcome in DLBCL.41

The role of NFkB in DLBCL

As mentioned above, constitutive activation of the
NFkB-pathway is a hallmark feature of ABC DLBCL, and
a large set of NFkB target genes is highly expressed in this
subtype.43 The NFkB family of transcription factors
includes five members (NFKB1, NFKB2, RELA, RELB
and REL). In quiescent B cells, NFkB transcription factors
are located in the cytoplasm and retained by an inhibitor
termed IkBα. Upon stimulation of the B-cell receptor
(BCR), NFkB translocates to the nucleus thereby up-regu-
lating expression of a large number of target genes includ-
ing pro-survival genes such as BCL-XL, c-IAP1, c-IAP2
and c-FLIP.44 Moreover, one of the master regulators of
plasma cell differentiation, IRF-4,45 is highly expressed in
ABC DLBCL as a result of NFkB activation. 

A number of genetic alterations directly affect positive
or negative regulators of NFkB thus explaining constitu-
tive activation of this signaling pathway. Specifically, the
TNFAIP3 gene, a negative regulator of NFkB encoding
for A20, shows biallelic mutations or deletions in a signif-
icant subset of ABC DLBCL.46,47 Likewise, a variety of

other components of NFkB can be affected on the genetic
level including TRAF2, TRAF5, MAP3K7 (TAK1) and
TNFRSF11A (RANK).46

Additional major insights into mechanisms leading to
constitutive NFkB activation in ABC DLBCL were
obtained by shRNA library screens aiming to identify
potential oncogenes. One such screen identified the CBM
complex consisting of CARD11, MALT1 and BCL10 as
essential for the survival of cell lines derived from ABC
DLBCL tumors, and subsequent resequencing revealed
mutations of CARD11 in approximately 10% of ABC
DLBCL.48 While CARD11 is inactive in resting B cells, it
becomes phosphorylated upon BCR-crosslinking and pre-
sumably stabilizes the CBM complex, thereby inducing
downstream activation of NFkB. Mutations of CARD11
that preferentially occur in the coiled-coil domain of the
gene are gain-of-function in nature and exert oncogenic
effects.48

In a subset of ABC DLBCL tumors, mutations affecting
components of the B-cell receptor (BCR) itself were
described leading to abnormal BCR signaling termed
‘chronic active BCR signaling’.49 Specifically, mutations
in the two BCR signaling subunits CD79A and CD79B
that can be detected in approximately 20% of ABC
DLBCL contribute to enhanced expression of the BCR by
diminishing negative regulation by the Lyn kinase.49 As a
result, ‘chronic active’ signaling through the BCR leads to
enhanced downstream NFkB activation. 

Finally, it has been demonstrated that aberrant Toll-like
receptor (TLR) signaling contributes to NFkB activation
in ABC DLBCL.50 TLR family members are part of the
innate immune system and include receptors that recog-
nize structurally conserved molecules from external
pathogens. Cytoplasmic adapters that further transmit
receptor signals include MyD88, TIRAP and TRF,
amongst others.51 Twenty-nine percent of ABC DLBCL
carry mutations in MyD88, most commonly at the position
265 (L265P). Functional studies demonstrated the onco-
genic potential of this mutation that induces NFkB, likely
through the involvement of the kinases IRAK4 and
IRAK1.50

Results of recent high-throughput sequencing
approaches

With the availability of current next-generation
sequencing technologies, it has become possible to define
the genomic landscape of DLBCL tumors on the global
scale.52-56 These studies have yielded important novel
information that underlines the complexity and hetero-
geneity of the biology of DLBCL. Morin and colleagues53

performed genome/exome sequencing of 13 DLBCL cases
and RNA-sequencing of an additional 83 DLBCL. While
previously identified recurrent mutations in DLBCL (see
above) were easily identified by this approach, the pertur-
bation of chromatin biology emerged as a novel aspect of
lymphomagenesis in DLBCL. Specifically, an increased
number of somatic mutations in genes with a role in his-
tone modification were detected. These include frequent
mutations in the histone methyltransferase MLL2 that
showed mutations in 32% of investigated DLBCL. In
addition, 11% of DLBCL carried mutations in MEF2B
that encodes for a transcription factor involved in the
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acetylation of histones. MLL2 mutations were also detect-
ed in 24% of DLBCL studied in another series.54 This
study also provided an estimate of the average number of
numerical and structural genomic alterations in DLBCL
(combining non-silent somatic mutations, copy number
gains/losses and translocations per DLBCL) that appears
to be relatively low (around 50) compared to, for example,
many solid cancers.54 The histone and non-histone acetyl-
transferases CREBBP and EP300 are also affected by
mutations or genomic deletions in a significant subset of
DLBCL, as shown by Pasqualucci and co-workers.56 The
authors provide evidence that impaired inactivation of
BCL6 by acetylation or defective activation of the tumor
suppressor p53 likely contributes to the pathogenesis of
DLBCL.56 A novel class of drugs that target epigenetic
modulation of genes including methylation and acetyla-
tion/deacetylation might, therefore, hold promise in future
therapeutic approaches in DLBCL patients. Additional
DLBCL sequencing results are available from two very
recent studies.52,55 Lohr and colleagues performed whole-
exome sequencing of 55 DLBCL cases confirming previ-
ously reported and functionally relevant mutations in
MYD88, CARD11, EZH2, CREBBP, MLL2 and MEF2B.
However, they also identified a large number of addition-
al, yet infrequent mutations some of which might be of
functional relevance (NOTCH1, BRAF).52 The report by
Zhang and co-workers55 extends these findings in a series
of 73 DLBCL tumors. Interestingly, occasional mutations
in PIK3CD appear to dysregulate the PI3 kinase pathway,
as might do rare mutations in the PI3KR1 and MTOR
genes. In conclusion, while some mutations in DLBCL
appear to occur at higher frequencies, there is an enormous
variation of mutated genes between different individuals
with DLBCL, showing the extensive underlying genetic
complexity of this disease.

The role of MYC in DLBCL

MYC, a nuclear phosphoprotein, is a global transcrip-
tion factor affecting gene expression of a large number of
genes in the genome and constitutes one of the most
important proto-oncogenes in cancer in general.57,58 Thus
MYC, not surprisingly, also plays a major role in lym-
phomagenesis.59 Translocation of MYC, usually through
the translocation t(8;14)(q24;q32), is the hallmark genetic
alteration of Burkitt’s lymphoma, but MYC deregulation
is considered an important aspect of the pathogenesis in a
subset of DLBCL as well. MYC translocations have been
described to occur in approximately 10% of DLBCL in
various patient cohorts.10,60-66 It is noteworthy that, in
roughly 30% of MYC-translocated DLBCL, MYC is
rearranged with a non-Ig partner, for example BCL6,
PAX5 and IKAROS.63,67 The presence of MYC transloca-
tions in DLBCL was associated with inferior survival
times in the CHOP-like treatment era,61,68,69 but more
recently, the negative prognostic impact of MYC-
rearrangements has also been demonstrated in DLBCL
patients treated with R-CHOP.10,60,64,70 In the largest cohort
reported to date, including 407 lymphoma specimens from
DLBCL patients treated prospectively in the RICOVER-
60 trial of the German High Grade Non-Hodgkin
Lymphoma Study Group (DSHNHL), 8.8% of the investi-
gated tumors carried an MYC-rearrangement, and multi-

variate analysis identified this feature as a significant
genetic factor influencing clinical outcome.10 It is also evi-
dent, however, that MYC protein in DLBCL can be signif-
icantly up-regulated by mechanisms other than transloca-
tions, since with a newly available MYC antibody71 high
MYC expression on the protein level can be detected in a
subset of DLBCL cases lacking an MYC-transloca-
tion.10,72-74 Several studies have shown that high MYC
expression on the protein level, independent from an
underlying MYC-rearrangement on the genetic level, is
highly predictive of outcome in DLBCL patients.10,72-74

Thus, measurement of MYC expression using immunohis-
tochemistry, in concert with the evaluation of additional
markers (e.g. BCL2 expression73 or in a model combining
MYC/BCL6/BCL2 expression plus MYC translocation10)
might become a useful adjunct in the diagnostic workup of
DLBCL tumors in the future (Figure 1). Additional studies
will also have to clarify the underlying cause of MYC
upregulation in DLBCL tumors that do not carry an MYC
rearrangement. 

Conclusion

The complexity of the pathogenesis of DLBCL, that has
been evident for a long time from morphological and
genetic features, as well as from gene expression profiling
studies, is also highlighted by results from a larger number
of sequenced genomes, exomes and transcriptomes of
DLBCL tumors. At the same time, the overall picture of
the landscape of genomic alterations in DLBCL becomes
more and more complete. Even though there is a wide
variation of mutated genes between individuals with
DLBCL, new aspects of the pathogenesis of DLBCL have
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Figure 1. Diffuse large B-cell lymphoma showing strong
MYC expression in the majority of tumor cells by immuno-
histochemistry (400x). In this case, upregulation of MYC
expression is the result of an underlying MYC-translocation.
(Inset) Fluorescence in situ hybridization (FISH) using an
MYC break apart-assay showing a fusion signal (normal
MYC locus) and a split signal (translocated MYC allele).
MYC protein expression can, however, also occur without
the presence of an MYC-translocation.



come to light, e.g. the relevance of epigenetic features that
appear perturbed by mutations in genes affecting methyla-
tion and acetylation. These findings offer new opportuni-
ties to employ innovative therapeutic agents in DLBCL
that have not been considered previously in this lym-
phoma subtype.
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Introduction

Prognostic factors are (usually) pre-thera-
peutically identifiable parameters of the tumor
and/or the patient that affect the patient’s out-
come. They emerge and are valid only in the
context of a given therapy and are likely to
change with different therapies. Numerous
factors that affect the prognosis of patients
with diffuse large B-cell lymphomas
(DLBCL) have been claimed in recent years,
and very few have survived scrutiny. In the
following review, we will discuss those risk
factors which are valid in the rituximab era,
i.e. under a treatment with CHOP1 or CHOP-
like chemotherapy in combination with the
anti-CD20 antibody rituximab.

The International Prognostic Index

The International Prognostic Index (IPI) is
the widely accepted prognostic factor index
for patients with aggressive lymphomas. It
was introduced by Shipp et al.2,3 in the 1990s
and was based on an individual case-based
prognostic factor analysis of cyclophos-
phamide, doxorubicin, vincristine, and pred-

nisone (CHOP)–like regimens1 with overall
survival (OS) as the end point. The IPI consid-
ered five factors: age (≤60 years vs. >60
years), lactate dehydrogenase (LDH) value (≤
upper limit of normal [ULN] vs. > ULN), per-
formance status (Eastern Cooperative
Oncology Group [ECOG] 0, 1 vs. >1), Ann
Arbor stage (I/II vs. III/IV), and the number of
extranodal involvements (0, 1 vs. >1). The
age-adjusted IPI (aaIPI) for younger patients
includes the factors LDH, performance status,
and stage. The IPI score separates four prog-
nostic groups based on the number of factors
present (0, 1: low risk group; 2: low-interme-
diate risk group; 3: high-intermediate risk
group; and 4, 5: high-risk group). The IPI has
been widely used and reproduced to analyze
various conventional, high-dose, and dose-
dense regimens.1,4-6 Recently, a major
improvement in treatment outcome has been
achieved by adding rituximab to CHOP-like
regimens.7-12 The revised IPI or “R-IPI” with
only three risk groups as suggested by Sehn et
al.13 was based on only 365 patients treated
with R-CHOP (rituximab plus CHOP) and this
suffered initial technical problems (e.g. no
method to protect against errors of misclassi-
fying ordered risk strata due to its low statisti-
cal power, no multivariable model approach,
no independent validation set) and did not

Diffuse large B-cell lymphoma 

The International Prognostic Index, originally established to predict outcome of patients with
aggressive lymphoma treated in the pre-rituximab era, has been confirmed to be a valid prognosti-
cator for patients receiving rituximab, with the differences between the four risk groups (low, low-
intermediate, high-intermediate and high) being smaller, yet significant compared to the pre-ritux-
imab era. While many IPI risk groups have now a cure rate of over 80%, young high-risk patients and
all elderly patients except for those with low risk fare worse, warranting further improvement. Apart
from the IPI (and independent of it), there are other subsets of diffuse large B-cell lymphoma (DLBCL)
that are characterized by criteria not included in the IPI or are too rare to be recognized in multi-
variable analyses. This applies to very old patients (>80 years), histological subgroups like DLBCL with
immunoblastic or plasmablastic morphology, and Epstein-Barr (BV)-positive B-cell diffuse large B-
cell lymphoma of the elderly, the germinal center versus the non-germinal center subgroups, DLBCL
with MYC breakpoints (including double- and triple hit DLBCL), and expression of MYC together with
BCL2 protein. Finally, patients presenting with skeletal involvement or developing central nervous
system (CNS) involvement during the course of disease, represent a subpopulation with an almost
always fatal course. Strategies to improve the outcome of these prognostically very poor subgroups
will be discussed.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe relevant clinical, morphological and molecular risk factors associated with a worse out-

come in the rituximab era;
- select appropriate up-front therapy based upon the presence of certain risk factors;
- discuss treatment options for subgroups of DLBCL for which standard therapy is inappropriate.
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hold up to scrutiny when appropriately tested. Rituximab
significantly improved treatment outcome within each IPI
group resulting in a quenching of the Kaplan-Meier esti-
mators. While the differences became smaller between the
four risk groups under R-CHOP, the IPI retained its highly
significant prognostic power with respect to all three end
points and the ordering of the IPI groups remained valid,
demonstrating that the IPI is still valid in the R-CHOP
era.14 In the Mega-CHOEP trial, young patients with aaIPI
of 2 had a 3-year survival of 90%, and aaIPI of 3 73% after
8 x R-CHOEP-14.11 Therefore, in young patients, only the
high-risk group with a 3-year survival of less than 75%
definitely represents a clinically relevant risk group, while
for patients with aaIPI of 2 it will be difficult to achieve
and demonstrate further improvement. Since both CHOP-
14 and CHOEP-14 leave room for further toxicity, combi-
nations with targeted therapies like bortezomib, lenalido-
mide or ibrutinib are currently being evaluated in this pop-
ulation of young patients with high-risk DLBCL.  

The situation is different in elderly (age 61-80 years)
DLBCL patients, with a 3-year overall survival of 88% for
low-risk, 78% for low-intermediate, 67% for high-inter-
mediate and 58% for the high-risk group,10 all but the low-
risk group have a high risk of failure and must be
improved. The increased toxicity in elderly patients leaves
little room for additional hematotoxicity, and strategies
pursued include dose-dense application of rituximab,
adding other CD20 monoclonal antibodies or antibodies
directed against targets other than CD20, addition of
lenalidomide to R-CHOP, or lenalidomide or enzastaurin
for maintenance therapy.

Morphological subtype

Immunoblastic subtype 
In a study of morphological and immunohistochemical

biomarkers in elderly patients treated both with and with-
out rituximab within the RICOVER-60 of the German
High-Grade Non-Hodgkin Lymphoma Study Group
(DSHNHL), immunoblastic morphology emerged as a
robust, significantly adverse prognostic factor,15 confirm-
ing a previous study in DBLC.16 Patients with the
immunoblastic subtype had a significantly lower CR/CRu
and an inferior 3-year event-free survival (EFS) (P=0.013)
and OS (54% vs. 78%; P=0.004), while the survival
curves for all other subtypes of DLBCL closely matched
the curve of centroblastic lymphomas.15 This also applies
to primary mediastinal B-cell lymphoma, which did not
differ from other DLBCL in the MInT trial when treated
with rituximab.17 In multivariate analysis adjusted for the
factors of the IPI, the immunoblastic subtype was an inde-
pendent predictor for EFS (relative risk [RR] 1.5;
P=0.034) and OS (RR 1.7; P=0.007). So far no specific
therapeutic approaches have been developed for
immunoblastic DLBCL.
Plasmablastic subtype 

This subtype has been recently characterized as an
aggressive lymphoma, most frequently arising in the oral
cavity of HIV-infected or elderly patients, with a male
predominance. In the RICOVER-60, after a median fol-

low up of 72 months, 2 of 7 patients with plasmablastic
subtype are alive in complete remission for more than six
years, and the median overall survival of these patients
was 13 months. In another series of 12 patients, 6 of
whom were HIV-positive, 8 are alive after a median fol-
low up of more than 11 months.18-20 Obviously, the out-
come of plasmablastic lymphomas is not as dismal as
originally reported.
Age-related EBV-associated B-cell lymphoproliferative dis-
orders  

EBV-positive B-cell diffuse large B-cell lymphoma of the
elderly (also known as senile EBV-associated B-cell lym-
phoproliferative disorder) is an EBV-positive clonal B-cell
lymphoid proliferation that occurs in patients over 50 years
of age and predominantly in elderly patients without any
known immunodeficiency or prior lymphoma. It accounts
for 8%-10% of DLBCL in Asia, and for 20%-25% of
DLBCL in patients over 90 years of age. These patients are
diagnosed at older age, present more often with elevated
LDH, poor performance status, B symptoms, and frequent
skin and lung involvement.21 B symptoms and age over 70
years, but not IPI, appear to be reliable prognostic factors.
Patients with 0, 1 or 2 of these risk factors have a median
overall survival of 56, 25 and 9 months. The 5-year survival
in a series of 96 patients was 25%.21,22

Age 

Age is one of the strongest prognostic factors in the IPI.
This is not only due to increasing comorbidities of elderly
patients, but also because adverse biological features like
the ABC-type and MYC breaks are enriched in the elderly
population. While the IPI discriminates between patients
aged 60 years or under and those over 60 years, a modifi-
cation of the IPI, the IPI for elderly patients or E-IPI, was
suggested using 70 instead of 60 years as a cut-off point to
delineate older age as a risk factor.23 However, the prog-
nostic discrimination provided by the E-IPI for elderly
DLBCL patients needs validation by other datasets. The
results of the RICOVER-60 trial suggest that 75 years is a
cut-off above which the outcome of patients with DLBCL
shows the sharpest decline, with more therapy-associated
deaths in this population and more primary progressions.
Best results in patients over 80 years of age have been
reported with a combination of rituximab and dose-
reduced CHOP,24 the 2-year survival rate of 59% repre-
senting an acceptable compromise between efficacy and
toxicity, but further prospective trials in this population are
badly needed.

The underrepresentation of patients over 70 years of age
in studies designed for ‘elderly’ patients often prohibits
meaningful multivariate analyses adjusting for higher age
ranges. Even fewer prospective data are available for octo-
genarians or nonagenarians, even though this population
of DLBCL patients is increasing fast. In a retrospective
analysis of 205 NHL patients, most of them with DLBCL,
who were treated at a single institution from one center,
death was shown to be mainly due to lymphoma, justify-
ing and warranting treatment of NHL patients over 80
years of age.25
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Gender 

Male gender is a negative prognostic factor in (elderly)
patients treated with rituximab,26 because female patients
have a considerably higher benefit from the addition of rit-
uximab to CHOP chemotherapy than male patients.27 This
is most likely due to the slower rituximab clearance in eld-
erly females that results in higher serum levels, longer
serum half-life elimination time and larger area under the
curve data.27 As a consequence, the DSHNHL performed
the SEXIER-R CHOP-14 study with more than 250 elder-
ly DLBCL patients, dosing female patients at standard 375
mg/m2, and male patients at 500 mg/m2. This resulted in
slightly higher serum levels in elderly males compared to
females. Efficacy data from this study will not be available
until 2014.

A historical comparison of the RICOVER-60 results
with the SMARTE-R-CHOP-14 study, a phase-II pharma-
cokinetic-based study with R-CHOP-14, in which 8
administrations of rituximab at standard dose were given
dose-dense at the beginning with increasing intervals and
the last application on Day 239, showed an improved out-
come of elderly high-risk (IPI 3-5) patients with this
extended rituximab exposure time.28 This better outcome
was due to a 20% improvement in 3-year PFS and OS of
high-risk elderly males with their faster rituximab clear-
ance who benefited more from the extended exposure time
than females: indeed, with the SMARTE-R rituximab
schedule, the differences between males and females dis-
appeared.29 The OPTIMAL>60 study is currently compar-
ing 8 ¥ 2-week administrations of rituximab with a phar-
macokinetic-based schedule in elderly DLBLC patients in
a randomized fashion.

No pharmacokinetic data are available for young
DLBCL patients and results according to gender in young
patients have not been published. 

Bulky disease

Bulky disease was an independent risk factor in the
MInT study in young patients with an aaIPI of 0 or 1 and
bulky disease, despite the fact that nearly all patients with
bulky disease had received radiotherapy to the respective
area.30,31 A comparison of MInT patients with aaIPI of 1
and patients with this aaIPI score in a French trial32 in
which bulky disease was also an independent risk factor
and R-ACVBP was shown to be superior to 8 x R-CHOP-
21, strongly suggests that 6 x R-CHOP-21 with radiother-
apy to bulky disease is considerably better than 8 x R-
CHOP-21 without radiotherapy. The comparison also sug-
gests that 6 x R-CHOP-21 with radiotherapy is indeed
equally effective as the more toxic R-ACVBP without
radiotherapy. This led to the recommendation in the
European Society for Medical Oncology (ESMO) 2012
guidelines33 that either 6 x R-CHOP-21 with radiotherapy
to bulky disease or R-ACVBP (without) should be given
to young patients with aaIPI of 1. Moreover, the two arms
without radiotherapy of the UNFOLDER study, which
compares R-CHOP-14 with R-CHOP-21 in young patients
with bulky disease and/or aaIPI of 1, with and without
radiotherapy to bulky and extralymphatic disease, had to
be closed after a planned interim analysis due to the pre-

defined superiority criteria of the two arms with radiother-
apy (C Zwick et al., personal communication, 2013). For
elderly patients with bulky disease, the results of the
RICOVER-noRX study also suggest a benefit of addition-
al radiotherapy, at least in patients achieving a PR or less.34

Whether radiotherapy to bulky disease can be skipped in
patients with a negative PET scan after chemoim-
munotherapy is currently under investigation.

Skeletal involvement

While skeletal involvement (whether localized or dif-
fuse) was not a risk factor in the pre-rituximab era, it
evolved as such when rituximab was given. Indeed, the
addition of rituximab failed to improve the outcome of
patients with skeletal involvement in the RICOVER-60
and MInT studies,35 while radiotherapy to sites of skeletal
involvement did. Therefore, for the time being, radiother-
apy to sites of skeletal involvement is recommended. 

CNS disease

Involvement of the central nervous system (CNS) is a
serious and mostly fatal complication of DLBCL and
remains to be so in the rituximab era. Risk models have
been developed derived from analyses of prospective stud-
ies.36-40 A multivariate analysis of elderly DLBCL patients
treated with R-CHOP identified 3 independent risk factors
for development of CNS disease: elevated LDH, >1 extra-
nodal site, and ECOG performance status >1. Patients pre-
senting with all three risk factors made up 4.8% of the 610
patients treated with R-CHOP and they had a 33.5% risk
of developing CNS disease compared to only 2.8% in the
remaining patients receiving R-CHOP.40 While intrathecal
prophylaxis with MTX appeared to have some effect on
the incidence of CNS disease in patients not receiving rit-
uximab, this prophylaxis had no effect in patients receiv-
ing R-CHOP in the RICOVER-60 trial or the MInT study.
Several retrospective studies41,42 suggest that intravenous
high-dose methotrexate can reduce the incidence of CNS
involvement in patients at increased risk. The DHNHL is
currently evaluating intermediate-dose methotrexate (1.5
g/m2) in elderly patients presenting with elevated LDH,
ECOG over 1 and more than one extranodal site, which is
given and well tolerated before the first and after the last
cycle of R-CHOP. 

The situation is less clear in younger patients for whom
a group at significant risk for CNS involvement (elevated
LDH plus advanced stage) develops CNS disease in only
6.5% of the cases.40 A strategy to limit spinal tab to these
6.5% young patients and treat only those with signs of
CNS involvement by sensitive flow cytometric analysis of
spinal fluid and/or cranial NMR is currently being pursued
by the German High-Grade Non-Hodgkin Lymphoma
Study Group (DSHNHL) for young patients.

Other clinical presentations

Concordant bone marrow involvement (with large, but
not with small cells) was shown in a retrospective register
study to be a risk factor independent of the IPI,43 as were
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elevated serum levels of free light chains,44 VEGF,45 solu-
ble IL-2 receptors46 and interferon-inducible protein 10
(CXCL10)47 as well as vitamin D,48 and selenium.49

Whether substitution of vitamin D or selenium can com-
pensate the worse outcome of these patients still has to be
shown.

Interim FDG-PET positivity

Early studies of DLBCL patients not (yet) receiving rit-
uximab suggested that a PET after 1, 2, 3, or 4 cycles of
CHOP was highly predictive for patient outcome.50-53

However, this was not confirmed in larger and more recent
studies of patients receiving rituximab54-56 who showed a
good negative predictive value (NPV) of approximately
80%, but a positive predictive value (PPV) of 33% or
under. A French group reported that the reduction in
SUVmax at the interim PET compared to the pre-therapy
PET resulted in a much better predictive power (PPV
81%, NPV 75%) than a visual analysis.57,58 However,
using the French criteria for SUVmax reduction in a
prospective study of 212 patients resulted in a PPV of 37%
(U Dührsen, personal communication, 2010). Similar
results were recently presented by the Groupe Ouest Est
d’Etude des Leucémies et Autres Maladies du Sang (GOE-
LAMS)59 and an Italian60 study. In summary, in the ritux-
imab era, a positive interim PET appears to be unable to
identify patients with high-risk DLBCL.   

Molecular prognostic factors

Diffuse large B-cell lymphomas (DLBCL) constitute a
heterogeneous category of aggressive lymphomas.
Chromosomal instability and changes confer a worse
prognosis,61 and the expression of certain microRNAs62

and proteins has been reported to be associated with a
favorable (BCL6, CD10, HIF-1α, HLA-DR,
IRF4/MUM1, LMO2; CD30) or an adverse (BCL2, CD5,
indolamine 2,3-dioxygenase, high Ki-61, mutated p53,
VEGFR2, Skp2) outcome. However, none of these reports
have been confirmed in prospective studies. In contrast to
single molecules, the analysis of the entire exome by gene
expression profiling (GEP) studies identified three biolog-
ically and prognostically relevant subtypes of DLBCL: the
activated B cell (ABC)-like DLBCL, the germinal center
(GC)-like and the mediastinal large B-cell lymphoma63,64

based on cell-of-origin (COO) gene signatures, with the
activated B-cell (ABC) type being associated with an infe-
rior outcome compared to the germinal center (GC)
type.64-66 ABC- and GC-like DLBCL differ with respect to
the cell of origin, pathogenetic mechanisms and progno-
sis: the GC/non-GC was shown to be a prognostic factor
independent of the IPI in patients treated with CHOP only,
and the gene-expression-based model added to the predic-
tive power of the IPI, and the IPI added to the predictive
power of the gene-expression–based model in patients
treated with CHOP plus rituximab.64 Only the combined
stromal-1/GC groups of patients fared significantly better
than the ABC-type independent of the IPI.

DLBCL of the ABC type are characterized by NFkB
activation that contributes to the high proliferative capac-
ity of this subtype. Therefore, drugs interfering with this

signaling pathway are attractive candidates for targeted
therapy. A better response of the ABC-type to borte-
zomib,67 lenalidomide68 and the Bruton tyrosine kinase
inhibitor ibrutinib69 has been reported, but needs to be con-
firmed prospectively. In contrast, in relapsed DLBCL, the
GC type had a better outcome with R-DHAP than with R-
ICE chemoimmunotherapy in the CORAL study.70

Nevertheless, for the time being, there is no justification
for a differential treatment approach to GC and non-GC
DLBCL outside prospective trials. 

Because classical gene expression studies require fresh
(-frozen) biopsy material, the impact of GEP on daily lym-
phoma practice is still rather limited, more than 12 years
after Alizadeh et al.,’s pivotal publication.65 Surrogate
markers for the assignment to the ABC- and GC-like sub-
types are warranted which are applicable to formalin-
fixed-paraffin-embedded (FFPE) biopsies. However, the
translation of complex GEP predictors into immunohisto-
chemical algorithms such as the “Hans”71 or “Choi”72 clas-
sifiers that assign a COO subtype based on the expression
of subtype-related proteins has been difficult, and prog-
nostic and predictive accuracy of such algorithms have
been shown to be quite variable, even in the hands of
expert hematopathologists.15,73-76 While immunohistology
of FFPE was reported to allow the assignation of DLBCL
to the GC- and non-GC subtype based on an algorithm
using a limited number of antibodies suitable for FFPE
biopsies,71 a multivariate analysis by the Groupe D’Etude
des Lymphomes de L’Adulte (GELA) confirmed that only
the International Prognostic Index (IPI) and treatment arm
influenced the outcome, but not the immunohistochemi-
cally assigned GC/non-GC phenotype.77 Moreover, the
Lunenburg consortium, made up of the most experienced
hematopathologists worldwide observed unexpectedly
highly variable results among the leading immunohisto-
chemistry (IHC) laboratories in the world and very poor
reproducibility in scoring for almost all markers.78 Thus, it
is not surprising that the largest TMA study performed to
date in elderly DLBCL patients did not confirm the “Hans
classifier”,15 the most popular algorithm used as surrogate
for gene expression profiling. Whether novel algorithms
show a better concordance with the GC/ABC subtyping by
gene expression profiling, remains to be confirmed.76 In
summary, studies that evaluated the reliability of immuno-
histochemical algorithms as a surrogate for gene expres-
sion profiling yielded controversial results and studies that
relied on immunohistochemistry for the assignment of GC
and non-CC type DLBCL must be interpreted with cau-
tion. This also applies to immunohistochemical algorithms
that tried to simulate a stromal-176 and stromal-279 signa-
ture, respectively. Besides these, multiple individual bio-
markers as well as prognostic models incorporating sever-
al parameters have been evaluated in DLBCL using differ-
ent techniques. Some of these models are based on mRNA
expression by gene expression profiling or by real-time
polymerase chain reaction (RT-PCR) and provide a quan-
titative measurement of gene expression.80 Other bioprog-
nostic models that have been proposed include a paraffin-
based 6-gene prognostic model that distinguished low-
and high-risk patients independent of the IPI,81 and a 2-
gene model based on an MYC and HLA-DR expression.82

Recently, another 2-gene model based on the expression of
LMO2 by the lymphoma cells and TNFRFS9 by the
microenvironment has been published claiming to be an
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independent factor for survival,83 but none of these models
have been confirmed in prospective studies, making it dif-
ficult to interpret their value. This also holds true for
another ‘bioprognostic marker’ that was based on
microvessel density, non-GCB subtype and low (<5%)
expression of SPARC (secreted protein, acidic and rich in
cysteine) in the stroma.84 While all these novel bioprog-
nostic markers are simplified compared to gene expression
profiling, the technologies used in these models are not
simple, standardized or commercially available, most like-
ly precluding their widespread use.  

c-myc breaks, double and triple hits

In many B-cell lymphomas, chromosomal transloca-
tions are biological and diagnostic hallmarks of the dis-
ease. A subset of these lymphomas has structural aberra-
tions affecting the myc locus that is associated with a poor
prognosis independent of clinical risk factors.85 MYC-
break positive DLBCL cases may also co-express high
levels of BCL2, and up to half of these cases have a con-
current translocation involving BCL-2. These double-hit
(DH) lymphomas are defined by a chromosomal break-
point affecting the MYC/8q24 locus in combination with
another recurrent breakpoint, e.g. a t(14;18)(q32;q21)
involving BCL2. Recently, these lymphomas have been
introduced as a novel category of lymphomas in the 2008
WHO classification86 and were designated as “B cell lym-
phoma unclassifiable with features intermediate between
DLBCL and Burkitt’s lymphoma”. DH lymphomas have
been classified heterogeneously, but mostly as DLBCL,
the majority having a GC phenotype and expressing
BCL2. Patients with DH lymphomas often present with a
poor prognosis profile including elevated LDH, bone mar-
row and CNS involvement, and a high IPI score. In a
review of the published literature,87 MYC breakpoints in
general had a wide range of frequency (3-16%) and DH
lymphomas a frequency of 0-12%. Of 689 MYC break-
point-positive lymphomas, 47% were DH lymphomas,
and from 804 cases diagnosed as DLBCL, 139 (17%)
cases had an MYC breakpoint, demonstrating that MYC
rearrangements in DLBCL are not rare. BCL2/MYC lym-
phomas form the vast majority of DH lymphomas (63%);
BCL6/MYC DH lymphomas were relatively rare (8%)
and triple-hit lymphomas involving MYC, BCL2 and
BCL6 (16%) were, in fact, more frequent than
BCL6/MYC DH. Other rarer forms of DH lymphomas
involve MYC/CCND1, and MYC/BCL3. Most DH lym-
phomas have a GC phenotype with expression of CD10
and BCL6, a lack of MUM1/IRF, nearly always express
BCL2 protein, and have a high Ki67/MIB1 proliferation
rate. Therefore, aggressive lymphomas with co-expression
of CD10, BCL6, BCL2 and high Ki67 proliferation index
should always be checked for DH. 

The DH DLBCL have been reported to have a dismal
prognosis,87,88 but a recent study from the GELA found no
independent negative impact of MYC-double hits in con-
trast to MYC single hits89 on survival. It has been suggest-
ed that an MYC translocation, with or without concurrent
BCL2 translocation, was associated with inferior survival
only, if MAC had immunoglobulin translocation partner
gene.90

DH lymphomas show heterogeneous morphologies, the

majority being morphologically classified as DLBCL. Of
note, the category of “mature B cell neoplasms NOS”, was
in the past often called “Burkitt-like lymphoma”91 and,
therefore, often put with Burkitt’s lymphoma. The median
age at diagnosis of DH lymphomas ranges from 51-65
years and thus younger than in DLBCL,87 but is rare in
children. The bone marrow and CNS are frequently
involved, and pleural effusions are often reported. DH
lymphomas have a poor prognosis: both with CHOP and
high-dose chemotherapy regimens the median survival is
less than one year. The addition of rituximab appears to
improve the outcome. However, even with rituximab the
median survival rarely exceeds 1.5 years.91-96 Whether reg-
imens designed for and effective in Burkitt’s lymphomas,
that typically incorporate high-dose methotrexate such as
the CODOX-M/IVAC regimen,97 will improve the out-
come of DH lymphomas still has to be shown. The rarity
of DH lymphomas and their poor prognosis call for joint
international efforts and prospective clinical phase II stud-
ies evaluating new chemotherapy regimens and targeted
therapies for these prognostically poor DLBCL.

Expression of MYC and BCL2 proteins

While the prognostic impact of BCL2 and BCL6 breaks
has been disputed,85,98-102 there is a consensus that MYC
translocations confer a worse prognosis in DLBCL
patients treated with CHOP, both in combination with and
without rituximab.103,104

In addition to translocations, MYC can also be deregu-
lated by amplifications, mutations, or by microRNA-
dependent mechanisms,105-107 and it has recently been
reported108 that tumors with increased MYC protein
expression have co-ordinate upregulation of MYC target
genes, providing molecular confirmation of the IHC
results. While MYC translocations can be detected by flu-
orescence in situ hybridization (FISH), FISH fails to
detect MYC deregulation caused by mechanisms other
than translocation. The recent availability of a robust mon-
oclonal antibody (concordance for the ICH scoring was
94% for MYC109) that targets the N-terminus of the MYC
protein has been shown to predict MYC rearrangements
and has been validated for use in formalin-fixed paraffin-
embedded (FFPE) tissues,106 and allows for the study of
large series of archived DLBCL samples for nuclear MYC
protein expression by immunohistochemistry. Johnson
and colleagues109 found MYC translocations, high MYC
mRNA and MYC protein expression in 11%, 11% and
33% of samples, respectively. In contrast to MYC translo-
cations, which were observed in approximately 5% of the
cases and had a median overall survival of less than one
year, MYC protein expression was associated with an
inferior progression-free and overall survival only when
BCL2 protein was co-expressed. MYC/BCL2 protein co-
expression was observed in 21% of the DLBCL cases, and
the negative impact on prognosis remained significant
after adjusting for the presence of high-risk features in a
multivariable model that included elevated IPI score. The
results of Johnson et al. confirm similar observations
reported by Green and colleagues110,111 and a German
study confirmed the prognostic value of MYC/BC2 dou-
ble-protein expression in a population treated uniformly
within a prospective trial.112 Since MYC protein expres-
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sion is associated with MYC translocation, all MYC pro-
tein-positive patients should be tested for MYC transloca-
tions by FISH. MYC/BCL2 IHC was possible in 96% of
the cases, demonstrating that the vast majority of FFPE
tissue samples processed in the community are of satisfac-
tory quality for this type of IHC.110 However, while MYC
IHC appears to be quite robust, it should be kept in mind
that BCL2 IHC has been reported to be more variable,
even among international experts in the field. In the piv-
otal validation study of IHC on tissue microarrays, the
concordance rate was only 70%,78 similar to that achieved
by a group of German hematopathologists.15 Data on how
reproducible BCL2 IHC is in the community are not avail-
able. Therefore, for the time being, the diagnosis of
MYC/BCL2 double-protein expressing DLBCL should be
made only by internationally recognized hematopatholo-
gists.

With repeated and convincing evidence that patients
with DLCBL co-expressing MYC and BCL2-proteins by
IHC have a poor prognosis, the question arises as to which
therapeutic strategies should be pursued for these patients.
So far, there are no results from trials that specifically
addressed MYC/BCL2 double protein-positive patients,
but some information can be drawn from the analysis of
DH lymphomas, since the two populations are overlap-
ping. DH DLBCL do even worse than double protein-pos-
itive DLBCL when treated with R-CHOP,103,104 and, in the
case of failing during or after primary treatment, can rarely
be salvaged by standard approaches like R-ICE or DHAP
followed by high-dose BEAM and autologous stem cell
transplantation.113 The very obvious assumption that these
patients should fare better with regimens that have been
shown to work well in patients with Burkitt’s lymphoma,
could not be confirmed for the CODOX-M/IVAC regi-
men,97 and the numbers of DH patients treated with
aggressive regimens that included high-dose chemothera-
py and autologous stem cell transplantation94-96,114 are too
small to allow for any conclusion. This also applies to a
study from the NCI where MYC+ DLBCL had an event-
free survival of 83% after four years with dose-adjusted
EPOCH-R, by far the best treatment results reported for
this subgroup of DLBCL.115 Since patients with DH and
MYC/BCL2 double-protein expression are rare, it can
only be through international joint efforts that new thera-
peutic approaches for these patients can be tested and val-
idated. With the ease and speed that these patients can now
be identified by IHC, an important logistical obstacle has
been eliminated. After the pathologists have paved the
way, it is now up to clinical investigators to make use of
this opportunity and develop better treatments for these
patients.
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Beyond R-CHOP treatment of diffuse large B-cell 
lymphoma 

Introduction 

The application of empiricism over scientific
rigor, inadequate translational end points in
clinical trials, scientific politics and the
entrenchment of R-CHOP have hampered the
development of new standards for DLBCL.
Fortunately, insights into the molecular taxono-
my of DLBCL has led to the identification of
‘driver’ pathways, drugable targets and more
effective immunochemotherapy regimens
which highlight the importance of conducting
studies within the molecular DLBCL subtypes.
Nonetheless, progress is slow and many extant
clinical trials continue to combine all DLBCL
cases, and to focus on clinical end points and
not on molecularly driven end points. 

Pathobiology: the first essential 
element   

Conceptual therapeutic advances are built
on biological foundations and are infrequently
the product of empiricism. While this has been
long recognized, the recent era has witnessed
benefits from biologically-based pathology
classifications, which are needed for optimal
clinical research. It is important to recall that

the National Cancer Institute Working
Formulation, used in the United States until
the early 1990s, was biologically agnostic and
categorized lymphomas by morphology and
clinical behavior.1 In contrast, the Kiel
Classification, used in Europe, had some bio-
logical foundation.2 It was not until the
Revised European-American Lymphoid
(REAL) classification, published in 1994, that
a clinical-biological foundation was formally
incorporated into the classification of lym-
phomas.3 Since then, major genetic and bio-
logical insights have been codified into the
diagnostic criteria of the World Health
Organization (WHO) classification of tumors
of the lymphoid tissues.4-6

The classification of DLBCL has been
among the greatest beneficiaries of recent bio-
logical discoveries in lymphoid tumors. While
it has long been recognized that DLBCL is
clinically and biologically diverse, it was not
possible to subdivide it into distinct disease
entities because of overlapping morphology
and pathogenetic features.7 As a result, treat-
ment strategies have and still depend on clini-
cal features such as stage and age etc. as vali-
dated by the International Prognostic Index
(IPI) score.8 However, with the application of
large-scale gene expression profiling, DLBCL
is now divided into at least three molecular

Diffuse large B-cell lymphoma

The last 30 years have seen a plethora of treatments for diffuse large B-cell lymphoma (DLBCL) but
none proved better than CHOP, the first curative treatment. In the recent era, however, there is con-
vincing evidence for superior chemotherapy platforms.  A randomized study from GELA showed R-
ACVBP was superior to R-CHOP in patients under 60 years of age, but toxicity limits its use to younger
patients. Studies also suggest dose-adjusted EPOCH-R may represent an advance, but a randomized
comparison with R-CHOP is only now nearing completion. However, the simplicity and safety of 
R-CHOP and long history of failed contenders has set a lofty bar for other approaches. We have now
entered the era of targeted therapy, propelled by a rapidly increasing knowledge of tumor biology, driv-
er pathways and clinical successes. The first targeted treatment, rituximab, has been an unqualified
albeit empirical success. Rational drug discovery now leverages our understanding of tumor pathogen-
esis and tumor-host interactions. The discovery of new signaling pathways through gene expression
profiling (GEP), transcriptome sequencing, RNA interference screens and DNA sequencing has identi-
fied an array of new targets for DLBCL. The division of DLBCL into at least three distinct molecular dis-
eases, germinal center B-cell, activated B-cell, and primary mediastinal B-cell DLBCL, is essential for
advancing treatment. 

Learning goals

At the conclusion of this activity, participants should have:
- obtained an understanding of DLBCL pathobiology;
- gained an overview of current therapy approaches in DLBCL; 
- understood potential therapeutic targets.

A B S T R A C T



subtypes. Though still retaining the histological descrip-
tion of a neoplasm of large B-lymphoid cells with a diffuse
growth pattern, these subtypes derive from B cells at dif-
ferent stages of differentiation with distinctive molecular
and clinical characteristics.4 When considering treatment,
either in the research or clinical setting, it is essential to
understand these pathobiological distinctions. 

Presently, DLBCL is divided into 4 major groups within

the WHO, which are further divided along molecular,
pathological and/or clinical grounds. Of these, the most
common group is DLBCL not otherwise specified (NOS),
which can be further subdivided into the germinal center
B-cell like (GCB) and activated B-cell like (ABC) molec-
ular subgroups by GEP (Figure 1A).9,10 In the initial GEP
studies of DLBCL, arrays were performed on a variety of
lymphoma types and cell lines, as well as normal lympho-
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Figure 1. Diagnosis and outcome of DLBCL subtypes by gene expression profiling subtypes. (A) Heat map showing differ-
ential expression of genes in GCB, ABC and PMBL DLBCL subtypes. (B) Kaplan-Meier estimates of progression-free and
overall survival are shown according to GCB or ABC DLBCL subtype in patients treated with R-CHOP based therapy. Median
follow up is approximately two years. 
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cyte subpopulations obtained under a variety of activation
conditions to provide a comparative basis for analysis of
DLBCL gene expression.11 Genes associated with cellular
proliferation showed a clear distinction among the lym-
phoma types with DLBCL generally showing higher albeit
variable expression.12 The proliferation signature genes
were a diverse group and included cell-cycle control and
and myc genes. Another prominent feature of DLBCL was
a group of genes that defined a ‘lymph-node’ signature
that appeared to reflect the non-malignant cells in the
biopsy samples. Genes that distinguished germinal center
(GC) B cells from other stages of B-cell differentiation
were also differentially expressed in the DLBCL cases,
and were independent of other expression signatures, sug-
gesting that they could be used to define different sub-
sets.11,13 Genes associated with GCB DLBCL included
known markers of germinal center differentiation such as
CD10 and the bcl-6 gene, which may be translocated or
mutated in DLBCL.14 In contrast, most genes that defined
ABC DLBCL were not expressed by normal germinal cen-
ter B cells, but instead were induced during in vitro activa-
tion of peripheral B cells. The ABC DLBCL signature also
included the IRF4 (MUM1) gene that is transiently
induced during normal lymphocyte activation and is nec-
essary for antigen receptor driven B-cell proliferation.15,16

A noteworthy feature of ABC DLBCL was the expression
of bcl-2 that is induced over 30-fold during peripheral B-
cell activation.17 These results suggested that the GCB and
ABC DLBCL subtypes are derived from B cells at differ-
ent stages of differentiation. GCB DLBCL appears to arise
from germinal center B cells whereas ABC DLBCL likely
arises from post-germinal center B cells that are blocked
during plasmacytic differentiation. Clinically, GCB
DLBCL has a higher overall survival compared to ABC
DLBCL with R-CHOP based treatment (Figure 1B).18

Primary mediastinal B-cell lymphoma (PMBL) is the third
molecular subtype of DLBCL, which occurs mostly in
young patients (Figure 1A).19,20 PMBL is pathologically
defined by a combination of clinical and histological fea-
tures, and some cases may have features reminiscent of
Hodgkin’s lymphoma, all of which can confound an accurate
diagnosis.7,21 Two studies using GEP have confirmed the
unique biological identity of PMBL and have shown a strong
relationship between PMBL and nodular sclerosis
Hodgkin’s lymphoma.9,22 Both diseases arebelieved to be
derived from a thymic B cell. Most PMBL cases show bcl-6
gene mutations, usually along with somatic mutations of the
immunoglobulin heavy chain, suggesting a late stage of ger-
minal center differentiation.23,24 Unlike other types of
DLBCL, PMBL tumors have defective immunoglobulin
production despite expression of B-cell transcription factors;
OCT-2, BOB.1 and PU.1. Over half of PMBL cases have
amplification of the REL proto-oncogene and the JAK2 tyro-
sine kinase genes, which are frequently found in NSHL, sug-
gesting these diseases are pathogenetically related.25,26

Chemotherapy: the foundation of treatment

The addition of doxorubicin to CVP in the early 1970s
ushered in the first curative regimen (CHOP) for DLBCL.
Since that time, anthracyclines have been established as an
essential drug class for DLBCL, and are included in all up-
front curative regimens. The empiric addition of drugs to
CHOP did not improve the cure rate of DLBCL, as shown

by the landmark randomized study comparing CHOP to
2nd and 3rd generation regimens in 1993.27 Later attempts
had only qualified success. The Deutsche Studiengruppe
für Hochmaligne Non-Hodgkin Lymphome (DSHNHL)
four arm studies of CHOP every 14 or 21 days, with or
without etoposide (CHOEP), in patients over 60 years of
age and low-risk patients aged 60 years or under showed a
benefit of CHOEP-21 in younger patients and CHOP-14
in older patients.28,29 These benefits, however, were lost
when similar trials were done with rituximab.30,31 They
also performed a randomized study of 6 versus 8 cycles of
CHOP-14, with or without rituximab, in elderly patients
with DLBCL.31 In that study, termed RICOVER-60, there
was no difference between 6 and 8 cycles of treatment, but
the authors suggested that R-CHOP-14 should be the new
standard.31 This conclusion was based on a historical com-
parison of R-CHOP-14 with R-CHOP-21, but when
assessed in two randomized trials (GELA and UK), was
found to be incorrect.32 Hence, R-CHOP-21 continues to
be the standard. 

The GELA group recently reported a randomized study of
dose intense R-ACVBP versus R-CHOP-21 in patients under
60 years of age with low-risk International Prognostic Index
(IPI).33 At three years, the PFS of R-ACVBP was 87% com-
pared to 73% for R-CHOP, and this difference was signifi-
cant; though significant hematologic toxicity limits its use to
younger patients. While this study confirms that the R-CHOP
platform can be improved, the clinical limitations of R-
ACVBP and the absence of information on its performance
within the molecular subtypes of DLBCL restricts its use as a
universal platform to replace R-CHOP. Other dose intensity
approaches have also been studied as initial therapy in
DLBCL. A dose intensified R-CHOP showed a failure free
survival of 65% at three years in high-risk DLBCL but with
several toxic deaths, suggesting it is not an optimal
approach.34 Autologous transplant showed some benefit in
the pre-rituximab era, but the lack of substantive evidence for
benefit in the rituximab era and its considerable toxicities
make it an unacceptable standard of care.35 The DA-EPOCH-
R regimen was developed from in vitro modeling of drug
resistance and drug pharmacodynamics, and employs infu-
sional drug scheduling, topoisomerase II targeting, and phar-
macodynamic dosing.36-38 In a National Cancer Institute study
of 72 patients, 80% and 79% of patients were progression-
free and alive, respectively, at the median follow up of 5
years.39 More recently, a multi-center Cancer and Leukemia
Group B (CALGB) co-operative group study of 69 patients
reported a 5-year time to progression (TTP) and overall sur-
vival of 81% and 88%, respectively.40 Notably, DA-EPOCH-
R showed superior outcome within all IPI and age groups
compared to published reports of R-CHOP, suggesting the
overall outcomes were not due to accrual of low-risk patients.
The outcome of DA-EPOCH-R was also assessed within the
GCB and post-GCB molecular subtypes; TTP was 100% in
GCB and 67% in non-GCB DLBCL at 62 months.38 Other
phase II trials have reported similarly promising results with
DA-EPOCH-R.41-43 A randomized comparison of DA-
EPOCH-R and R-CHOP with analysis of outcome within the
molecular subtypes of DLBCL is nearing completion.  While
the DA-EPOCH-R regimen presents more logistical admin-
istration issues than R-CHOP, its serious toxicity profile is
similar to R-CHOP, allowing its use in all age groups. 
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The modern era: germinal center B-cell and
activated B-cell DLBCL pathobiology 

The establishment of ABC and GCB DLBCL as patho-
genetically distinct diseases with different outcomes raises
the need for dedicated clinical studies (Figure 1B).10 GCB
DLBCL is exclusively associated with the t(14;18)
translocation involving bcl-2 and amplification of the c-rel
locus and frequent abnormalities of Bcl-6.10,44-46 In con-
trast, ABC DLBCL is characterized by constitutive activa-
tion of the NF-kB.47-49 Activation of NF-kB is downstream
of a number of B-cell receptor (BCR) pathway proteins
including Bruton’s Tyrosine Kinase (Btk) and CARD11,
which activate IkB kinase and NF-kB (Figure 2A).47-50 For
the majority of ABC DLBCL cases, NF-kB activation can
be observed in the absence of activating CARD11 muta-
tions, suggesting it may be linked to chronic active BCR
signaling.  

Using RNA interference screening (shRNAi), Staudt et
al. showed that targeting BTK resulted in significant in
vitro antiproliferative activity in ABC but not GCB
DLBCL (Figure 2B). Furthermore, shRNA-targeting Btk
was ineffective in ABC DLBCL cell lines that contained
mutant CARD11, which is downstream of Btk. To provide
genetic evidence of BCR signaling in the pathogenesis of
ABC DLBCL, genes in the BCR pathway in DLBCL cell
lines and biopsies were sequenced.50 Missense mutations
in the CD79B protein of the BCR were identified in two
cell lines and in 21% of ABC DLBCL and 3% of GCB
DLBCL tumor biopsies.50 These results suggest that a sig-
nificant percentage of ABC DLBCL may have a height-
ened BCR antigenic response, leading to abnormal activa-
tion of NF-kB. BCR signaling also activates the
PI3K/Akt/mTOR signaling pathway with effects on apop-
tosis, proliferation and metabolism. A recent study also
shows ABC DLBCL has a dependence on MYD88, an
adaptor protein that mediates TOLL and interleukin (IL)-1
receptor signaling, and oncogenic mutations in MYD88
(Figure 2A).51 RNAi screening showed that MYD88 and
the interleukin-1 receptor-associated kinases (IRAK),
IRAK1 and IRAK4, are indispensable for ABC DLBCL
survival. Analysis of ABC DLBCL tumors revealed 29%
harbored mutations in MYD88, which were shown to be
gain-of-function driver mutations. These results indicate
that the MYD88 signaling pathway is important for the
pathogenesis of some ABC DLBCL, and supports the
development of inhibitors. It is important to note that the
molecular distinctions between the GCB and ABC
DLBCL subtypes have yet to have clinical application.
However, they are critically important to advance the tar-
geted treatment of DLBCL. In this regard, the best practi-
cal method(s) for identifying these subtypes remains a
matter of controversy. While GEP remains the gold stan-
dard, it has obvious practical limitations for clinical prac-
tice. In its place, investigators have developed immunohis-
tochemical models that have had variable reproducibility,
but have successfully distinguished GCB from non-GCB
DLBCL in a number of clinical trials.52-54 Recent advances
in paraffin-based gene expression profiling will likely
emerge as the new standard due to its ability to replicate
the validated GEP expression signatures for GCB and
ABC DLBCL.   

Leveraging biology: activated B-cell DLBCL

The constitutive activation of NF-kB activates genes
associated with survival and proliferation. To help assess
the clinical utility of this target, Staudt et al. treated
showed that ABC DLBCL cell lines were differentially
sensitive to an IkB kinase inhibitor, which is necessary for
NF-kB activation (Figure 3A).55 Dunleavy et al. under-
took a ‘proof of principal’ clinical study to test whether
inhibition of NF-kB might sensitize ABC but not GCB
DLBCL to chemotherapy.56,57 Based on in vitro evidence
that bortezomib, a proteasome inhibitor, blocked degrada-
tion of phosphorylated IkBa and consequently inhibited
NF-kB activity in ABC DLBCL cell lines (data not
shown), bortezomib was combined with DA-EPOCH in
patients with relapsed/refractory DLBCL.58-60 Tumor tis-
sue was analyzed to identify molecular DLBCL subtypes.
Patients with ABC DLBCL had a significantly higher
response (83% vs. 13%; P=0.0004) and median overall
survival (10.8 vs. 3.4 months; P=0.0026) compared to
GCB DLBCL (Figure 3B). These results provide a rational
therapeutic approach based on genetically distinct DLBCL
subtypes.61 Based on these studies, several randomized
studies of R-CHOP with or without bortezomib in untreat-
ed DLBCL patients have been instituted. 

Lenalidomide, an immune modulatory agent, may also
have activity in ABC DLBCL.62,63 As a single agent,
lenalidomide demonstrated a response rate of 55% in
patients with ABC DLBCL compared with only 9% in
patients with GCB DLBCL, suggesting differential activi-
ty.62 In vitro, lenalidomide selectively kills ABC DLBCL
cells by augmenting interferon b (IFNb) production
through its effects on IRF4.63 In ABC DLBCL cell lines,
lenalidomide leads to the reduction of IRF4 which
requires the expression of the E3 ubiquitin ligase complex
co-receptor protein, cereblon.64 It is also important to
understand and target upstream targets involved in NF-kB
activation (Figure 2A). Chronic BCR signaling, and acti-
vating mutations of CARD11 and MYD88 promote NF-
kB activation, suggesting a number of targets. One poten-
tial target is Bruton’s tyrosine kinase (Btk), where the
selective inhibitor, ibrutinib, is selectively toxic to cell
lines with chronic active BCR signaling (Figure 2B).50

Importantly, the position of molecular lesions in the BCR
and MYD88 signaling pathways could help guide therapy
of ABC DLBCL. 

Based on these studies, a phase II multicenter study of
the Btk inhibitor, ibrutinib, was performed in patients with
relapsed/refractory DLBCL. Objectives were to assess if
ibrutinib had differential activity in ABC versus GCB
DLBCL, and the role of MYD88, CARD11 and CD79
mutations on overall response rate. Seventy patients were
enrolled with a median age of 64 years and 3 (range 1-7)
prior regimens. Based on GEP analysis, there were 29
ABC, 20 GCB and 21 unclassified/unknown patients.
Overall, 23% responded (41% ABC and 5% GCB
DLBCL; P=0.007) supporting the hypothesis for the role
of BCR signaling in ABC but not GCB DLBCL.50

Furthermore, there was a trend toward improved overall
survival in patients with ABC compared to GCB DLBCL
(9.76 vs. 3.35 months; P=0.099). The investigators also
assessed the relationship between mutations and overall
response rate in a pilot analysis (Figure 4).  Notably,
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Figure 2. B-cell receptor (BCR) and MYD88 signaling pathways and potential targets. (A) Signaling through BCR leads to
downstream activation of the NFκB transcription factor, which is a driver pathway in ABC DLBCL. Signaling also activates
the AKT/MTOR and MAP kinase pathways. Constitutive MYD88 signaling is an alternative pathway leading to NFκB acti-
vation. (B) Inhibition of BTK by ibrutinib is toxic in ABC but not GCB DLBCL cell lines, providing evidence for the clinical
relevance of the BCR signaling pathway.
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Figure 3. Inhibition of NFkB may promote ABC DLBCL cell death. (A) Inhibition of IκB kinase by MLX105 is lethal to ABC
but not GCB DLBCL cell lines, supporting the importance of constitutive NFκB activation in ABC DLBCL and its clinical
importance. (B) Outcome of a clinical trial of DA-EPOCH with bortezomib in 27 patients with relapsed/refractory ABC and
GCB DLBCL. Overall survival of patients with ABC or GCB DLBCL showed a median survival of 10.8 and 3.4 months,
respectively (P=0.0026). Patients with ABC DLBCL also had a significantly higher complete and overall response rate
compared to patients with GCB DLBCL.
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responses were documented in 71% (5 of 7) of patients
with mutant CD79B and 34% (10 of 29) of patients with
wild-type CD79B, suggesting chronic BCR signaling.
Interestingly, 80% (4 of 5) of patients with both mutant
CD79B and MYD88 responded whereas patients with
wild-type CD79B and mutant MYD88 did not respond,
suggesting an MYD88 independent pathway for NF-kB
activation. Furthermore, patients with CARD11 mutations
did not respond, suggesting the dominance of downstream
signaling (W Wilson et al., personal communication,
2012). 

PKCβ is a serine/threonine kinase amplified through the
BCR signaling pathway that may also play an essential
role in the activation of the NF-ĸB pathway in B cells
(Figure 4A).65 Gene expression profiling identified PKCβ
as an unfavorable prognostic marker in DLBCL,66 and in
vitro evidence supported PKCβ as a rational therapeutic
target in DLBCL.67 Enzastaurin is a potent oral inhibitor
of PKCβ that has been studied in relapsed/refractory
DLBCL68 as well as in combination with R-CHOP in
patients with intermediate and high-risk DLBCL.69

Unfortunately, it has shown little activity. 
There are also studies that have targeted the

PI3K/AKT/mTOR signaling pathway using mTOR
inhibitors. Although the patients have been heterogeneous,
mTOR inhibitors (temsirolimus and everolimus) have
induced complete remissions across lymphoma sub-
types.70,71 These results suggested different types of lym-
phomas are dependent on an activated PI3K/AKT/mTOR
pathway, including DLBCL. Although the ideal target for
the PI3K/AKT/mTOR pathway is unknown, investigators

are targeting upstream molecules such as AKT and PI3K.
GS 1101 (formerly CAL 101) is a potent small molecule
inhibitor of PI3K p110δ that blocks constitutive PI3K sig-
naling in vitro.72 GS 1101 was studied in 9 patients with
DLBCL and was well tolerated, but did not result in clini-
cal responses.73

Alternative activation of the classical NF-kB signaling
pathway occurs through stimulation of MYD88 (Figure
2A). MYD88 mutations are present in 30% of ABC
DLBCL cases and promote NF-ĸB activation through this
pathway via the kinase activity of IRAK1 and IRAK4.74 In
ABC DLBCL cell lines, it is the activity of IRAK4 but not
IRAK1 that is required for the oncogenic effect of
MYD88.74 Small molecule inhibitors of IRAK4 have
demonstrated selective toxicity for ABC DLBCL cell lines
and represent another potential therapeutic target in ABC
DLBCL.75

Another important target activated by MYD88 is the
janus activated kinase (JAK)/STAT signaling pathway.74

STAT3 expression and activation are significantly higher
in ABC cell lines than GCB cell lines and may play a role
in the chemoresistance of this subset.76-78 The STAT pro-
teins are a family of transcription factors important for the
regulation of cellular events such as proliferation and sur-
vival.79 The secretion of IL-6 and IL-10 in ABC DLBCL
promotes survival through the activation of the JAK fam-
ily of kinases (JAK1, JAK2, JAK3, and TYK2).80 A gene
expression signature demonstrated that approximately half
of ABC DLBCLs demonstrate elevated activity of STAT3
activity (STAT3-high) and have higher NF-kB activity
than those with low STAT3 activity (STAT3-low) as well

Figure 4.
Blockade of BCR
signaling in ABC
DLBCL with ibruti-
nib, an irre-
versible inhibitor
of BTK. Pilot
analysis of ABC
DLBCL gene
mutations and
response to ibru-
tinib. 



as increased expression of proliferation genes.76 Selective
inhibition of STAT3 signaling resulted in dose-dependent
cellular death in ABC but not GCB cell lines.76 Direct ther-
apeutic targeting of STAT3 signaling poses a challenge
since it lacks its own enzymatic activity. Ruxolitinib is an
oral selective inhibitor of JAK1 and JAK2 that has gained
FDA approval in the United States for the treatment of pri-
mary myelofibrosis (PMF).81,82

Leveraging biology: germinal center B-cell
DLBCL

While GCB DLBCL has a better prognosis than ABC
DLBCL, over 30% are not cured with R-CHOP-based
treatment (Figure 1A). Bcl-6 is a key transcription factor
expressed by germinal center B cells, including GCB
DLBCL, that regulates cell growth and apoptosis.83,84

Bcl-6 suppresses genes involved in lymphocyte activation,
differentiation, cell cycle arrest, and DNA damage
response genes, p53 and ATR.83 In GCB DLBCL, chromo-
somal translocations affecting the Bcl-6 locus juxtapose
heterologous promoters from the partner chromosome
with intact Bcl-6 coding sequences, leading to deregulated
expression of Bcl-6; additionally, Bcl-6 can be altered by
multiple somatic mutations. These mutations/transloca-
tions in Bcl-6 enhance its inhibitory effect on the apoptotic
stress response and promote proliferation, both of which
are associated with treatment failure.83,85-88

These results suggest that Bcl-6 is an important target
for GCB DLBCL. BCL6 is difficult to target directly and
is best affected by targeting protein-protein interactions.
Recently, a small molecule known as 79-6 complex was
identified that specifically disrupts the activity of BCL6
by blocking its co-repressors.89 79-6 was able to selective-
ly induce apoptosis in DLBCL cell lines that were BCL6-
dependent but not those that were BCL6-independent. In a
xenograft model in mice, 79-6 induced tumor shrinkage
validating BCL6 inhibition as a rational therapeutic strat-
egy for GCB DLBCL tumors.89 Targeting other Bcl-6
domains or using histone deacetylase inhibitors to over-
come Bcl-6 repression of p53 and cell cycle inhibitory
proteins may also be potentially useful, and are under
investigation.46

A potentially important observation is the effect of
topoisomerase II inhibition on Bcl-6 expression.
Inhibition of topoisomerase II by etoposide leads to down-
regulation of Bcl-6 expression through ubiquitin-mediated
protein degradation and possibly transcriptional inhibi-
tion.90 This could account for the in vitro finding that sus-
tained exposure of tumor cells to etoposide and low-dose
doxorubicin promote the p53-p21 pathway and activates
the check-point kinase (Chk2), effects that are inhibited in
cells engineered to over-express Bcl-6.91,92 This raises the
possibility that inhibition of topoisomerase II may be
important in GCB DLBCL. This may partially explain the
finding by the German co-operative group (DSHNHL)
that the addition of etoposide to CHOP (CHOEP)
improved the event-free survival of younger patients, who
have a higher incidence of GCB DLBCL, compared to
older patients.9,29,93 Although the benefit of etoposide in
CHOEP was lost when rituximab was added (R-CHOPE),
these results nonetheless suggest that topoisomerase inhi-
bition is important.30 The association between topoiso-

merase II inhibition and inhibition of Bcl-6 raises the
hypothesis of whether regimens that more effectively
inhibit topoisomerase II would be more effective in GCB
DLBCL, even in the setting of rituximab. In this regard,
the DA-EPOCH-R regimen inhibits topoisomerase II
through several strategies: 1) incorporates two topoiso-
merase II inhibitors, etoposide and doxorubicin; 2) opti-
mizes topoisomerase II inhibition through a prolonged 96-
h infusion; 3) maximizes steady state concentrations
through pharmacodynamic dose adjustment.37

Interestingly, an analysis of outcome of GCB DLBCL in
two DA-EPOCH-R trials showed a 95% EFS at five years
in HIV+ GCB DLBCL, and a 100% EFS at 5-years in GCB
DLBCL (CALGB study).38,41 These studies suggest that
DA-EPOCH-R may be particularly effective in GCB
DLBCL, in part due to its effective inhibition of topoiso-
merase II and Bcl-6. 

MYC is another potentially important target that is
expressed in both GCB and ABC DLBCL and its expres-
sion level is associated with tumor proliferation.9,94 Recent
studies have shown that up to 10% of DLBCL cases har-
bor myc translocations, mostly in GCB DLBCL, which
lead to high protein expression and are associated with a
poor outcome with standard R-CHOP treatment.95,96 The
Myc oncoproteins (c-Myc, N-Myc, and L-Myc) have gen-
erally been considered ‘undrugable’ targets because the
protein structures are not amenable to small molecule inhi-
bition. However, recent epigenetic manipulation of the
BET bromodomain protein BRD4 by the compound JQ1
has demonstrated exciting promise in inhibiting c-Myc in
murine models of multiple myeloma.97,98 Since bromod-
omain proteins serve as regulatory factors for c-Myc, this
indirect approach may alter gene expression. Another
mechanism by which Myc promotes lymphomagenesis is
by suppressing the transcription of Tristetrapolin (TTP),
which functions as a tumor suppressor.99 Normal gene
expression is tightly controlled by mRNA turnover that is,
in turn, tightly regulated by AU-binding proteins (AUBP)
that recognize AU-rich elements (ARE) within transcripts.
TTP is an example of an AUBP that is suppressed in can-
cers with Myc involvement, and restoring TTP impairs
Myc-induced lymphomagenesis and abolishes the malig-
nant state.99 Both of these strategies represent novel epige-
netic targeting of MYC+ tumors that could potentially be
combined with chemotherapy.  

Bcl-2 is a drugable target expressed in both GCB and
ABC DLBCL, albeit through different mechanisms. While
some older studies found an association between bcl-2
expression and poor outcome in DLBCL, later studies
have shown a more complex association.86,100 The mecha-
nism of bcl-2 overexpression has been related to its prog-
nostic relevance in DLBCL. Gascoyne et al. showed that
bcl-2 overexpression was only associated with a poor out-
come in the absence of a t(14:18), which indicates that the
mechanism of expression and not the protein itself is more
relevant to prognosis.100 This becomes more understand-
able when considering the relationship of bcl-2 expression
to the molecular subtype of DLBCL. In GCB DLBCL,
bcl-2 expression is associated with t(14:18), which is only
found in GCB DLBCL, whereas in ABC DLBCL, bcl-2
overexpression is associated with gene amplification or
NFkB transcriptional activation.9,94 In this latter case, bcl-
2 expression may primarily be a surrogate biomarker for
ABC DLBCL, and may not in itself be an important ther-
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apeutic target. More recently, Gascoyne et al. published a
study showing that the concurrent protein expression of
MYC and BCL-2 had an adverse outcome, whereas
expression of either alone did not portend a worse out-
come with R-CHOP.101 While this study is only correla-
tive, it provides additional evidence for testing inhibitors
of BCL-2, such as navitoclax or ABT-199, and Myc.102

Primary mediastinal B-cell lymphoma: where
are we therapeutically? 

There is a near total absence of prospective studies in
PMBL, which has led to conflicting findings and a lack of
treatment standards.103-106 Nonetheless, several observations
have emerged from the literature. First, most patients with
PMBL do not achieve adequate tumor control with standard
immunochemotherapy, necessitating routine mediastinal
radiotherapy.105-107 Second, even with radiotherapy, which
has serious late-term side effects, 20% of patients have dis-
ease progression.103,105 Third, more aggressive chemothera-
py is associated with an improved outcome.104,105 Due to the
widespread use of R-CHOP chemotherapy, it has become a
de facto standard for PMBL.103,104 Most strategies also
incorporate consolidation radiotherapy to overcome the
inadequacy of immunochemotherapy.104,108 The most accu-
rate assessment of R-CHOP and radiotherapy comes from a
subset analysis of PMBL patients in the Mabthera
International Trial Group study of R-CHOP-based treat-
ment.103 In 44 patients, 73% of whom received radiotherapy,
the event-free survival was 78% at 34 months.103 These
results indicate that patients who receive R-CHOP-based
treatment, the majority being young and female, will con-
front the potentially serious long-term consequences of
radiotherapy.109

Retrospective studies have long suggested that PMBL
has a better outcome with more dose intense regimens.105

It is of interest that dose intensity appears to be important
in nodular sclerosis Hodgkin’s lymphoma, which is a
closely related disease.110 Based on evidence that dose
intensity is important in PMBL, Dunleavy et al. assessed
DA-EPOCH-R, a dose intense regimen, without radiother-
apy in PMBL.111,112 In a recent update of 40 patients with
untreated PMBL, the EFS and OS were 95% and 100%,
respectively, at the median follow up of four years.
Importantly, only 2 patients required consolidation radia-
tion treatment and no patients have progressed (K
Dunleavy et al., personal communication, 2011). These
results suggest that DA-EPOCH-R obviates the need for
radiation in most patients with PMBL, thus eliminating
the risk of long-term toxicities such as secondary malig-
nancies and heart disease. This is particularly important
given that patients afflicted with PMBL are typically
young and often women, and are at increased risk of breast
and other cancers as well as late-term toxicities. 

Although the outcome of PMBL is excellent with regi-
mens such as DA-EPOCH-R, it would be important to fur-
ther reduce the toxicity and length of treatment. Hence,
targeted agents will be important to test. In this regard,
JAK2 may be a potentially important target for PMBL.
Trials are currently being planned to assess inhibitors of
the JAK pathway in DLBCL including PMBL but no clin-
ical data are available at this time. 

References 
1. National Cancer Institute sponsored study of classifications of

non-Hodgkin’s lymphomas: summary and description of a work-
ing formulation for clinical usage. The Non-Hodgkin’s
Lymphoma Pathologic Classification Project. Cancer.
1982;49:2112-35.

2. Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classifica-
tion for lymphomas. Lancet. 1988;1:292-3.

3. Harris NL, Jaffe ES, Stein H, et al. A revised European-American
classification of lymphoid neoplasms: a proposal from the
International Lymphoma Study Group. Blood. 1994;84:1361-92.

4. Jaffe ES. The 2008 WHO classification of lymphomas: implica-
tions for clinical practice and translational research. Hematology
Am Soc Hematol Educ Program. 2009:523-31.

5. Wilson WH, Hernandez-Ilizaliturri FJ, Dunleavy K, Little RF,
O’Connor OA. Novel disease targets and management approach-
es for diffuse large B-cell lymphoma. Leuk Lymphoma.
2010;51(Suppl 1):1-10.

6. Tay K, Dunleavy K, Wilson WH. Novel agents for B-cell non-
Hodgkin lymphoma: science and the promise. Blood Rev.
2010;24:69-82.

7. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds.) Tumours of
Haematopoietic and Lymphoid Tissues. In: World Health
Organization Classification of Tumours (1st ed). Lyon: IARC
Press; 2001.

8. The International Non-Hodgkin’s Lymphoma Prognostic Factors
Project. A Predictive Model for Aggressive Non-Hodgkin’s
Lymphoma. N Engl J Med. 1993;329:987-94.

9. Rosenwald A, Wright G, Chan WC, et al. The use of molecular
profiling to predict survival after chemotherapy for diffuse large-
B-cell lymphoma. N Engl J Med. 2002;346:1937-47.

10. Lenz G, Wright GW, Emre NC, et al. Molecular subtypes of dif-
fuse large B-cell lymphoma arise by distinct genetic pathways.
Proc Natl Acad Sci USA. 2008;105:13520-5.

11. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling.
Nature. 2000;403:503-11.

12. Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53,
bcl-2, and tumor proliferation to clinical drug resistance in non-
Hodgkin’s lymphomas. Blood. 1997;89:601-9.

13. Wiestner A, Staudt LM. Towards a molecular diagnosis and tar-
geted therapy of lymphoid malignancies. Semin Hematol.
2003;40:296-307.

14. Dalla-Favera R, Migliazza A, Chang CC, et al. Molecular patho-
genesis of B cell malignancy: the role of BCL-6. Curr Top
Microbiol Immunol. 1999;246:257-63.

15. Matsuyama T, Grossman A, Mittrucker HW, et al. Molecular
cloning of LSIRF, a lymphoid-specific member of the interferon
regulatory factor family that binds the interferon-stimulated
response element (ISRE). Nucleic Acids Res. 1995;23:2127-36.

16. Mittrucker HW, Matsuyama T, Grossman A, et al. Requirement
for the transcription factor LSIRF/IRF4 for mature B and T lym-
phocyte function. Science. 1997;275:540-3.

17. Tschopp J, Irmler M, Thome M. Inhibition of fas death signals by
FLIPs. Curr Opin Immunol. 1998;10:552-8.

18. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in
large-B-cell lymphomas. N Engl J Med. 2008;359:2313-23.

19. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of
primary mediastinal B cell lymphoma identifies a clinically favor-
able subgroup of diffuse large B cell lymphoma related to
Hodgkin lymphoma. J Exp Med. 2003;198:851-62.

20. Abou-Elella AA, Weisenburger DD, Vose JM, et al. Primary
mediastinal large B-cell lymphoma: a clinicopathologic study of
43 patients from the Nebraska Lymphoma Study Group. J Clin
Oncol. 1999;17:784-90.

21. Gonzalez CL, Medeiros LJ, Jaffe ES. Composite lymphoma. A
clinicopathologic analysis of nine patients with Hodgkin’s disease
and B-cell non-Hodgkin’s lymphoma. Am J Clin Pathol.
1991;96:81-9.

22. Savage KJ, Monti S, Kutok JL, et al. The molecular signature of
mediastinal large B-cell lymphoma differs from that of other dif-
fuse large B-cell lymphomas and shares features with classical
Hodgkin’s lymphoma. Blood. 2003:200306-1841.

23. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary
mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl
3):S21-26.

24. Pileri SA, Gaidano G, Zinzani PL, et al. Primary mediastinal B-
cell lymphoma: high frequency of BCL-6 mutations and consis-
tent expression of the transcription factors OCT-2, BOB.1, and
PU.1 in the absence of immunoglobulins. Am J Pathol.
2003;162:243-53.

25. Joos S, Kupper M, Ohl S, et al. Genomic imbalances including

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 183 |

Stockholm, Sweden, June 13-16, 2013



amplification of the tyrosine kinase gene JAK2 in CD30+
Hodgkin cells. Cancer Res. 2000;60:549-52.

26. Joos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma
is characterized by recurrent copy number gains of the short arm
of chromosome 2. Blood. 2002;99:1381-7.

27. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a stan-
dard regimen (CHOP) with three intensive chemotherapy regi-
mens for advanced non-Hodgkin’s lymphoma. N Engl J Med.
1993;328:1002-6.

28. Pfreundschuh M. Two-weekly or 3-weekly CHOP chemotherapy
with or without etoposide for the treatment of elderly patients
with aggressive lymphomas: results of the NHL-B2 trial of the
DSHNHL. Blood. 2004;104:634-41.

29. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-
weekly CHOP chemotherapy with or without etoposide for the
treatment of young patients with good-prognosis (normal LDH)
aggressive lymphomas: results of the NHL-B1 trial of the
DSHNHL. Blood. 2004;104:626-33.

30. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like
chemotherapy plus rituximab versus CHOP-like chemotherapy
alone in young patients with good-prognosis diffuse large-B-cell
lymphoma: a randomised controlled trial by the MabThera
International Trial (MInT) Group. Lancet Oncol. 2006;7:379-91.

31. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight
cycles of bi-weekly CHOP-14 with or without rituximab in eld-
erly patients with aggressive CD20+ B-cell lymphomas: a ran-
domised controlled trial (RICOVER-60). Lancet Oncol.
2008;9:105-16.

32. Cunningham D, Smith P, Mouncey P, Qian W, Jack AS, Pocock
C, et al. R-CHOP14 versus R-CHOP21: Result of a randomized
phase III trial for the treatment of patients with newly diagnosed
diffuse large B-cell non-Hodgkin lymphoma. ASCO 2011 Annual
Meeting; 2011.

33. Récher C, Coiffier B, Haioun C, et al. Intensified chemotherapy
with ACVBP plus rituximab versus standard CHOP plus ritux-
imab for the treatment of diffuse large B-cell lymphoma (LNH03-
2B): an open-label randomised phase 3 trial. The Lancet.
2011;378:1858-67.

34. Holte H, Leppa S, Bjorkholm M, et al. Dose-densified chemoim-
munotherapy followed by systemic central nervous system pro-
phylaxis for younger high-risk diffuse large B-cell/follicular
grade 3 lymphoma patients: results of a phase II Nordic
Lymphoma Group study. Ann Oncol. 2013;24(5):1385-92.

35. Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome
and acute myeloid leukemia after autotransplantation for lym-
phoma: a multicenter case-control study. Blood. 2003;101:2015-
23.

36. Wilson WH, Dunleavy K, Pittaluga S, et al. Phase II study of
dose-adjusted EPOCH and rituximab in untreated diffuse large B-
cell lymphoma with analysis of germinal center and post-germi-
nal center biomarkers. J Clin Oncol. 2008;26:2717-24.

37. Wilson WH, Grossbard ML, Pittaluga S, et al. Dose-adjusted
EPOCH chemotherapy for untreated large B-cell lymphomas: a
pharmacodynamic approach with high efficacy. Blood.
2002;99:2685-93.

38. Wilson WH, Jung SH, Porcu P, et al. A Cancer and Leukemia
Group B multi-center study of DA-EPOCH-rituximab in untreat-
ed diffuse large B-cell lymphoma with analysis of outcome by
molecular subtype. Haematologica. 2012;97:758-65.

39. Wilson WH, Dunleavy K, Pittaluga S, et al. Phase II Study of
Dose-Adjusted EPOCH and Rituximab in Untreated Diffuse
Large B-Cell Lymphoma With Analysis of Germinal Center and
Post-Germinal Center Biomarkers. Br J Hematol J Clin Oncol.
2008;26:2717-24.

40. Wilson WH, Jung SH, Porcu P, et al. A Cancer and Leukemia
Group B multi-center study of DA-EPOCH-rituximab in untreat-
ed diffuse large B-cell lymphoma with analysis of outcome by
molecular subtype. Haematologica. 2011;97:758-65.

41. Dunleavy K, Little RF, Pittaluga S, et al. The role of tumor histo-
genesis, FDG-PET, and short-course EPOCH with dose-dense
rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-
cell lymphoma. Blood. 2010;115:3017-24.

42. Garcia-Suarez J, Banas H, Arribas I, De Miguel D, Pascual T,
Burgaleta C. Dose-adjusted EPOCH plus rituximab is an effec-
tive regimen in patients with poor-prognostic untreated diffuse
large B-cell lymphoma: results from a prospective observational
study. Br J Hematol J Clin Oncol. 2007; 136:276-85.

43. Garcia-Suarez J, Flores E, Callejas M, et al. Two-weekly dose-
adjusted (DA)-EPOCH-like chemotherapy with high-dose dex-
amethasone plus rituximab (DA-EDOCH14-R) in poor-prognos-
tic untreated diffuse large B-cell lymphoma. Br J Haematol. 2012
Dec 11. [Epub ahead of print]

44. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies:
the dark side of B-cell differentiation. Nat Rev Immunol.

2002;2:920-32.
45. Parekh S, Polo JM, Shaknovich R, et al. BCL6 programs lym-

phoma cells for survival and differentiation through distinct bio-
chemical mechanisms. Blood. 2007;110(6):2067-74.

46. Parekh S, Prive G, Melnick A. Therapeutic targeting of the BCL6
oncogene for diffuse large B-cell lymphomas. Leuk Lymphoma.
2008;49:874-82.

47. Davis RE, Brown KD, Siebenlist U, Staudt LM. Constitutive
nuclear factor kappaB activity is required for survival of activated
B cell-like diffuse large B cell lymphoma cells. J Exp Med.
2001;194:1861-74.

48. Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 muta-
tions in human diffuse large B cell lymphoma. Science.
2008;319:1676-9.

49. Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA inter-
ference screen for molecular targets in cancer. Nature.
2006;441:106-10.

50. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor
signalling in diffuse large B-cell lymphoma. Nature.
2010;463:88-92.

51. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active
MYD88 mutations in human lymphoma. Nature.
2011;470(7332):115-9.

52. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of
the molecular classification of diffuse large B-cell lymphoma by
immunohistochemistry using a tissue microarray. Blood.
2004;103(1):275-82.

53. Dunleavy K, Janik J, Gea-Banacloche J, et al. Phase I/II study of
Bortezomib Alone and Bortezomib with Dose-Adjusted EPOCH
Chemotherapy in Relapsed or Refractory Aggressive B-Cell
Lymphoma. ASH Annual Meeting Abstracts. 2004;104:1385.

54. Choi WW, Weisenburger DD, Greiner TC, et al. A new immunos-
tain algorithm classifies diffuse large B-cell lymphoma into
molecular subtypes with high accuracy. Clin Cancer Res.
2009;15:5494-502.

55. Lam LT, Davis RE, Pierce J, et al. Small molecule inhibitors of
IkappaB kinase are selectively toxic for subgroups of diffuse large
B-cell lymphoma defined by gene expression profiling. Clin
Cancer Res. 2005;11:28-40.

56. Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy:
lessons from the first decade. Clin Cancer Res. 2008;14:1649-57.

57. Orlowski RZ, Baldwin AS Jr. NF-kappaB as a therapeutic target
in cancer. Trends Mol Med. 2002;8:385-9.

58. Allen C, Saigal K, Nottingham L, Arun P, Chen Z, Van Waes C.
Bortezomib-induced apoptosis with limited clinical response is
accompanied by inhibition of canonical but not alternative
nuclear factor-{kappa}B subunits in head and neck cancer. Clin
Cancer Res. 2008;14:4175-85.

59. Houldsworth J, Petlakh M, Olshen AB, Chaganti RS. Pathway
activation in large B-cell non-Hodgkin lymphoma cell lines by
doxorubicin reveals prognostic markers of in vivo response. Leuk
Lymphoma. 2008;49:2170-80.

60. Strauss SJ, Higginbottom K, Juliger S, et al. The proteasome
inhibitor bortezomib acts independently of p53 and induces cell
death via apoptosis and mitotic catastrophe in B-cell lymphoma
cell lines. Cancer Res. 2007;67:2783-90.

61. Dunleavy K, Pittaluga S, Czuczman MS, et al. Differential effica-
cy of bortezomib plus chemotherapy within molecular subtypes
of diffuse large B-cell lymphoma. Blood. 2009;113:6069-76.

62. Hernandez-Ilizaliturri FJ, Deeb G, Zinzani PL, et al. Higher
response to lenalidomide in relapsed/refractory diffuse large B-
cell lymphoma in nongerminal center B-cell-like than in germinal
center B-cell-like phenotype. Cancer. 2011;117:5058-66.

63. Yang Y, Shaffer AL 3rd, Emre NC, et al. Exploiting synthetic
lethality for the therapy of ABC diffuse large B cell lymphoma.
Cancer Cell. 2012;21:723-37.

64. Zhang LH, Kosek J, Wang M, Heise C, Schafer PH, Chopra R.
Lenalidomide efficacy in activated B-cell-like subtype diffuse
large B-cell lymphoma is dependent upon IRF4 and cereblon
expression. Br J Haematol. 2013;160(4):487-502.

65. Saijo K, Mecklenbrauker I, Santana A, Leitger M, Schmedt C,
Tarakhovsky A. Protein kinase C beta controls nuclear factor
kappaB activation in B cells through selective regulation of the
IkappaB kinase alpha. J Exp Med. 2002;195:1647-52.

66. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lym-
phoma outcome prediction by gene-expression profiling and
supervised machine learning. Nat Med. 2002;8:68-74.

67. Rossi RM, Henn AD, Conkling R, et al. The PKC{beta}
Selective Inhibitor, Enzastaurin (LY317615), Inhibits Growth of
Human Lymphoma Cells. ASH Annual Meeting Abstracts.
2005;106:1483.

68. Robertson MJ, Kahl BS, Vose JM, et al. Phase II study of enzas-
taurin, a protein kinase C beta inhibitor, in patients with relapsed
or refractory diffuse large B-cell lymphoma. J Clin Oncol.

| 184 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



2007;25:1741-6.
69. Hainsworth JD, Arrowsmith ER, Mccleod M, et al. Randomized

Phase II Study of R-CHOP Plus Enzastaurin Versus R-CHOP in
the First Line Treatment of Patients with Intermediate and High-
Risk Diffuse Large B-cell Lymphoma (DLBCL) - Preliminary
Analysis. Ann Oncol. 2011;22(Suppl 4):(Abstract 074).

70. Smith SM, van Besien K, Karrison T, et al. Temsirolimus has
activity in non-mantle cell non-Hodgkin’s lymphoma subtypes:
The University of Chicago phase II consortium. J Clin Oncol.
2010;28:4740-6.

71. Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-
agent temsirolimus (CCI-779) for relapsed mantle cell lym-
phoma. J Clin Oncol. 2005;23:5347-56.

72. Lannutti BJ, Meadows SA, Herman SEM, et al. CAL-101, a
p110   selective phosphatidylinositol-3-kinase inhibitor for the
treatment of B-cell malignancies, inhibits PI3K signaling and cel-
lular viability. Blood. 2010;117:591-4.

73. Furman RR, Byrd JC, Brown JR, et al. CAL-101, An Isoform-
Selective Inhibitor of Phosphatidylinositol 3-Kinase P110{delta},
Demonstrates Clinical Activity and Pharmacodynamic Effects In
Patients with Relapsed or Refractory Chronic Lymphocytic
Leukemia. ASH Annual Meeting Abstracts. 2010;116:55.

74. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active
MYD88 mutations in human lymphoma. Nature. 2011;470:115-
9.

75. Lim K-H, Romero DL, Chaudhary D, Robinson SD, Staudt LM.
IRAK4 Kinase As A Novel Therapeutic Target in the ABC
Subtype of Diffuse Large B Cell Lymphoma. ASH Annual
Meeting Abstracts. 2012;120:62.

76. Lam LT, Wright G, Davis RE, et al. Cooperative signaling
through the signal transducer and activator of transcription 3 and
nuclear factor-{kappa}B pathways in subtypes of diffuse large B-
cell lymphoma. Blood. 2008;111:3701-13.

77. Ding BB, Yu JJ, Yu RY, et al. Constitutively activated STAT3 pro-
motes cell proliferation and survival in the activated B-cell sub-
type of diffuse large B-cell lymphomas. Blood. 2008;111:1515-
23.

78. Scuto A, Kujawski M, Kowolik C, et al. STAT3 inhibition is a
therapeutic strategy for ABC-like diffuse large B-cell lymphoma.
Cancer Res. 2011;71:3182-8.

79. Calo V, Migliavacca M, Bazan V, et al. STAT proteins: from nor-
mal control of cellular events to tumorigenesis. J Cell Physiol.
2003;197:157-68.

80. Murray PJ. The JAK-STAT signaling pathway: input and output
integration. J Immunol. 2007;178:2623-9.

81. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-
controlled trial of ruxolitinib for myelofibrosis. N Engl J Med.
2012;366:799-807.

82. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy
of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N
Engl J Med. 2010;363:1117-27.

83. Phan RT, Dalla-Favera R. The BCL6 proto-oncogene suppresses
p53 expression in germinal-centre B cells. Nature. 2004;432:635-
9.

84. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R. BCL6 inter-
acts with the transcription factor Miz-1 to suppress the cyclin-
dependent kinase inhibitor p21 and cell cycle arrest in germinal
center B cells. Nat Immunol. 2005;6:1054-60.

85. Paik JH, Jeon YK, Park SS, et al. Expression and prognostic
implications of cell cycle regulatory molecules, p16, p21, p27,
p14 and p53 in germinal centre and non-germinal centre B-like
diffuse large B-cell lymphomas. Histopathology. 2005;47:281-
91.

86. Wilson WH, Teruya-Feldstein J, Fest T, et al. Relationship of p53,
bcl-2, and tumor proliferation to clinical drug resistance in non-
Hodgkin’s lymphomas. Blood. 1997;89:601-9.

87. Ranuncolo SM, Polo JM, Dierov J, et al. Bcl-6 mediates the ger-
minal center B cell phenotype and lymphomagenesis through
transcriptional repression of the DNA-damage sensor ATR. Nat
Immunol. 2007;8:705-14.

88. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti
RS, Dalla-Favera R. Mutations of the BCL6 proto-oncogene dis-
rupt its negative autoregulation in diffuse large B-cell lymphoma.
Blood. 2003;101:2914-23.

89. Cerchietti LC, Ghetu AF, Zhu X, et al. A small-molecule
inhibitor of BCL6 kills DLBCL cells in vitro and in vivo.
Cancer Cell. 2010;17:400-11.

90. Kurosu T, Fukuda T, Miki T, Miura O. BCL6 overexpression pre-
vents increase in reactive oxygen species and inhibits apoptosis
induced by chemotherapeutic reagents in B-cell lymphoma cells.
Oncogene. 2003;22:4459-68.

91. Theard D, Coisy M, Ducommun B, Concannon P, Darbon J-M.
Etoposide and Adriamycin but Not Genistein Can Activate the
Checkpoint Kinase Chk2 Independently of ATM/ATR. Biochem
Bioph Res Co. 2001;289:1199-204.

92. Siu WY, Lau A, Arooz T, Chow JPH, Ho HTB, Poon RYC.
Topoisomerase poisons differentially activate DNA damage
checkpoints through ataxia-telangiectasia mutated-dependent and
-independent mechanisms. Mol Cancer Ther. 2004;3:621-32.

93. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-
weekly CHOP chemotherapy with or without etoposide for the
treatment of elderly patients with aggressive lymphomas: results
of the NHL-B2 trial of the DSHNHL. Blood. 2004;104:634-41.

94. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling.
Nature. 2000;403:503-11.

95. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene
rearrangements are associated with a poor prognosis in diffuse
large B-cell lymphoma patients treated with R-CHOP chemother-
apy. Blood. 2009;114:3533-7.

96. Klapper W, Stoecklein H, Zeynalova S, et al. Structural aberra-
tions affecting the MYC locus indicate a poor prognosis inde-
pendent of clinical risk factors in diffuse large B-cell lymphomas
treated within randomized trials of the German High-Grade Non-
Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia.
2008;22:2226-9.

97. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain
inhibition as a therapeutic strategy to target c-Myc. Cell.
2011;146:904-17.

98. Chesi M, Matthews GM, Garbitt VM, et al. Drug response in a
genetically engineered mouse model of multiple myeloma is pre-
dictive of clinical efficacy. Blood. 2012;120:376-85.

99. Rounbehler RJ, Fallahi M, Yang C, et al. Tristetraprolin Impairs
Myc-Induced Lymphoma and Abolishes the Malignant State.
Cell. 2012;150:563-74.

100. Gascoyne RD, Adomat SA, Krajewski S, et al. Prognostic signif-
icance of Bcl-2 protein expression and Bcl-2 gene rearrangement
in diffuse aggressive non-Hodgkin’s lymphoma. Blood.
1997;90:244-51.

101. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression
of MYC and BCL2 in diffuse large B-cell lymphoma treated with
rituximab plus cyclophosphamide, doxorubicin, vincristine, and
prednisone. J Clin Oncol. 2012;30:3452-9.

102. Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a
targeted high-affinity inhibitor of BCL-2, in lymphoid malignan-
cies: a phase 1 dose-escalation study of safety, pharmacokinetics,
pharmacodynamics, and antitumour activity. Lancet Oncol.
2010;11:1149-59.

103. Rieger M, Osterborg A, Pettengell R, et al. Primary mediastinal
B-cell lymphoma treated with CHOP-like chemotherapy with or
without rituximab: results of the Mabthera International Trial
Group study. Ann Oncol. 2011;22:664-70.

104. Savage KJ, Al-Rajhi N, Voss N, et al. Favorable outcome of pri-
mary mediastinal large B-cell lymphoma in a single institution:
the British Columbia experience. Ann Oncol. 2006;17:123-30.

105. Zinzani PL, Martelli M, Bertini M, et al. Induction chemotherapy
strategies for primary mediastinal large B-cell lymphoma with
sclerosis: a retrospective multinational study on 426 previously
untreated patients. Haematologica. 2002;87:1258-64.

106. Zinzani PL, Martelli M, Bendandi M, et al. Primary mediastinal
large B-cell lymphoma with sclerosis: a clinical study of 89
patients treated with MACOP-B chemotherapy and radiation
therapy. Haematologica. 2001;86:187-91.

107. Zinzani PL, Martelli M, Magagnoli M, et al. Treatment and clin-
ical management of primary mediastinal large B-cell lymphoma
with sclerosis: MACOP-B regimen and mediastinal radiotherapy
monitored by (67)Gallium scan in 50 patients. Blood.
1999;94:3289-93.

108. Vassilakopoulos TP, Pangalis GA, Katsigiannis A, et al.
Rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone with or without radiotherapy in primary mediastinal
large B-cell lymphoma: the emerging standard of care.
Oncologist. 2012;17:239-49.

109. Hodgson DC. Late effects in the era of modern therapy for
Hodgkin lymphoma. Hematology Am Soc Hematol Educ
Program. 2011;2011:323-9.

110. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and
increased-dose BEACOPP chemotherapy compared with COPP-
ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;
348:2386-95.

111. Dunleavy K, Pittaluga S, Janik J, et al. Primary mediastinal large
b-cell lymphoma (PMBL) may be significantly improved by the
addition of rituximab to dose-adjusted EPOCH and obviates the
need for radiation: results from a prospective study of 44 patients.
Blood (ASH Annual Meeting Abstracts). 2006;108.

112. Wilson WH, Dunleavy K, Pittaluga S, et al. Dose-Adjusted
EPOCH-Rituximab Is Highly Effective in the GCB and ABC
Subtypes of Untreated Diffuse Large B-Cell Lymphoma. ASH
Annual Meeting Abstracts. 2004;104:159.

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 185 |

Stockholm, Sweden, June 13-16, 2013



| 186 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 187 |

S. Hartmann 
M-L. Hansmann

Senckenberg Institute of Pathology,
University of Frankfurt, Frankfurt,
Germany 

Correspondence:
Sylvia Hartmann
E-mail:s.hartmann@em.uni-frank-
furt.de 
Martin-Leo Hansmann
E-mail: m.l.hansmann@em.uni-frank-
furt.de

Hematology Education:
the education program for the 
annual congress of the European
Hematology Association

2013;7:187-192

Biology and diagnosis of Hodgkin’s lymphoma

Hodgkin’s lymphoma morphology

The infiltrate in Hodgkin’s lymphoma (HL) is
composed of only few, mostly scattered tumor
cells and an abundant reactive background. The
tumor cells in classic HL, the Hodgkin- and Reed-
Sternberg (HRS) cells, can show single or several
nuclei and usually show prominent eosinophilic
nucleoli. Immunohistochemically, HRS cells
strongly express CD30 (Figure 1), MUM1 and
weakly PAX5. They show variable expression of
markers usually found in other cell lineages
including CD15,1 fascin,2 NOTCH1,3 GATA34,5

and occasionally Granzyme B.6 HRS cells can
variably be Epstein-Barr virus (EBV)-infected. B-
cell markers such as CD20, CD79a and CD19 are
usually not expressed or strongly down-regulated.
Weak, heterogeneous expression of CD20 in some
of the HRS cells can sometimes be observed
(Figure 1). HRS cells are frequently arranged
around remnants of B-cell follicles or are found in
the interfollicular areas. The reactive microenvi-
ronment includes mainly CD4-positive (CD4+) T
cells, epithelioid cells and eosinophils. T cells iso-
lated from primary HL tissue are anergic to stim-
ulation with mitogen and contain enriched popu-
lations of T-regulatory 1 and CD4+CD25+ regula-
tory T cells.7 Reactive B-cell compartments are
usually only partly preserved. Necrosis can be
found at a variable frequency. Recently, a high
content of macrophages in the tissue has been
found to be associated with an adverse clinical
behavior.8-11 However, other studies could not con-
firm this finding.12,13

Hodgkin’s lymphoma subtypes

Hodgkin’s lymphoma is divided into four
classical subtypes (90%-95%) and the nodular
lymphocyte predominant HL (approx. 5%).
Nodular sclerosis (NSCHL)

Nodular sclerosis (NSCHL) is the most fre-
quent subtype in the Western countries and
often presents in the mediastinum. The histo-
logical picture is characterized by sclerotic
bands forming macronodular compartments in
the lymph node or involved tissue. In these
compartments a mixed infiltrate containing
HRS cells and usually abundant amounts of
reactive T cells, eosinophils and some epithe-
lioid cells and macrophages can be found. A
high content of eosinophils was found to be a
negative prognostic predictor.14 HRS cells in
nodular sclerosis often show a cytoplasmic
retraction artifact when the tissue is formalin
fixed and paraffin embedded; therefore, these
cells are also called lacunar cells. In nodular
sclerosis, HRS cells are more often EBV-neg-
ative, but this is largely dependent on geo-
graphical location. A subset of cases shows a
syncytial growth pattern of HRS cells, usually
around residual regressive follicles. 

Mixed cellularity
In mixed cellularity (MCCHL) subtype, the

neoplastic infiltrate is usually found in the
interfollicular areas. Germinal centers can be
preserved when there is early involvement of

Hodgkin's lymphoma  

Modern diagnostic approaches now allow the establishment of a firm diagnosis of Hodgkin’s lym-
phoma (HL) including the different subtypes. Entities to be considered in the differential diagnosis
include T-cell lymphomas (follicular variant and angioimmunoblastic T cell lymphoma), T-cell/histio-
cyte rich B-cell lymphoma and progressively transformed germinal centers. Molecular techniques such
as single cell investigations, gene expression and sequencing provide new insights into the biology and
development of HL. In recent years, it has become more and more evident that not only T cells, but
several other cell types, especially macrophages are key players in HL biology. Macrophages seem to
be of prognostic relevance and show different morphologies depending on the immunological status
of the patients (e.g. HIV status).

Learning goals

At the completion of this activity, participants should know that:
- new technologies allowing a precise knowledge of molecular mechanisms in HRS cells give a better

understanding of the disease and diagnostic delineation; 
- analysis of the microenvironment can give hints as to the immune status of the patient as well as

to the predictive value of clinical behavior.

A B S T R A C T



lymph nodes. The neoplastic infiltrate expands from the
interfollicular areas and destroys the B-cell areas. The
reactive microenvironment usually consists of high num-
bers of T cells, eosinophils and epithelioid cells. Other
cases show high amounts of macrophages.  The HRS cells
are more often EBV-infected. The mixed cellularity type is
most frequently found either in young children or elderly
and immunocompromised individuals. 

Lymphocyte depleted subtype
Lymphocyte depleted subtype (LDCHL) is a very rare

subtype. Like mixed cellularity subtype it predominantly
occurs in immunocompromised patients. The HRS cells
are often EBV-infected. Some of the cases previously
diagnosed as lymphocyte depleted subtype may nowadays
be better placed in other categories like nodular sclerosis
with a high tumor cells content or gray zone lymphoma
between Hodgkin’s lymphoma and diffuse large B-cell
lymphoma.15

Lymphocyte rich subtype 
The lymphocyte rich subtype (LRCHL) is another rare

variant of HL. It occurs relatively frequently in the
Waldeyer´s ring. Patients are most often diagnosed in
stage I.16 In this particular subtype, HRS cells are located
in the B-cell nodules or in enlarged mantle zones sur-
rounding reactive germinal centers, which may be pre-
served. Eosinophils can occasionally be observed. The
content of macrophages is relatively low in this subtype.
HRS cells can be positive for EBV. 

Nodular lymphocyte predominant Hodgkin’s lymphoma 
Nodular lymphocyte predominant Hodgkin’s lymphoma

(NLPHL) is the only non-classic HL subtype and it differs
from classical HL in terms of the immunophenotype of
tumor cells, molecular findings and clinical behavior. The
tumor cells in NLPHL, the lymphocyte predominant cells or
LP cells, have a preserved B-cell phenotype, although it can
be partially down-regulated (Figure 2).17,18 Like in LRCHL,
the LP cells show prominent rosetting of follicular T-helper
cells (PD-1+) and, therefore, keep their germinal center
derived microenvironment in contrast to the other classic
HL subtypes.19-21 On clinical grounds, patients with NLPHL
often show slowly growing, massively enlarged lymph
nodes. Axillary lymph nodes are frequently involved.
Middle-aged male patients are often affected.22 Like
LRCHL, patients are often diagnosed in stage I.16 Whereas
the overall survival of patients is excellent, relapses are
more common than in LRCHL.23-25 Transformation into dif-
fuse large B-cell lymphoma occurs in up to 30% in 20
years.26,27 Variants of NLPHL with a diffuse growth pattern
are associated with a higher relapse risk.28,29
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Figure 1. Classic Hodgkin’s lymphoma. (A) Typical multinu-
clear Reed-Sternberg cells with a background of T cells,
epithelioid cells and eosinophils in a nodular sclerosing HL
(HE, 200x). (B) HRS cells are strongly positive for CD30
(CD30-immunostaining, 200x). (C) Some HRS cells can
weakly express CD20 (arrow). Interestingly, the staining
intensity is much weaker than in the reactive small B cells
(right, CD20-immunostaining, 200x). (D) HRS cells in a
nodular sclerosing HL strongly express the glucose trans-
porter GLUT1 (GLUT1-immunostaining, 200x). (E) HRS cells
show rosetting by T cells in a mixed cellularity HL (HIV-neg-
ative, CD3-immunostaining, 200x). (F) HIV-associated
mixed cellularity HL with a high amount of macrophages,
rosetting around an HRS cell (arrow, CD163-immunostain-
ing, 200x).

Figure 2. Nodular lymphocyte predominant Hodgkin’s lym-
phoma. (A) LP cells (arrows) show popcorn-like nuclei.
They are surrounded by stimulated T lymphocytes with
slightly enlarged nuclei and open chromatin (HE, 200x).
(B) CD20-positive LP cells (arrows) are found in a nodule
of CD20-positive small B cells (CD20-immunostaining,
100x). (C) LP cells strongly express J-chain (J-chain
immunostaining, 200x). (D) LP cells (arrow) show a slight-
ly less intense PAX5-expression than the small surround-
ing B cells, indicating a partially down-regulated B cell
phenotype (PAX5-immunostaining 200x). 



Single cell polymerase chain reaction

Since HRS cells have usually lost their B-cell
immunophenotype and express various markers of other
cell lineages, the nature of HL remained unclear for many
years. In 1994, Küppers et al.30 could show for the first
time in 3 cases of classic HL and one case of NLPHL that
HRS and LP cells are clonally related B cells. In further
studies, HRS cells were shown to be derived from crippled
pre-apoptotic germinal center B cells which do not express
functional antigen receptors.31 In contrast, LP cells in
NLPHL showed ongoing somatic hypermutation of the
IGH locus producing functional immunoglobulin heavy
and light chains, indicating that they are derived from, and
still closely related to, germinal center B cells.32

Interestingly, these molecular findings correlate very well
with the localization of the LP cells in the follicular com-
partment and the expression of J-chain (Figure 2) as well
as kappa light chain restriction.33 HRS cells in classic HL
neither express light chains nor J-chain and are found in
the extrafollicular region in the affected lymph node.

Gene expression in Hodgkin’s lymphoma

Gene expression analysis of primary HRS cells was for
a long time hampered by the low tumor cell content in the
tissue. In early gene expression studies,34 HL cell lines dis-
played an activated B-cell signature similar to EBV-infect-
ed lymphoblastoid cell lines and activated B-cell (ABC)-
type DLBCL. Recently, gene expression studies of pri-
mary microdissected HRS cells could be performed.17,35,36

In one study, a group of HL cases showing upregulation of
MYC-, NOTCH1- and IRF4-target genes could be identi-
fied.35 Interestingly, in the same study, no major differ-
ences were found in the gene expression of EBV-positive
and EBV–negative HL cases. One explanation may be that
NF-kB activity, which is LMP1-driven in EBV-infected
HRS cells, can be acquired by mutations of NF-kB
inhibitors like TNFAIP3/A2037 more common in the HRS
cells of EBV-negative HL cases and consequently the gene
expression profiles of EBV-positive and EBV-negative
cases are similar. Another study showed that HL patients
in which HRS cells show a macrophage-like signature
including the lineage-inappropriate expression of CSF1R,
had significantly inferior progression-free and overall sur-
vival.38 CSF1R expression was correlated with mixed cel-
lularity subtype and a high macrophage content in the tis-
sue. The first gene expression study on microdissected LP
cells showed that they show a partially down-regulated B-
cell phenotype and constitutive NF-kB activity.17 These
cells were most closely related to the tumor cells of T-
cell/histiocyte rich large B-cell lymphoma. 

Mutations and deregulated pathways in
Hodgkin’s lymphoma

Two major deregulated pathways in HL are NF-kB and
the JAK-STAT-signaling pathway. To activate these path-
ways, HRS cells use different mechanisms including NF-
kB activation by the EBV-encoded latent membrane pro-
tein 1. EBV-negative HL cases frequently show mutations

of the NF-kB inhibitor TNFAIP3/A20.37 In different cases,
mutations of other NF-kB inhibiting factors like IkBα,
IkBe, CYLD and TRAF3 were found.39-41 Loci covering
REL as well as other important NF-kB factors frequently
show genomic gains in HRS cells.42-45 Although NF-kB
activity has been observed in the LP cells of NLPHL17,
mutations of TNFAIP3/A20 and IkBα were only rarely
found.46 Similar findings of genomic aberrations and
mutations were made concerning the JAK-STAT-signaling
pathway, as HRS cells frequently present genomic gains of
9p24 including JAK2 as well as JMJD2C, PD-L1 and PD-
L2.44,47,48 A negative regulator of JAK2, SOCS1, is com-
monly mutated in HRS cells of classic HL and LP cells of
NLPHL.49,50 Inhibition of the JAK-STAT-pathway may,
therefore, be one therapeutic option in future.51

HRS cells, particularly in EBV-negative cases, were
shown to express several receptor tyrosine kinases,52,53 that
might in future have therapeutic implications. In many HL
cases, HRS cells show a strong membrane bound expres-
sion of the glucose transporter GLUT1 (Figure 2), indicat-
ing a high glycolytic activity in the HRS cells.54 HRS cells
have many more peculiar features, such as strong expres-
sion of the Vitamin D3 receptor,55 which may explain
hypercalcemia that is sometimes observed in HL
patients.56,57 Other deregulated genes in HL include the
repression of the transcription factor FOXO158 as well as
the expression of the c-Met oncogene, which was correlat-
ed with a favorable prognostic outcome.59

Hodgkin’s lymphoma in HIV patients

Treatment of HIV-infection has much improved in the
past years and the occurrence of aggressive B-cell lym-
phomas has consequently decreased with the application
of combination antiretroviral therapy. However, HIV-
patients still have a 10-fold increased risk for developing
classic HL.60,61 Due to the immunosuppression of patients,
HRS cells are almost always EBV-infected in HIV-
patients.62 In the year before HL manifestation, HIV-
patients show decreasing CD4+ blood counts, indicating
that CD4+ T-helper cells are recruited to the lymph nodes
affected by HL.61 In several studies, a shift of the
CD4/CD8 ratio in the reactive microenvironment of HIV-
associated HL was described.63-66 Since both CD4+ T-
helper cells and macrophages co-express the CD4-recep-
tor and CCR5, both cell types can not only be infected by
R5-HIV strains, but they are also both recruited to lymph
nodes involved by HL via CCL5/RANTES, which is
secreted by the HRS cells.67 In HIV-patients with low
CD4+ blood counts, high numbers of macrophages are
found in the tissue affected by HL68 evoking a spindle
shape appearance of the infiltrate (Figure 1) which may
lead to confusion with a reactive process such as tubercu-
losis or other mycobacterial infection. However, under
current treatment strategies, HIV-positive HL patients
have almost the same prognosis as HIV-negative HL
patients.61,69

Differential diagnosis of Hodgkin’s lymphoma

In recent years, many neoplastic conditions mimicking
HL have been identified. HRS cells are the hallmark of
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HL, but they are not specific for the disease and thus can
also occur in other benign and neoplastic entities.
Therefore, a careful examination of the HRS cell morphol-
ogy, their distribution in the tissue and their immunophe-
notype as well as the composition and the immunopheno-
type of the reactive bystander cells is necessary. Improved
immunohistochemical techniques, as well as the applica-
tion of new antibodies,70 have led to a better definition of
HL over the past years. HRS-like cells can occasionally be
found in infectious mononucleosis.71 One important neo-
plastic mimicker of HL are peripheral T-cell lymphomas.72

It has been known for several years that HRS-like cells
can occur in T-cell lymphomas.73 Recently, by applying
follicular T-helper cell markers, the follicular variant of
peripheral T-cell lymphoma could be better defined,74-76

which had previously often been misdiagnosed as HL.77

Another HL look-alike is the nodal involvement of pri-
mary cutaneous CD30+ lymphoproliferative diseases or
mycosis fungoides with CD30+ blasts.78 B-CLL can also
harbor HRS-like blasts, which are usually not clonally
related to the B-CLL clone if they are EBV-positive.79,80

Transformation into true HL can occur in approximately
1% of B-CLL cases,81 but the diagnosis should only be
made if in addition to the HRS cells, also the typical
microenvironment with T cells, epithelioid cells and
eosinophils is present. In the differential diagnosis of early
involvement by NLPHL is the progressive transformation
of germinal centers (PTGC). PTGCs are composed of
small mantle zone B cells, but typical LP cells and epithe-
lioid cells are characteristically absent. Sometimes it can
be very challenging to distinguish residual centroblasts in
PTGC from LP cells. The differential diagnosis of the dif-
fuse variants of NLPHL includes T-cell/histiocyte rich
large B-cell lymphoma (THRLBCL). This is characterized
by a histiocyte-rich infiltrate including less than 10%
CD20-positive blasts and a virtual absence of small B
cells. Its clinical behavior is usually aggressive with a
presentation in advanced stages. 
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The integration of FDG PET/CT imaging 
in the management of Hodgkin’s lymphoma

Introduction 

The majority pf patients affected by
Hodgkin's lymphoma (HL) become long-term
survivors, wth  cure and survival rates after
first-line treatment exceeding 80% and 90%,
respectively.1 These favorable results do not
depend only on high tumor chemo- and
radiosensitivity but also on the continued
improvements in the staging, formulation of
effective prognostic factors, optimization of
radiation treatment (RT) planning and adop-
tion of intensified therapy strategies for high-
risk groups. The combination of doxorubicin,
bleomycin, vinblastine and dacarbazine
(ABVD) as first-line treatment induces a
durable remission in 75%-80% of patients.2

However, for those with primary refractory
disease or relapsing after the first complete
remission (CR), efforts to develop valid pre-
dictors of treatment response and more effec-
tive therapy strategies are ongoing to counter-
act poor prognosis by achieving a better sur-
vival and safety outcome. In fact, 10%-15% of
early stage and 20%-25% of advanced-stage
patients fail to achieve durable remissions,

ultimately succumbing to resistant or recurrent
HL.3 In the early stage group, the main chal-
lenge is: 1) to develop an effective regimen to
reduce toxicity effects while maintaining
excellent outcomes; and 2) in the late stage or
poor-risk group, to increase the efficacy of
treatment while controlling the toxicity within
an acceptable range. Identification of the
patient subgroup who would not benefit from
continuation of standard therapy would be
most desirable at the outset prior to initiation
of therapy, or at least early during treatment, to
make a timely shift to a more aggressive treat-
ment. Positron emission tomography (PET)
using F-18-fluorodeoxyglucose (FDG), inte-
grated with computed tomography (PET/CT)
is now a widely used imaging modality in the
staging, re-staging and evaluation of therapy
response in lymphoma, and may provide the
means for such an individualized approach.4-8

FDG PET/CT for lymphoma staging

Despite major improvements in prognostic
models and surrogate predictors for treatment

Hodgkin's lymphoma  

A B S T R A C T

The majority pf patients affected by Hodgkin's Lymphoma (HL) become long-term survivors, wth
cure and survival rates after first-line treatment exceeding 80% and 90%, respectively. These favor-
able results do not depend only on high tumor chemo- and radiosensitivity, but also on the continued
improvements in the staging, formulation of effective prognostic factors, optimization of radiation
treatment (RT) planning and adoption of intensified therapy strategies for high-risk groups. Currently,
there are no conclusive data from prospective, randomized trials proving a benefit for overall disease
control in patients undergoing tumor staging and restaging by functional imaging with [18F]-fluo-
rodeoxyglucose (FDG) positron emission tomography-computed tomography (FDG-PET/CT) over those
assessed with other conventional methods. However, there is indirect evidence that the survival of the
HL patients has increased in the last decade for all age subgroup seven for patients over 60 in whom
no major therapeutic improvement has been recorded. These results suggest that even FDG-PET/CT
could have a place in the panoply of tools now available for an effective HL treatment. Early
chemosensitivity assessment definitely proved to be the most important predictor of treatment out-
come in ABVD-treated patients, but this premise is yet to be proven by the mature results of the ongo-
ing prospective clinical trials.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the role of FDG-PET at staging in Hodgkin’s lymphoma;  
- discuss the utility of bone marrow biopsy in the PET era for baseline staging workup;  
- describe the rationale for interim therapy chemosensitivity assessment using PET/CT;
- describe the current interim PET/CT interpretation rules and the rationale for their proposal;
- describe the rationale behind the PET-adapted therapeutic strategy; 
- describe the role of end of therapy PET scan for the management of a residual mass at the end of

chemotherapy.



outcome and survival, staging remains the most important
prognostic parameter for treatment planning.9 PET/CT
proved to be a more sensitive and specific imaging tech-
nique than other conventional modalities including
Gallium and CT for determination of extent of nodal and
extra-nodal disease.10 Stage migration occurs in nearly
25% of patients, mostly upstaging disease, leading to a
change in treatment strategy in nearly 10%-15% of them.5
The role of a contrast-enhanced CT (CECT) performed
simultaneously in the same diagnostic session as the PET
scan is still a subject of debate. Direct comparison of
unenhanced low-dose PET-CT and PET performed with
CECT has shown no statistically significant differences in
the number of detected nodal and extranodal sites, but
lymphoma was occasionally upstaged with the help of
CECT or additional clinically relevant findings were iden-
tified.11-12 PET/CECT may be useful in patients with
abdominal and pelvic involvement for delineating lymph
nodes from adjacent bowel loops and vasculature.13

To determine bone marrow involvement (BMI), BM
biopsy has a high false-negative rate because of the small
sample size14 and the limited area of evaluation in the
pelvis. The sensitivity of FDG-PET in detecting BMI in
HL ranges between 55% and 85%.15-18 FDG-PET proved
more accurate than trephine bone marrow biopsy (BMB)
in one study.16 In another recent study, the role of routine
BMB was assessed in a cohort of 454 HL patients staged
with PET/CT: BMB up-staged only 5 patients from stage
III to IV and no BMB allocated patients in another treat-
ment or risk group.17 Although BMB remains essential for
the diagnostic workup, BMI is a rare presentation for HL
patients, thus BMB should no longer be a routine proce-
dure for staging HL patients in the PET era. In selected
patients, however, FDG PET should be the first test pre-
ceding BMB and biopsy should be directed to PET posi-
tive sites if indicated. Tumor bulk assessment at baseline
by functional imaging proved an independent prognostic
factor for disease control by chemotherapy, and several
methods using semi-automated contouring methods have
been proposed to measure tumor metabolic volume
(MTV).19-20 The MTV can be calculated by selecting
tumor with uptake above an arbitrary cut-off value for
maximum standardized uptake value (SUVmax) or using
a threshold-based method.20 Combined with interim-PET
results, MTV has shown promising results in the predic-
tion of treatment outcome in advanced-stage HL.21

However, the optimal methodology still has to be found
with further controlled studies. 

The role of base-line FDG PET/CT for RT 
planning of early-stage HL

As a consequence of radical innovations in modern
radiotherapy, the RT fields for single modality therapy in
lymphoma have been dramatically reduced to include only
the non-bulky and bulky nodal disease regions involved
by disease to avoid unnecessary radiation to the healthy
surrounding tissue.22 Accordingly, the risk of serious early
and late consequences has sharply decreased.23,24 The
reduction of the irradiated area while maintaining similar
doses delivered to the tumor, as well as a more precise cal-
culation of tumor shrinkage following first-line
chemotherapy, both require the precision provided by

PET/CT to define more accurate tumor contours before
and after chemotherapy. In radiotherapy planning for
early-stage HL, the initial lymphoma volume determined
on the staging PET/CT scan, as well as the reduced vol-
ume after chemotherapy, should be contoured on a plan-
ning scan to be performed after chemotherapy. Since
tumor shrinkage is assessed both in the longitudinal and in
transverse axes, fused images obtained by anatomical and
functional imaging pre- and post-chemotherapy should be
used to delineate the areas of irradiation. This approach
forms the basis of the current conformal RT for involved
field (IFRT) and involved-nodal radiotherapy (INRT), in
which the irradiated volume delineated by PET/CT differs
significantly from that that would be defined by traditional
CT imaging.25,26

FDG-PET/CT for the assessment of prognosis
and chemosensitivity

Various prognostic models have been proposed to tailor
treatment in HL patients. These models, however, are of
limited clinical value, and their predictive power for treat-
ment outcome has been seriously questioned.27,28 In recent
years, there has been growing concern about toxicity of HL
treatment for both early29 and advanced30 stage  disease
because the long-term consequences of treatment, in partic-
ular for combined modality of chemotherapy and radiother-
apy, have become manifest.31 To reduce treatment-associat-
ed morbidity and mortality, therapeutic strategies tailored to
the individual patient’s risk of chemoresistance have been
proposed, with the aim of maintaining and even improving
on the high cure rates. Recently, a novel class of prognostic
factor has been proposed in lymphoma, based on early
assessment of the individual risk of chemoresistance during
treatment. This was attained either by the evaluation of min-
imal residual disease (MRD) using molecular biology tech-
niques32 or evaluating the chemosensitivity during the first
few cycles of chemotherapy. Traditional radiological
assessment of tumor bulk shrinkage is not an accurate pre-
dictor of outcome since any reduction in tumor volume can
lag behind metabolic slowdown of the neoplastic tissue.
Consequently, up to two-thirds of the HL patients show a
residual mass at the end of treatment.33,34 Moreover, the
inherent non-neoplastic inflammatory cells accounting for
up to 90% of HL burden, are not necessarily affected by
cytostatic treatment.35 The use of functional imaging with
FDG-PET enables an early evaluation of the metabolic
changes that occur during the induction treatment as early
as after the first,8 the second6,7,36,37 and third38 cycle of
chemotherapy. In this regard, PET/CT yielded highly prom-
ising results as a surrogate for predicting tumor chemosen-
sitivity and progression-free survival (PFS)6-8,36 with a sen-
sitivity and specificity of 43%-100% and 67%-100%,
respectively,39 even performing better than the International
Prognostic Score (IPS).40 Because the success of an imaging
test predicting outcome is closely related to interpretation
criteria, the recent developments in the efforts to improve
the reading accuracy have been significant. In April 2009, at
a workshop on interim PET in lymphoma held in Deauville,
France, simple and reproducible rules were proposed for
interim visual PET interpretation,41,42 and these criteria have
recently been retrospectively validated (A Gallamini, sub-
mitted manuscript, 2013). Briefly, the adopted rules include
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the following statements: i) visual assessment is preferred,
but SUV determination can be used in some cases; ii) inter-
im-PET interpretation should always be made by compar-
ing the single foci of FDG uptake to those recorded in the
baseline study; iii) the intensity of FDG uptake should be
graded according to a 5-point scale in which two reference
organs, the mediastinal blood pool structures (MBPS) and
liver, are used to define different grades of FDG uptake.
Accordingly, the so-called Deauville 5-point scale (5-PS)
has been proposed (Figure 1). 5-PS is now considered to be
an effective method for interim PET interpretation in HL.
Secondly, the best time interval between interim PET and
cytotoxic therapy should not be before 7-10 days after the
start of chemotherapy infusion to avoid the critical window
of inflammatory response peaking during this period.44,45

Evaluation at an earlier period could coincide with stunning
of cellular glucose metabolism by the immediate effects of
chemotherapy, compromising the test sensitivity.46 Most of
the published literature supports post-2 cycle PET imaging
as the best time-point during chemotherapy to assess
chemosensitivity. However, recently a better negative pre-
dictive value (NPV) has also been stressed after one
chemotherapy cycle.9 Therefore, the recommended timing
for interim PET scan is Day 11-13 of the second chemother-
apy administration, considering that two 14-day treatments
constitute one cycle in the HL treatment schedule. The
importance of adherence to international guidelines for PET
scanning and image acquisition cannot be emphasized
enough, in order to generate consistently reliable data and
for intra- as well as inter-institutional cross comparative
studies.47,48 Interestingly, in the aforementioned retrospec-
tive validation study for 5-PS interpretation, only 39% of
patients were found to have undergone a PET scan per-
formed in accordance with the above guidelines. The posi-
tive predictive value (PPV) of interim PET in predicting
treatment outcome in the entire patient cohort and in the
patient subset, scanned according international guidelines,
was 0.73 and 0.86, respectively (P<0.01).

FDG PET/CT-based response adapted therapy 
In advanced-stage HL the primary treatment objective

differs significantly from that of limited stage HL. In light
of the outstanding event-free and overall survivals in the
limited stage group (10-year overall survival, 84% to
97%) the late toxicities, such as secondary tumors and car-
diac events, become the most concerning issues.49 In
advanced stage HL, however, the less favorable EFS and
OS compared to limited stage disease (10-year overall sur-
vival 75%-85%)30 are the main reason for escalated thera-
py trials with the goal of improving treatment efficacy at
the cost of increase in unwanted treatment effects.
Multiple clinical trials are now underway to assess the sur-
vival benefit and safety of risk-adapted strategies based on
interim-PET results50 (Table 1). The current management
of early stage HL warrants one of the most crucial ques-
tions: whether radiotherapy could be safely avoided in
patients showing a rapid response as evidenced by a neg-
ative interim PET scan. In this setting, avoidance of RT
and allowing for a slightly reduced treatment efficacy may
be justifiable on the basis of effective second-line treat-
ments at the time of a possible relapse, because the reduc-
tion in radiation related long-term effects would outweigh
the attendant disadvantages. In line with this concept, the
results of a GHLSG study of early-stage favorable HL
reported that a reduced-intensity regimen of two cycles of
ABVD chemotherapy followed by 20 Gy of IFRT could
achieve comparable treatment success with a freedom
from treatment failure rate of 91% that is similar to that of
the standard four cycles of ABVD with 30 Gy of IFRT.66

Again using this strategy, the results of the English RAPID
trial have been recently reported.67 By contrast in the large
multicenter European study H 10 on behalf of the EORTC,
GELA and FIL exploring the role of a PET-adapted thera-
py in early stage HL, omitting radiotherapy in the experi-
mental arm in patients with a negatve interim PET was
associated with an increasing number of events both in
favorable and unfavorable subsets. As a result, the PET-
negative arm of the study was prematurely closed.68 In
advanced stage lymphoma, two opposite risk-adapted
strategies are currently being tested: 1) starting with BEA-
COPP escalated regimen and de-intensifying treatment to
ABVD in interim PET negative patients; 2) starting with
ABVD and intensifying treatment only in interim PET-
positive patients. The results of the interim analysis of the
latter trial, the GITIL/FIL HD 0607, have recently been
presented.69 Several other trials are underway, starting
first-line therapy with an intensified regimen (BEACOPP
escalated) to overcome chemoresistance early during
treatment, and subsequently de-escalating treatment in
patients with a negative interim PET, as shown in Table 1.
A preliminary report from one of these trials, the GHSG
HD-18, was reported in 240 patients.70 Using modified
Deauville criteria with a highly sensitive threshold for
interim PET positivity, 98 patients (41%) were PET-2 pos-
itive and 142 (59%) were PET-2 negative. Other ongoing
trials are pursued by the GELA and the national Israeli
lymphoma study group, both of which employ a strategy
starting with BEACOPP escalated regimen and randomiz-
ing PET-2 negative patients to either continuation on
BEACOPP escalated or de-escalate treatment to ABVD in
the experimental arm. Despite preliminary evidence of the
advantages of a risk-adapted strategy over conventional
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Figure 1. The 5-point Deauville scale.41,43



treatment, although using a retrospective and observation-
al design,71,72 for the moment interim PET should be con-
sidered an investigational procedure, and planned therapy
schemes should not be changed according to interim PET
results outside a clinical trial setting.50 Only the results of
ongoing clinical trials will provide guidance concerning
the outcome benefits of a PET response-adapted strategy.

FDG PET/CT to guide post-chemotherapy con-
solidation RT in advanced-stage HL

As previously reported, 60%-80% of HL patients show a
residual mass during end-of-treatment re-staging mostly in
sites of previous bulky disease,33,34 but only less than half of
these masses will harbor residual disease.35 In pre-PET era,
involved field RT had been proposed for bulky nodal lesions
or residual masses in advanced stage HL patients as an integral
part of ABVD treatment.3 More recently, end-therapy PET/CT
proved effective in the discrimination between residual active
disease and fibrotic masses with a sensitivity of 43%-100%
and a specificity of 67%-100%.73 Not surprisingly, the NPV of
the end-treatment PET depends on the efficacy of the admin-
istered chemotherapy, being as high as 94% after the high-

intensity regimen, BEACOPP,74 or as low as 75% after the
low-intensity regimen VEBEP.75 In the large HD15 trial of the
GHSG, consolidation radiotherapy was selectively adminis-
tered to advanced-stage HL patients with a PET-positive resid-
ual mass of more than 2.5 cm at the end of three different
BEACOPP escalated regimens. The 4-year PFS of irradiated
versus non-irradiated patients were 86.2% versus 92.6%,
(P=0.022). The NPV of end-therapy PET was 94%.74 A simi-
lar approach for advanced-stage, ABVD-treated patients was
reported by the British Columbia Cancer Agency in a retro-
spective analysis of 163 patients with a residual mass of 2 cm
or more at the end of chemotherapy. Consolidation RT was
given in patients with an FDG-avid mass while PET-negative
patient had no further treatment. Patients with a PET-negative
scan (n=130, 80%) had a far superior 3-year time to progres-
sion compared to those with a PET-positive scan (89% vs.
55%, P=0.00001) with no difference between those with
bulky versus non-bulky disease. The NPV for end-treatment
PET was 92%.76 These results strongly support a strategy for
omission of RT in advanced stage HL patients who achieve a
PET-negative remission at the end of chemotherapy.
However, the decision to irradiate a PET-positive lesion
should be made with the awareness of false positive results as
well as the possibility of a radioresistant disease.
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Table 1. Ongoing clinical trials based on a PET response-adapted therapeutic strategy. 

Group/title/ NCT n. Stage/risk S.ple Pre-PET-2 Tx PET-2-negative Tx PET-2 positive Tx End point

RHC/na76 i-IIA F 660 ABVD x 2 INT ABVDx2 ± INT (PET4-) 5-year EFS
I-II A UF ABVD x 2 ABVD x 2 + INT ABVDx2 ± ABVD 2 ±INT (PET-4-)

EORTC/LYSA/ FILH1077 I-II A F 1797 ABVD x 2 ABVD x 1 + INT BEACOPP esc x 2 3-year PFS
I-IIA UF ABVD x 2 ABVD x 2 + INT BEACOPP esc x 2

CALGB 5080178 IA-IIB 123 ABVD x 2 ABVD x 4 BEACOPP esc x 4 + IFRT 3-year PFS
Bulky

ECOG 241079 IA-IIB 200 ABVD x 2 ABVD x 4 + INRT BEACOPP esc x 4 + INRT 3-year PFS
Bulky

CALGB 5060480 IA-IIB 149 ABVD x 2 ABVD x 2 + IFRT BEACOPP esc x 2 3-year PFS
Non Bulky

NCRI/RAPID81 I-IIA 575 ABVD x 3 IFRT or NFT ABVD x 1 + IFRT 3-year PFS
Non Bulky

GHSG/HD 1682 I-IIA F 1100 ABVD x 2 + IFRT NFT ABVD x 2 5-year PFS

GHSG HD 1783 I-II UF 1100 BEACOPP esc x 2 + ABVD x 2+ INT NFT BEACOPP esc x 2 + 5-year PFS
ABVD x 2 

GITIL/FIL HD060784 IIB-IVB 750 ABVD x 2 ABVD x 4 ± IFRT BEACOPP esc x 4 +
BEACOPP bas x 4 ± Rit. 3-year PFS

SWOG S081685 IIIA-IVB 230 ABVD x 2 ABVD x 2 BEACOPP esc x 6 2-year PFS

LYSA AHL 201186 IIB-IVB 798 BEACOPP esc x 2 ABVD x 2  ± BEACOPP esc x 2 ± 5-year PFS
ABVD x 2 BEACOPP esc x 2 

NCRI/RATHL87 IIB-IVB 1200 ABVD x 2 ABVD x 4 or BEACOPP esc x 4 3-year PFS
AVD x 4 

GHSG HD 1888 IIB-IVB 1500 BEACOPP esc x 2 BEACOPP esc x 4 BEACOPP esc x 4 5-year PFS
BEACOPP esc x 2 BEACOPP-R x 4 

FIL HD080189 IIB-IVB 400 ABVD x 2 ABVD x 4 ± IFRT IGEV x 4 + ASCT 2-year PFS

RHC/na90 III-IVB IPS 0-2 660 ABVD x 2 ABVD x 4 BEACOPP esc x 2 ± BEACOPP esc x 2 3-year PFS
III-IVB IPS 3-7 BEACOPP esc x 2 ABVD x 4



FDG PET/CT for follow up of HL
Despite an improved disease control with the evolutions

in first-line treatment strategies, relapses still occur in
20%-30% of HL patients.77 The approach to monitoring
for early detection of recurrence is heavily dependent on
the probability of relapse in the population being tested, as
well as the sensitivity, specificity and the frequency of the
test.78 Most treatment failures are usually observed within
three years of treatment completion, the majority of
relapses occurring in the first 12 months.79,80 In advanced-
stage HL, the most important factor predicting relapse in
ABVD-treated patients is interim-PET positivity.38,39,79

The prevalence of relapse in HL is rare, being reported in
the pre-PET era with only one relapse per 68 visits based
on routine CT scans irrespective of residual masses seen
on CT.81 According to the results from a meta-analysis on
the role of surveillance FDG-PET, disease relapse is
detected with a sensitivity and specificity of 50%-100%
and 67%-100%, respectively.73 Recently, El-Galaly et al.
reported on the value of surveillance PET/CT in a retro-
spective cohort of 161 HL patients who achieved a CR or
PR after first-line treatment.82 Fourteen percent of patients
experienced a relapse after a mean follow up of 34
months. With an average of 1.9 PET/CT scans per patient,
the PPV of routine PET/CT and clinically indicated
PET/CT was 22% and 37%, respectively (P=0.02).
However, in a subset of high-risk patients (with extranodal
disease or a positive interim PET) the PPV increased to
36%, while in those without risk factors, the PPV was only
5%. Consequently, the routine use of surveillance PET in
HL patients achieving complete remission after first-line
treatment should be reserved for high-risk patients. In
summary, the design limitations of the prior studies,
scarcity of prospective data, the overall cost of surveil-
lance PET schedule, high rate of false-positive results
(30%-80%)79,82 and the lack of evidence for a survival ben-
efit provided by early detection of relapse do not support
the routine use of serial follow-up PET scans after first-
line therapy in HL patients. However, a strong statement
cannot be made for an optimized follow-up algorithm for
high-risk patients.

Interim PET during second-line treatment for
relapsed/refractory HL 

The current standard approach to relapsed or refractory
HL involves high-dose chemotherapy and autologous
hematopoietic stem cell transplantation (HDT/ASCT),
producing a long-term PFS in up to 65% of patients.
Successful outcome is a function of remission duration
after first-line chemotherapy and chemosensitivity to sec-
ond-line or salvage therapy prior to ASCT regardless of
the chemotherapy that induced the response.83-86

Furthermore recent meta-analysis data confirmed the
prognostic value of pre-ASCT FDG-PET imaging in lym-
phoma demonstrating a poor long-term PFS in PET-posi-
tive patients after induction chemotherapy (31%-41%)
compared with a PFS of 73%-82% in those who achieved
a PET-negative remission before undergoing
HDT/ASCT.87 However, there are few published data with
respect to the predictive value for the treatment outcome
of an interim-PET scan during salvage therapy. In a small

cohort of 24 relapsing or refractory HL patients treated
with salvage chemotherapy consisting of iphosphamide,
gemcytabine and vinorelbine (IGEV) followed by ASCT,
PET scan was predictive of treatment outcome when per-
formed after the second cycle. The 2-year PFS was 93%
versus 10% for patients with PET-negative and PET-posi-
tive results, respectively (P<0.001).88 In another small
cohort of relapsing HL patients (n=26) interim PET scan
after two courses of chemotherapy with DHAP (dexam-
ethasone, cytarabine, and cisplatin) and VIM (etoposide,
iphosphamide, and methotrexate) recurring HL score
(rHPS)89 was predictive of a 2-year failure-free survival
after transplantation.90 Consequently, more studies are
warranted to obtain meaningful results for clinical applica-
tions of interim PET scans in this setting.

Conclusions 

Currently, there are no conclusive data from prospec-
tive, randomized trials proving a benefit for overall dis-
ease control in patients undergoing tumor staging and
restaging by functional imaging with FDG-PET/CT over
those assessed with other conventional methods.
However, there is indirect evidence that the survival of the
HL patients has increased in the last decade for all age
subgroups, even for patients over 60 years of age in whom
no major improvement has been recorded.91 These results
suggest that even the availability of such a powerful imag-
ing modality could have a place in the panoply of tools
now available for an effective HL treatment. Early
chemosensitivity assessment definitely proved to be the
most important predictor of treatment outcome in ABVD-
treated patients, but this premise still has to be confirmed
by the mature results of the ongoing prospective clinical
trials.
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Late effects of Hodgkin’s lymphoma treatment: 
implications for management of contemporary patients

Introduction

Late effects associated with historic treatment
Observational studies that describe late mor-

bidity among Hodgkin’s lymphoma (HL) sur-
vivors are often limited to evaluating outdated
treatments. These studies typically include
patients whose primary treatment was extended-
field radiation therapy (RT), prescribed to higher
doses and substantially larger volumes of nor-
mal tissue that would be the case today.1-5 In
addition, patients were exposed to cumulative
doses of alkylating agents no longer relevant
to most contemporary treatment regimens. 

As a result of these exposures, studies of
patients treated before 1995 have reported 45-
80 excess malignancies per 104 person-years
of follow up, most of which are solid tumors
(Figure 1).2,4,6 The risk of breast cancer follow-
ing mantle RT has been of particular concern.
Mantle RT (35-45 Gy to bilateral axillary,
mediastinal and neck nodes) is associated with
a 2- to 20-fold increased relative risk of breast
cancer, with younger patients (i.e. treated at
ages <20 years) found to have higher relative
risks and expected excess lifetime risks than
older patients.1,3,6-9 Ng et al., for example,
reported a 20-year cumulative risk of second

cancer of 23% following mantle RT + para-
aortic and spleen RT (median age at RT 25
years, median prescribed dose 40Gy), with
breast cancer accounting for almost 40% of
SC among female survivors.8 Other studies of
survivors treated with similar RT fields and
doses have reported 30-year cumulative inci-
dence of second cancer of approximately
30%.7,10-12 Mantle RT is also associated with an
increased risk of lung cancer, although the
absolute excess risk is small in the first 20
years after exposure, particularly among those
treated at young ages (i.e. 20-year cumulative
risk <2% among those treated before 20 years
of age).1,4 The risks of other solid cancers have
also been shown to be elevated after RT.
6,7Unlike leukemia risk following alkyator
exposure, which declines to almost baseline
after 5-10 years, risks for solid tumor remain
elevated for as long as follow up has been con-
ducted, presumably for life, with some evi-
dence of a small decline in relative risk in sur-
vivors aged 60-70 years.7

Alkylating agents are well known to
increase the risk of treatment-related myeloid
leukemia. Less well recognized is that these
agents are also associated with a significant
increase in the risk of lung cancer and gas-
trointestinal solid tumors.2,13,14 Travis et al

Hodgkin's lymphoma  

A B S T R A C T

Over the last several years, the management of Hodgkin’s lymphoma (HL) has been influenced by
the recognition that primary treatment can lead to significant delayed morbidity among long-term
survivors. But despite substantial literature regarding late effects among historically treated patients,
applying the resulting knowledge to modify modern HL treatment remains challenging. This review will
outline: 1) how recent and anticipated changes in radiotherapy and chemotherapy are expected to
reduce the risks of late toxicity among current HL patients; 2) individual patients’ characteristics that
could reasonably affect treatment choices among patients in the same HL ‘risk group’ in order to limit
late effects; 3) recommendations for follow up of HL survivors to reduce the risk of late morbidity. It
is apparent that while studies on late effects have produced extremely valuable information, the exact
magnitude and nature of late effects described in many of them cannot be directly applied to con-
temporary patients, and consideration of individual differences in patients’ and disease characteristics
is needed to deliver optimal treatment.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the potential late effects of contemporary chemotherapy and radiation therapy regimens;
- describe the relative radiation dose to normal tissues received by patients in late effects studies ver-
sus contemporary Hodgkin’s lymphoma patients; 

- describe patient and disease factors that can affect the potential risk of developing late effects fol-
lowing treatment for Hodgkin’s lymphoma;

- describe screening tests that are recommended for Hodgkin’s lymphoma survivors to reduce the
morbidity of late treatment toxicity.



reported a 4.2-fold increased risk of lung cancer among
HL survivors treated with alkylating agents,2,14 and
increased risks of gastrointestinal second cancers have
also been found.4,15

Cardiac disease
Among survivors treated with 35-45 Gy mantle RT the

cumulative risks of significant heart disease among sur-
vivors of adult HL are approximately 5%-10% at 15 years,
15% at 20 years, and 35% at 30 years.16-18 Coronary artery
disease accounts for approximately half of the cardiac
morbidity occurring among HL survivors. Valvular dis-
ease is less common and typically has a late onset (>10
years after RT) and is related to higher doses (>30 Gy) or
young age at treatment. Treatment of a large cardiac vol-
ume to high dose can produce acute or late onset pericardi-
tis, though this is uncommon. The duration of increased
cardiac risk associated with RT is not well defined, but
extrapolating 15-30 year risks suggests a persistent
increase in elevated risk beyond 30 years after exposure.
The combined use of doxorubicin with mantle RT has gen-
erally been associated with a greater risk of late cardiac
toxicity than either treatment given alone.18 16 Given the
widespread adoption of ABVD in the 1990s, frequently
followed by 35-45 Gy mantle RT, it is possible that cardiac
toxicity will emerge as the dominant late toxicity among
those entering into more than ten years of HL-free sur-
vival.
Fertility

Treatment with mechlorethamine, vincristine, procar-
bazine, prednisone (MOPP) either alone or with doxoru-
bicine, bleomycine, vinblastine (MOPP/ABV) has been
shown to significantly increase the risk of azoospermia or
premature ovarian failure.19,20 MOPP/ABV hybrid pro-
duces significant dose-related reduction in sperm counts in
approximately half of patients, and in one study COPP
chemotherapy was found to produce azoospermia in all of
19 males and premature ovarian failure in 8 of 14 (57%)
of females.21 Procarbazine, in particular, appears to be
gonadotoxic and, to a lesser extent, cyclophosphamide.22,23

In addition to the late effects described above, survivors
of HL treated with extended field RT and alkyator-based
chemotherapy have been found to have increased risks of
stroke,24 thyroid dysfunction,25 lung function abnormali-
ties,26 and fatigue.27 And the historic use of splenectomy
for staging increases survivors’ risk of potentially fatal
infection.
Late effects: contemporary therapy

In contrast to mantle RT/extended-field RT, contempo-
rary IFRT treats only initially involved lymph node
regions (+/- immediately adjacent regions in some cases),
and prescribed RT doses are typically 30 Gy for adults and
around 20 Gy for children. Very favorable risk adult
patients can receive 20 Gy IFRT following two cycles of
ABVD. In the majority of patients with mediastinal dis-
ease, IFRT produces significant dose reductions to the
breasts (approximately 65% dose reduction), lungs, and
heart (approximately 30% dose reduction) compared to
with mantle or extended-field RT.28,29 Females treated with
20 Gy mediastinal IFRT (as per GHSG HD10) are typical-
ly receiving average breast doses 80% lower than those
received by patients treated with mantle RT in historic
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Figure 1. Cumulative incidence of solid cancers among 5-
years survivors of Hodgkin’s lymphoma (HL) compared
with controls of the same age in the general population
(GP). (A) Males (n=10,619 survivors). (B) Females
(n=8,243 survivors). (Reprinted with permission from the
American Society of Clinical Oncology. Hodgson DC, Gilbert
ES, Dores GM, et al. Long-term solid cancer risk among 5-
year survivors of Hodgkin's lymphoma. J Clin Oncol.
2007;25:1489-97. © 2007 American Society of Clinical
Oncology. All rights reserved.7)

Figure 2. Reduction in integral dose to normal tissues with
mantle RT versus IFRT. (Reprinted with permission from
BioMed Central Ltd. Koh ES, Tran TH, Heydarian M, et al. A
comparison of mantle versus involved-field radiotherapy
for Hodgkin's lymphoma: reduction in normal tissue dose
and second cancer risk. Radiat Oncol 2:13, 2007. © 2007
BioMed Central Ltd. All rights reserved.28)



series, and cardiac doses approximately 60% lower
(Figure 2).28

Emerging clinical evidence is showing that the transi-
tion to IFRT should translate into reduced risks of SC.
Studies examining the dose-risk relationship for solid
tumors suggest a decrease in risk of most solid cancers
with decreasing dose to normal tissues below 40 Gy.9,30-32

A Dutch study of 1122 female 5-year survivors of HL
examined the effect of radiation field size on the risk of
breast cancer after treatment of HL.10 The cumulative inci-
dence of breast cancer at 30 years was approximately 8%
after IFRT, compared to approximately 27% after mantle
RT (Figure 3). Similarly, Serdlow et al. reported a higher
40-year cumulative incidence of breast cancer with greater
mantle RT doses, increasing from 22.8% among patients
prescribed less than 34 Gy to 46.3% among those receiv-
ing 41 Gy or over.9 These findings suggest that the
decrease in the volume of irradiated tissue with the transi-
tion from mantle to IFRT, and the lower prescribed doses
used in contemporary protocols (typically 30 Gy for adults
and 20 Gy for children), should translate into a roughly
proportional reduction in the risk of most forms of second
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Figure 3. (Reprinted with permission from BioMed Central
Ltd. Koh ES, Tran TH, Heydarian M, et al. A comparison of
mantle versus involved-field radiotherapy for Hodgkin's
lymphoma: reduction in normal tissue dose and second
cancer risk. Radiat Oncol 2:13, 2007. © 2007 BioMed
Central Ltd. All rights reserved.28)

Figure 4. The evolution of RT fields for patients with mediastinal HL. (A) and (B) Mantle field and INRT for a patient with
large mediastinal bulk. (C) and (D)  Mantle fields and INRT for the same patient with a small mediastinal tumor.
(Reprinted with permission from Elsevier, 2012. Maraldo MV, Brodin NP, Vogelius IR, et al. Risk of developing cardiovas-
cular disease after involved node radiotherapy versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol Phys.
2012;83:1232-7. © 2012 Elsevier. All rights reserved.29) 



solid cancer. However, not all studies have demonstrated
lower second cancer risks with lower prescribed doses,33

and additional clinical data will be needed to fully charac-
terize the dose-risk relationships.  
Intensity-modulated RT, volumetric-modulated arc therapy,
involved node RT (INRT)

IFRT fields encompass the lymph node regions (as
described by Kaplan) that initially contained enlarged
nodes at the time of diagnosis plus immediately adjacent
nodal regions in some cases. Involved-node RT fields
(INRT, also called involved site RT, ISRT) encompass the
post-chemotherapy volumes of the initially involved
nodes, not the entire nodal regions. For patients with
mediastinal disease, this often allows further reduction in
normal tissue dose compared to IFRT due to the exclusion
of uninvolved hila and subcarinal nodes (Figure 4).
Studies comparing normal tissue doses reported that for
patients with mediastinal disease, INRT reduces the mean
heart dose by approximately 70% compared to mantle
fields and 50% compared to IFRT.29,34 In one study, INRT
reduced breast dose by 42% compared to IFRT, in addition
to reducing dose to lung, thyroid and total body dose.34 A
study of 29 patients with mediastinal disease reported that
the mean heart dose associated with 30 Gy INRT was 7.7
Gy, in contrast to 27.5 Gy among patients receiving his-
toric 36 Gy mantle fields (Figure 5).29

It should be noted that the normal tissue sparing of
INRT will be highly individualized depending on the dis-
tribution of disease: patients with disease that does not
include the axillae, hila or subcarinal nodes will benefit
more from the omission of these sites from the RT fields.

Early clinical results suggest INRT will be effective.  In
one study, INRT had an equivalent risk of relapse com-
pared to IFRT,35 and Maraldo et al. reported a 4-year free-
dom from disease progression rate of 96.4% in a cohort of
97 patients with stage 1-2 HL treated with combined
ABVD + 30Gy INRT.36 An interim analysis of the
European Intergroup H10 trial, which randomized PET-2
negative patients to ABVD alone or ABVD + INRT, led to
the closure of the chemotherapy alone arm when the haz-
ard ratio of relapse was found to be 2.42 (80.4%; CI: 1.35-
4.36) with the omission of INRT (one-year progression-
free rates 97.3% and 94.7%, respectively). These results
suggest that INRT is effective in reducing the risk of
relapse among patients with early stage HL. It will be
many years before an associated reduction in late toxicity
will be clinically demonstrable. 

Intensity modulated radiation therapy (IMRT) facilitates
the more conformal shaping of the high-dose RT volume
around irregularly shaped targets. Volumetric modulated
arc therapy (VMAT) also delivers radiation with varying
beam intensity; the major distinction from IMRT being
that the beam source rotates through one or more arcs with
the treatment unit continuously on, thereby reducing the
treatment time. Although these methods can reduce the
volume of tissue receiving higher doses (i.e. > 10 Gy),
their major limitation is that the multiple beam angles used
typically cause larger volumes of normal tissue to be
exposed to low doses (i.e. 2-10 Gy). This is of greatest
concern among young females with mediastinal disease
for whom increasing the volume of irradiated breast tissue
is not desirable. IMRT and VMAT are likely to be of great-
est clinical advantage to male patients with mediastinal

disease in whom they facilitate significant reductions in
cardiac dose.37,38 Early RT planning studies indicate that
the smaller target volumes used for INRT could signifi-
cantly enhance the relative merits of IMRT and VMAT for
both males and females.34,39

Modern chemotherapy 
Few studies have evaluated the long-term cardiac out-

comes of patients treated with ABVD. Anthracyclines are
known to produce asymptomatic echocardiographic
abnormalities among some pediatric patients, the clinical
significance of which is not well understood. Swerdlow et
al. reported that with a median follow up of 2.7 years,
treatment with doxorubicin without supradiaphragmatic
RT was associated with a significantly increased risk of
fatal myocardial infarction (standardized mortality ratio
3.2; P<0.001) and ABVD was associated with a 7.7-fold
increased risk (P=0.01).40 Vincristine was also associated
with a significant 2-fold increase in the risk of MI. In con-
trast, two other studies16,18 did not find increased risks of
late cardiac toxicity among young adults initially treated
with chemotherapy alone, although the number of patients
treated with ABVD in these series was relatively small.
Young children appear to be at greater risk for the devel-
opment of late onset anthracycline-related cardiac dys-
function. Consequently, pediatric protocols have generally
aimed to keep the cumulative dose of doxorubicin for low-
and intermediate-risk patients to below 250 mg/m2. 

ABVD chemotherapy is known to be less gonadotoxic
than alkylator-based regimens, and is associated with pre-
served sperm counts among males41 and one study demon-
strated that fertility among females attempting pregnancy
following ABVD was comparable to that of untreated
peers.42 BEACOPP includes 700 mg/m2 procarbazine and
650 mg/m2 (base-line regimen) or 1200 mg/m2 (escalated
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Figure 5. Comparison of dose to cardiac substructures with
mantle RT versus INRT for patients with mediastinal HL.
(Reprinted with permission from Elsevier, 2012. Maraldo
MV, Brodin NP, Vogelius IR, et al. Risk of developing cardio-
vascular disease after involved node radiotherapy versus
mantle field for Hodgkin lymphoma. Int J Radiat Oncol Biol
Phys. 2012;83:1232-7. © 2012 Elsevier. All rights
reserved.29)



regimen) cyclophosphamide per cycle. Both regimens
have been shown to produce significant risks of azoosper-
mia in males. Among females, fertility can be preserved
after six cycles of baseline BEACOPP, although the risk of
premature ovarian failure is significant among women
treated at 30 years of age or over, and biochemical meas-
ures suggest that reproductive lifespan may be shortened
among younger females.43-46

Implications for selection of primary therapy for contem-
porary patients

Ideally, the lowest treatment intensity possible will be
selected to cure the disease and also minimize the risk of
late effects. This relatively simple principle is often chal-
lenging to implement for an individual patient, and has
produced considerable debate regarding the relative merits
of combined modality therapy versus chemotherapy alone,
and the selection of chemotherapy regimens (e.g. BEA-
COPP vs. ABVD).  Insofar as late effects are an important
consideration in HL management, it is useful to individu-
alize treatment decisions not only based on patients’ HL
risk strata per se, but also on clinical factors that influence
the risks of late toxicity. Some of these factors include the
following.
Patient age: young age at treatment has generally been

associated with higher relative risks and greater expected
excess lifetime risks of second malignancy related to RT
exposure. For example, the absolute excess risk of breast
cancer is highest among females treated before 20 years of
age, and is minimally elevated among women treated after
40 years of age. Thyroid cancer risk is also higher among
patients treated at younger ages.2,4,6,8,10,42 Recognizing these
age effects, most pediatric protocols use lower doses of RT
than adult protocols, and avoidance of RT, particularly in
circumstances in which the distribution of disease would
require significant  normal tissue exposure (female breast
exposure in particular), is of much greater importance for
children and adolescents than for patients aged over 40
years. In contrast, Aleman et al. reported higher absolute
excess risks of cardiac toxicity among patients treated with
mediastinal RT at an older age, compared to those treated
before 20 years of age, although higher relative risks
among younger patients may in future translate into higher
lifetime excess risks among younger patients. 18

Patient gender: the excess risk of second solid cancer
following mantle RT is substantially greater among
females than among males. For example, Constine et al.
reported a 25-year cumulative incidence of SC of approx-
imately 35% among female survivors treated with mantle
or extended-field RT (mean dose 32.9Gy) versus approxi-
mately 15% for males. Among females, cancers of the
breast and thyroid accounted for approximately 40% and
15% of second malignancies, respectively, and these two
SCs accounted for the significant risk difference between
females and males.47

Males, in contrast, have higher risks of heart disease
than females and, RT that encompasses significant cardiac
volumes appear to magnify this difference. Aleman et al,
reported an absolute excess risk of coronary artery disease
of 60.7 per 104 person-years for males, and 9.7 per104 per-
son-years for females,18 and Galper et al. reported the SIR
of cardiac complications of 1.56 (P=0.003) compared to
females.17

Distribution of disease: for patients with early stage HL

for whom the merits of chemotherapy alone versus com-
bined modality therapy are being considered, an important
consideration is the distribution of disease and the associ-
ated normal tissues that would be exposed in a contempo-
rary IFRT/INRT volume. It is important to recognize that
modern RT is not a monolithic treatment with similar risks
of late toxicity for all patients. In a study of 37 patients
receiving IFRT for mediastinal disease, for example,
breast and lung doses varied 11-fold and 3.6-fold, respec-
tively, due to the anatomic variation in the distribution of
disease.48 A young female with small volume disease that
involves both axillae in addition to the mediastinum will
have an IFRT field similar to a traditional mantle field, and
will have a subsequent risk of breast cancer comparable to
that described in historic cohorts, while most patients with
mediastinal disease will have a lower risk. 

Likewise, the cardiac radiation dose associated with RT
fields encompassing a mediastinal disease distribution
above the T5 vertebral level has been shown to be very low,
while RT to disease that extends along pre-cardiac lymph
nodes can produce clinically significant cardiac dose. 
Pre-existing cardiac risk factors: management of

patients with a significant history of heart disease is chal-
lenging since impaired ventricular function may limit the
delivery of full-dose doxorubicin. In addition, Myrehaug
et al. found that mediastinal RT given to older patients
with pre-existing heart disease was associated with a sig-
nificant increase in the risk of cardiac-related hospitaliza-
tion, occurring with a shorter latency after treatment than
typically described among younger patients.49 Other stud-
ies have also found that a family history of heart disease or
the presence of conventional cardiac risk factors confers a
high risk of cardiac morbidity among HL survivors (i.e. to
a greater degree than among the general population).50

Desire to preserve fertility: as noted above, the cumula-
tive dose of alkylating agents used in different protocols
varies to the point that the desire of younger patients to
preserve their fertility may reasonably influence treatment
selection. A female with high-risk HL who has completed
childbearing may opt for BEACOPP-based therapy,
whereas a comparable risk male who wishes to preserve
fertility may prefer ABVD. With regard to adjuvant RT, a
young female with non-bulky pelvic disease and a rapid
complete response to chemotherapy will have a worse
risk-benefit profile with respect to fertility preservation
than an older patient with mediastinal disease. These
examples illustrate that, even among patients within the
same HL risk stratum, variation in clinical features may
make different treatment approaches preferable to opti-
mize the balance between curing the HL and limiting the
risks of late toxicity.  While some may view one of these
options as medically preferable, defining the optimal trade
off between relapse and delayed risks can be a value
judgement that requires substantial patient input. 

Implications for management of survivors 

Many patients in long-term follow up will have been
exposed to treatments that are currently no longer in use.
Moreover, oncologists will often wish to shift the follow
up of long-term survivors to the primary care physician.
To ameliorate the morbidity associated with the late
effects described above, early initiation of cancer screen-
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ing is recommended for selected survivors.51 Selected
screening recommendations among HL survivors are
described below. 
Prior mediastinal RT 

Women who have received mediastinal, axillary, or
whole lung RT should have breast cancer screening initi-
ated 8-10 years after RT or by 25-30 years of age,
whichever comes later.51-53 Breast MRI should be consid-
ered for younger patients (aged 30-40 years) due to the
mammographic density of the breast tissue among young
women. Women receiving RT after 40 years of age should
start breast cancer screening start at 50 years of age. 

Patients should be counseled to avoid (or stop) smoking,
and to have conventional cardiac risk factors (blood pres-
sure, serum lipids) monitored periodically (i.e. every 1-2
years). As noted above, the risk of clinically significant
heart disease associated with conventional risk factors
appears to be elevated among HL survivors, so if these
become abnormal they should be treated. Some investiga-
tors recommend stress echocardiography and radionuclide
perfusion imaging be performed 5-10 years after more
than 36 Gy mediastinal RT, finding that this will detect
significant wall motion abnormalities or perfusion defects
in approximately 10-20% of survivors.54 Thyroid function
should be evaluated annually following neck or mediasti-
nal RT. A single elevation of thyroid stimulating hormone
(TSH) should not be taken as an indication to initiate L-
thyroxine, however, as TSH levels can fluctuate over
repeated measurements. The practice among some clini-
cians is to obtain a thyroid ultrasound ten years following
neck RT among pediatric HL survivors, and every 1-3
years thereafter depending on the initial result. There is
limited evidence to support the use of low-dose computed
tomography (CT) to screen for lung cancer among sur-
vivors treated with prior mediastinal RT. In fact, the
absolute risk of lung cancer for most HL survivors is
small. However, smoking, radiation exposure, and alkylat-
ing agent chemotherapy appear to have multiple effects on
lung cancer risk, and in view of recent results from the
National Cancer Institute’s National Lung Screening Trial,
it is reasonable to consider low-dose CT lung cancer

screening among HL survivors with prior chest RT and/or
alkylating agent exposure and a history of smoking.55

Abdominal RT (i.e. para-aortic and splenic RT) and/or
splenectomy

The absolute risk of colorectal cancer screening among
HL survivors is increased, although the onset of this risk is
delayed compared to breast cancer.7 For a patient treated at
20 years of age, the absolute risk of colorectal cancer
among HL survivors by 40-45 years of age is comparable
to an average 50-year old, and some expert groups recom-
mend that patients who received abdominal RT doses of
25 Gy or over (e.g. for para-aortic RT) should consider
colorectal cancer screening ten years after treatment or by
35 years of age, whichever is later.51

Guidelines for patients who have had prior splenectomy
or splenic dysfunction are available. Although there is lit-
tle evidence on splenic function following splenic RT, it
would be reasonable to apply these guidelines to patients
receiving more than 25 Gy RT. Highlights of these guide-
lines are shown in Table 1. Identification of patients at
‘high risk’ for infection, and counseling regarding the
potential merits of prophylactic antibiotics, may warrant
referral to an infectious disease specialist.56

Alkylating agent exposure
Subfertility and premature ovarian failure (POF) are rel-

atively neglected late effects of therapy. Alkylating agent
chemotherapy and pelvic RT can be associated with dose-
and age-dependent premature ovarian failure and subfer-
tility. Emerging technologies for assisted reproduction
now make it worthwhile to evaluate the ovarian function
of female survivors exposed to alkylating agents, includ-
ing those with normal menstrual cycles. Studies have
shown significant subfertility can occur in the presence of
normal cycles, so that a clinical history alone is not an ade-
quate guide to fertility status among such patients.
Moreover, young survivors who are found to be sub-fertile
now have options for assisted reproduction, but these
options become impracticable if delayed for too long. 

Anti-Müllerian hormone (AMH) has been shown to be
a good predictor of menopause in healthy females and in
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Table 1. Guidelines for patients who have had prior splenectomy or splenic dysfunction.

Treatment received Recommended follow up

Mediastinal radiation Initiate breast cancer screening 8 years after treatment or at 25-30 years of age, whichever is later. 
• Cardiac stress test 5-10 years after RT if >36 Gy prescribed.
• Monitor cardiac risk factors every 1-2 years.
• Thyroid function tests annually.

Splenectomy/splenic RT Pneumococcal vaccination (Haemophilus influenzae type b conjugate vaccine, meningococcal conjugate vaccine). 
• Annual influenza immunization. 
• Lifelong prophylactic antibiotics offered to patients considered at continued high risk of pneumococcal infection. 
• Patients should carry a supply of appropriate antibiotics for emergency use. 
• Patients developing infection, despite the above measures, to be given systemic antibiotics and admitted urgently to hospital.

Abdominal RT Initiate colorectal cancer screening starting 10 years after RT or at 35 years of age, whichever is later.

Alkylating agent exposure Ovarian function evaluation in females 25-40 years of age (even if reporting regular cycles).



comparison to other serum markers of ovarian reserve,
AMH has the advantage of showing little or no fluctuation
during menstrual cycle, making it logistically easy to test
as part of routine follow up. AMH level also seems to be
a good indicator of the longitudinal decline of oocyte
reserve, and becomes abnormal before the onset of irregu-
lar cycles and before follicle stimulating hormone level
begins to rise. Data are accumulating indicating that meas-
urement of AMH level in young females exposed to alky-
lating agents may identify those who would benefit from
early fertility counseling before clinically evident symp-
toms of ovarian failure arise. 

There is little information on the relative risks and ben-
efits of using hormone therapy to alleviate symptoms of
POF in female survivors. Of particular concern is the pos-
sibility of increasing breast cancer risk among those with
prior chest RT, as the loss of endogenous estrogens has
been shown to reduce breast cancer risk among such
patients. For a young woman with symptomatic POF, it is
reasonable to prescribe oral contraception provided she is
willing to undertake breast cancer screening as outlined
above. Some clinical experts will discontinue hormonal
therapy after 40-45 years of age.   

Late effects: emerging developments

Emerging treatments
The rapid pace of drug development suggests that treat-

ment (and the associated toxicities) of HL may change
substantially over the next decade. For example, brentux-
imab vedotin, is an anti-CD30 antibody conjugated to the
anti-microtubule agent monomethyl auristatin E. This
agent has produced complete response in 34% of patients
with relapse/refractory HL, and clinical trials are being
planned to evaluate it as a part of upfront trials in both
adult and pediatric HL.57,58

Proton therapy is qualitatively different from convention-
al photon therapy insofar as a beam of a given energy has a
specific range of penetration in tissue with little dose deliv-
ered beyond that distance. Consequently, proton therapy
can significantly reduce the volume of normal tissue receiv-
ing low and intermediate doses. In a study of patients with
mediastinal HL, Hoppe et al. reported that compared to
photon RT, proton therapy significantly reduced the cardiac
dose (from mean 19.4 Gy to 8.9 Gy proton equivalent)
among patients with subcarinal disease, and to a lesser
extent the female breast dose.59,60 The major limitation of
protons is the complexity and uncertainty of the treatment
planning and the achievement of homogeneous dose, partic-
ularly for large irregularly shaped targets. 

These innovations promise to facilitate better disease
control, particularly among high risk patients, while
potentially reducing treatment toxicity, although it will be
some years before their effectiveness will be demonstrated
in clinical trials, and even longer for their impact on late
morbidity to be well understood. 
Genetic factors and risk for treatment-related toxicity

As the biological correlates of treatment-related toxicity
are better understood, it will become increasingly possible
to modify treatment or employ chemoprohpylaxis to pre-
vent or reduce late effects. Genetic polymorphisms
involved in the regulation of anthracycline metabolism

and handling of reactive oxygen species have been shown
to be associated with the development of anthracycline
induced CHF.61

The genetic contributors to second cancer risk among
HL survivors have been more challenging to clarify.
Recognized genetic variants associated with radiation sen-
sitivity, such as the ATM gene, have not been found to be
associated with an increased risk of second cancer in HL
survivors, and there is no clear association between het-
erozygous BRCA carrier status and the risk of RT-related
breast cancer in female survivors.62 Recently, variants at
chromosome 6q21 were found to be associated with an
increased risk of second cancers in survivors of Hodgkin’s
lymphoma treated with RT as children, but not as adults.63

While these findings are encouraging, considerably
more work is required before it will be feasible to tailor
treatment intensity or follow up based on molecular assays
of late toxicity risk.  

Conclusion

Significant changes in the chemotherapy and RT used to
treat HL patients over the last 10-20 years will result in
different risks of delayed toxicity than those described in
many published studies of late effects. Familiarity with
these changes and their expected impact on late toxicity is
an important feature of accurate disclosure and discussion
of treatment options with newly diagnosed HL patients,
and also the appropriate management of survivors. As the
risk of late effects are reduced, increasingly sophisticated
judgments (and larger trials) will be required to find
patients who can have further treatment reductions with-
out compromising cure.  

References
1. Bhatia S, Yasui Y, Robison LL, et al. High risk of subsequent

neoplasms continues with extended follow-up of childhood
Hodgkin’s disease: report from the Late Effects Study Group.
J Clin Oncol. 2003;21:4386-94.

2. Dores GM, Metayer C, Curtis RE, et al. Second malignant
neoplasms among long-term survivors of Hodgkin’s disease: a
population-based evaluation over 25 years. J Clin Oncol.
2002;20:3484-94,.

3. Metayer C, Lynch CF, Clarke EA, et al. Second cancers
among long-term survivors of Hodgkin’s disease diagnosed in
childhood and adolescence. J Clin Oncol. 2000;18:2435-43.

4. Swerdlow AJ, Barber JA, Hudson GV, et al. Risk of second
malignancy after Hodgkin’s disease in a collaborative British
cohort: the relation to age at treatment. J Clin Oncol.
2000;18:498-509.

5. van Leeuwen FE, Klokman WJ, Hagenbeek A, et al. Second
cancer risk following Hodgkin’s disease: a 20-year follow-up
study. J Clin Oncol. 1994;12:312-25. 

6. van Leeuwen FE, Klokman WJ, Veer MB, et al. Long-term
risk of second malignancy in survivors of Hodgkin’s disease
treated during adolescence or young adulthood. J Clin Oncol.
2000;18:487-97.

7. Hodgson DC, Gilbert ES, Dores GM, et al. Long-term solid
cancer risk among 5-year survivors of Hodgkin’s lymphoma.
J Clin Oncol. 2007;25:1489-97.

8. Ng AK, Bernardo MV, Weller E, et al. Second malignancy
after Hodgkin disease treated with radiation therapy with or
without chemotherapy: long-term risks and risk factors.
Blood. 2002;100:1989-96.

9. Swerdlow AJ, Cooke R, Bates A, et al. Breast cancer risk after
supradiaphragmatic radiotherapy for Hodgkin’s lymphoma in
England and Wales: a National Cohort Study. J Clin Oncol.
2012;30:2745-52.

10. De Bruin ML, Sparidans J, Van’t Veer MB, et al. Breast
Cancer Risk in Female Survivors of Hodgkin’s Lymphoma:

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 207 |

Stockholm, Sweden, June 13-16, 2013



Lower Risk After Smaller Radiation Volumes. J Clin Oncol.
2009;27(26):4239-46.

11. Kenney L, Yasui Y, Inskip P, et al. Breast cancer after child-
hood cancer: a report from the Childhood Cancer Survivor
Study. Ann Intern Med. 2004;141(8):590-7.

12. Travis LB, Hill D, Dores GM, et al. Cumulative absolute
breast cancer risk for young women treated for Hodgkin lym-
phoma. J Natl Cancer Inst. 2005;97:1428-37.

13. Swerdlow AJ, Higgins CD, Smith P, et al. Second cancer risk
after chemotherapy for Hodgkin’s lymphoma: a collaborative
British cohort study. J Clin Oncol. 2011;29:4096-104. 

14. Travis LB, Gospodarowicz M, Curtis RE, et al. Lung cancer
following chemotherapy and radiotherapy for Hodgkin’s dis-
ease. J Natl Cancer Inst. 2002;94:182-92.

15. Birdwell SH, Hancock SL, Varghese A, et al. Gastrointestinal
cancer after treatment of Hodgkin’s disease. Int J Radiat Oncol
Biol Phys. 1997;37:67-73.

16. Myrehaug S, Pintilie M, Tsang R, et al. Cardiac morbidity fol-
lowing modern treatment for Hodgkin lymphoma: supra-addi-
tive cardiotoxicity of doxorubicin and radiation therapy. Leuk
Lymphoma. 2008;49:1486-93.

17. Galper SL, Yu JB, Mauch PM, et al. Clinically significant car-
diac disease in patients with Hodgkin lymphoma treated with
mediastinal irradiation. Blood. 2011;117:412-8.

18. Aleman BM, van den Belt-Dusebout AW, De Bruin ML, et al.
Late cardiotoxicity after treatment for Hodgkin lymphoma.
Blood. 2007;109:1878-86.

19. Anselmo AP, Cartoni C, Bellantuono P, et al. Risk of infertility
in patients with Hodgkin’s disease treated with ABVD vs
MOPP vs ABVD/MOPP. Haematologica. 1990;75:155-8.

20. Heikens J, Behrendt H, Adriaanse R, et al. Irreversible gonadal
damage in male survivors of pediatric Hodgkin’s disease.
Cancer. 1996;78:2020-4. 

21. Kreuser ED, Xiros N, Hetzel WD, et al. Reproductive and
endocrine gonadal capacity in patients treated with COPP
chemotherapy for Hodgkin’s disease. J Cancer Res Clin
Oncol. 1987;113:260-6.

22. De Bruin ML, Huisbrink J, Hauptmann M, et al. Treatment-
related risk factors for premature menopause following
Hodgkin lymphoma. Blood. 2008;111:101-8.

23. Viviani S, Ragni G, Santoro A, et al. Testicular dysfunction in
Hodgkin’s disease before and after treatment. Eur J Cancer.
1991;27:1389-92.

24. Bowers DC, McNeil DE, Liu Y, et al. Stroke as a late treat-
ment effect of Hodgkin’s Disease: a report from the Childhood
Cancer Survivor Study. J Clin Oncol. 2005;23:6508-15.

25. Jereczek-Fossa BA, Alterio D, Jassem J, et al. Radiotherapy-
induced thyroid disorders. Cancer Treat Rev. 2004;30:369-84.

26. Ng AK, Li S, Neuberg D, et al. A prospective study of pul-
monary function in Hodgkin’s lymphoma patients. Ann Oncol.
2008;19:1754-8.

27. Hjermstad MJ, Oldervoll L, Fossa SD, et al. Quality of life in
long-term Hodgkin’s disease survivors with chronic fatigue.
Eur J Cancer. 2006;42:327-33.

28. Koh ES, Tran TH, Heydarian M, et al. A comparison of mantle
versus involved-field radiotherapy for Hodgkin’s lymphoma:
reduction in normal tissue dose and second cancer risk. Radiat
Oncol. 2007;2:13.

29. Maraldo MV, Brodin NP, Vogelius IR, et al. Risk of develop-
ing cardiovascular disease after involved node radiotherapy
versus mantle field for Hodgkin lymphoma. Int J Radiat Oncol
Biol Phys. 2012;83:1232-7.

30. Inskip PD, Robison LL, Stovall M, et al. Radiation dose and
breast cancer risk in the childhood cancer survivor study. J
Clin Oncol. 2009;27:3901-7.

31. Travis LB, Hill DA, Dores GM, et al. Breast cancer following
radiotherapy and chemotherapy among young women with
Hodgkin disease. JAMA. 2003;290:465-75.

32. van Leeuwen FE, Klokman WJ, Stovall M, et al. Roles of radi-
ation dose, chemotherapy, and hormonal factors in breast can-
cer following Hodgkin’s disease. J Natl Cancer Inst. 2003;
95:971-80.

33. O’Brien MM, Donaldson SS, Balise RR, et al. Second malig-
nant neoplasms in survivors of pediatric Hodgkin’s lymphoma
treated with low-dose radiation and chemotherapy. J Clin
Oncol. 2010;28:1232-9

34. Weber DC, Peguret N, Dipasquale G, et al. Involved-node and
involved-field volumetric modulated arc vs. fixed beam inten-
sity-modulated radiotherapy for female patients with early-
stage supra-diaphragmatic Hodgkin lymphoma: a comparative
planning study. Int J Radiat Oncol Biol Phys. 2009;75:1578-
86.

35. Campbell BA, Voss N, Pickles T, et al. Involved-nodal radia-
tion therapy as a component of combination therapy for limit-

ed-stage Hodgkin’s lymphoma: a question of field size. J Clin
Oncol. 2008;26:5170-4.

36. Maraldo MV, Aznar MC, Vogelius IR, et al. Involved Node
Radiation Therapy: An Effective Alternative in Early-Stage
Hodgkin Lymphoma. Int J Radiat Oncol Biol Phys, 2013;
85(4):1057-65.

37. Chera BS, Rodriguez C, Morris CG, et al. Dosimetric compar-
ison of three different involved nodal irradiation techniques
for stage II Hodgkin’s lymphoma patients: conventional radio-
therapy, intensity-modulated radiotherapy, and three-dimen-
sional proton radiotherapy. Int J Radiat Oncol Biol Phys.
2009;75:1173-80.

38. Girinsky T, van der Maazen R, Specht L, et al. Involved-node
radiotherapy (INRT) in patients with early Hodgkin lym-
phoma: concepts and guidelines. Radiother Oncol. 2006;79:
270-7.

39. Weber DC, Johanson S, Peguret N, et al. Predicted risk of radi-
ation-induced cancers after involved field and involved node
radiotherapy with or without intensity modulation for early-
stage hodgkin lymphoma in female patients. Int J Radiat
Oncol Biol Phys. 2011;81:490-7.

40. Swerdlow AJ, Higgins CD, Smith P, et al. Myocardial infarc-
tion mortality risk after treatment for Hodgkin disease: a col-
laborative British cohort study. J Natl Cancer Inst.
2007;99:206-14.

41. Kulkarni SS, Sastry PS, Saikia TK, et al. Gonadal function fol-
lowing ABVD therapy for Hodgkin’s disease. Am J Clin
Oncol. 1997;20:354-7.

42. Hodgson DC, Pintilie M, Gitterman L, et al. Fertility among
female hodgkin lymphoma survivors attempting pregnancy
following ABVD chemotherapy. Hematol Oncol. 2007;25:11-
5.

43. Behringer K, Breuer K, Reineke T, et al. Secondary amenor-
rhea after Hodgkin’s lymphoma is influenced by age at treat-
ment, stage of disease, chemotherapy regimen, and the use of
oral contraceptives during therapy: a report from the German
Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2005;23:
7555-64.

44. Behringer K, Wildt L, Mueller H, et al. No protection of the
ovarian follicle pool with the use of GnRH-analogues or oral
contraceptives in young women treated with escalated BEA-
COPP for advanced-stage Hodgkin lymphoma. Final results of
a phase II trial from the German Hodgkin Study Group. Ann
Oncol. 2010;21:2052-60.

45. Sieniawski M, Reineke T, Nogova L, et al. Fertility in male
patients with advanced Hodgkin lymphoma treated with BEA-
COPP: a report of the German Hodgkin Study Group (GHSG).
Blood. 2008;111:71-6.

46. Sieniawski M, Reineke T, Josting A, et al. Assessment of male
fertility in patients with Hodgkin’s lymphoma treated in the
German Hodgkin Study Group (GHSG) clinical trials. Ann
Oncol. 2008;19:1795-801.

47. Constine LS, Tarbell N, Hudson MM, et al. Subsequent malig-
nancies in children treated for Hodgkin’s disease: associations
with gender and radiation dose. Int J Radiat Oncol Biol Phys.
2008;72:24-33.

48. Hodgson DC, Koh ES, Tran TH, et al. Individualized esti-
mates of second cancer risks after contemporary radiation
therapy for Hodgkin lymphoma. Cancer. 2007;110(11):2576-
86.

49. Myrehaug S, Pintilie M, Yun L, et al. A population-based study
of cardiac morbidity among Hodgkin lymphoma patients with
preexisting heart disease. Blood. 2010;116:2237-40.

50. Andersson A, Naslund U, Tavelin B, et al. Long-term risk of
cardiovascular disease in Hodgkin lymphoma survivors-
Retrospective cohort analyses and a concept for prospective
intervention. Int J Cancer. 2009;124(8):1914-7.

51. Group CsO. [Internet] Available from: www.survivor-
shipguidelines

52. Howell SJ, Searle C, Goode V, et al. The UK national breast
cancer screening programme for survivors of Hodgkin lym-
phoma detects breast cancer at an early stage. Br J Cancer.
1009;101:582-8.

53. Smith RA, Saslow D, Sawyer KA, et al. American Cancer
Society guidelines for breast cancer screening: update 2003.
CA Cancer J Clin. 2003;53:141-69.

54. Heidenreich PA, Schnittger I, Strauss HW, et al. Screening for
coronary artery disease after mediastinal irradiation for
Hodgkin’s disease. J Clin Oncol. 2007;25:43-9.

55. Wender R, Fontham ET, Barrera E Jr, et al. American Cancer
Society lung cancer screening guidelines. CA Cancer J Clin.
2013; 63(2):107-17.

56. Davies JM, Lewis MP, Wimperis J, et al. Review of guidelines
for the prevention and treatment of infection in patients with

| 208 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



an absent or dysfunctional spleen: prepared on behalf of the
British Committee for Standards in Haematology by a work-
ing party of the Haemato-Oncology task force. Br J Haematol.
2011;155:308-17.

57. Deng C, Pan B, O’Connor OA. Brentuximab vedotin. Clin
Cancer Res. 2013;19:22-7.

58. Kelly KM, Hodgson D, Appel B, et al. Children’s Oncology
Group’s 2013 blueprint for research: Hodgkin lymphoma.
Pediatr Blood Cancer. 2012 Dec 19. [Epub ahead of print]

59. Cella L, Liuzzi R, Magliulo M, et al. Radiotherapy of large tar-
get volumes in Hodgkin’s lymphoma: normal tissue sparing
capability of forward IMRT versus conventional techniques.
Radiat Oncol. 2010;5:33.

60. Hoppe BS, Flampouri S, Lynch J, et al. Improving the thera-

peutic ratio in Hodgkin lymphoma through the use of proton
therapy. Oncology. 2012;26:456-65. 

61. Blanco JG, Sun CL, Landier W, et al. Anthracycline-related
cardiomyopathy after childhood cancer: role of polymor-
phisms in carbonyl reductase genes—a report from the
Children’s Oncology Group. J Clin Oncol. 2012;30:1415-21.

62. Travis LB, Rabkin CS, Brown LM, et al. Cancer Survivorship
- Genetic Susceptibility and Second Primary Cancers:
Research Strategies and Recommendations. J Natl Cancer
Inst. 2006;98:15-25.

63. Best T, Li D, Skol AD, et al. Variants at 6q21 implicate
PRDM1 in the etiology of therapy-induced second malignan-
cies after Hodgkin’s lymphoma. Nat Med. 2011;17:941-3.

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 209 |

Stockholm, Sweden, June 13-16, 2013



| 210 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 211 |

B.A. Walker  
G.J. Morgan

Molecular Haematology, Haemato-
Oncology Research Unit, Division 
of Molecular Pathology, 
The Institute of Cancer Research,
London, UK

Correspondence:
Brian A. Walker. 
E-mail: brian.balker@icr.ac.uk

Hematology Education:
the education program for the 
annual congress of the European
Hematology Association

2013;7:211-215

From monoclonal gammopathy of undetermined 
significance to symptomatic multiple myeloma: 
genetic heterogeneity on all levels

Multiple myeloma 

A B S T R A C T

Introduction
Multiple myeloma is a genetically complex

disease that is becoming more common in
today’s aging population. Myeloma belongs to
a group of related paraproteinemias that are
characterized by an abnormal clonal plasma
cell infiltration in the bone marrow.1,2 A num-
ber of distinct clinical phases of myeloma can
be recognized, including monoclonal gam-
mopathy of undetermined significance
(MGUS) and asymptomatic or smoldering
multiple myeloma (SMM). Both these phases
lack the clinical features of myeloma but share
some of the genetic features of a myeloma
clone.3 By contrast, symptomatic multiple
myeloma (MM) is defined by clinical symp-
toms and evidence of organ damage. A charac-
teristic feature of myeloma cells is the require-
ment for an intimate relationship with the bone
marrow microenvironment, where plasma
cells are nurtured in specialized niches that
maintain their survival long term.4-8 However,
during the progression of the disease, clonal
cells develop the ability to proliferate at sites
outside of the bone marrow, manifesting as
extra-medullary myeloma (EMM) and plasma
cell leukemia (PCL).9 These cells constitute
the end stages in the multistep transformation
process from normal to malignant plasma
cells. Here we will review the genetics and
techniques used to study the events in the
process of transformation from MGUS
through SMM, MM and finally to PCL. These
include the classically studied translocations
and hyperdiploidy, copy number abnormalities
and, finally, how genome sequencing strate-
gies are identifying new potential targets in

somatic mutations and how these can be used
to determine the evolutionary course of dis-
ease progression.

Translocations

Chromosomal translocations arise when
DNA double strand breaks at different sites in
the genome are brought together and aberrant-
ly rejoined.10 They are common in tumors of
the lymphoid lineage because of the ‘off tar-
get’ effects of the normal physiological mech-
anisms mediating DNA rearrangement at the
immunoglobulin (IGH) locus. Translocations
into the IGH locus predominantly occur either
during recombination activation gene (RAG)
complex-mediated V(D)J rearrangement, such
as in mantle cell lymphoma (t(11;14)),11 or
during class switch recombination (CSR). In
myeloma, the primary translocations are
thought to be generated via abnormal CSR
events mediated by activation-induced cyti-
dine deaminase (AID).12 This concept has
been developed and is based on the location of
the translocation breakpoints determined in
myeloma cell lines and a few primary samples.
Added to this, the myeloma clone is derived
from a mature plasma cell that has undergone
somatic hypermutation in the germinal cen-
ter13 and does not express the RAG complex. 

In myeloma, primary aberrant rearrange-
ments into the IGH locus are present in up to
40% of cases.14,15 There are five main translo-
cation partner chromosomes including the
t(4;14) (11%), t(6;14) (2%), t(11;14) (15%),
t(14;16) (3%) and t(14;20) (1.5%) which result
in the overexpression of MMSET and FGFR3,

Multiple myeloma (MM) is preceded by pre-malignant disease phases of monoclonal gammopathy
of undetermined significance (MGUS) and smoldering myeloma (SMM). The genetic abnormalities
found in MM comprise of intrachromosomal translocations, largely involving the IGH locus, copy num-
ber abnormalities, somatic mutations and changes in DNA and histone methylation. Many of these
genetic lesions are also present in MGUS and SMM but do not result in the clinical symptoms associ-
ated with MM.  Here we discuss the common abnormalities in these disease phases along with the
impact of intraclonal heterogeneity on the future of myeloma biology and treatment.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe the common genetic abnormalities in multiple myeloma;
- know the common somatic mutations in myeloma and targeted therapy options;
- understand the complex subclonal genetic architecture of myeloma. 



CCND3, CCND1, MAF and MAFB, respectively, and are
thought to confer a selective advantage to the clone
(Figure 1).16 Although the translocations over-express
very different genes, they have in common downstream
deregulation of cyclin D genes, which have been grouped
together under the Translocation/Cyclin D (TC) classifica-
tion.17 In its simplest form, this classification defines
groups of myeloma samples based on their expression of
CCND1 (t(11;14)), CCND2 (t(4;14),t(14;16) and
t(14;20)), and CCND3 (t(6;14)). However, the transloca-
tions themselves are not sufficient to cause progression to
myeloma. Evidence for this comes from analysis of
MGUS, SMM and MM samples in which translocations
are detected, but not at the same frequency.18 For exam-
ple, the t(14;20) is present in 5% of MGUS samples but
only 1.5% of MM samples, and conversely, the t(4;14) is
present in 3% of MGUS but rises to 11% in MM samples.
The conclusions drawn from these data are that some
translocations, such as the t(14;20), can be stable in
MGUS patients for long periods of time resulting in higher
frequencies present in MGUS, whereas the t(4;14) pro-
gresses to MM faster, resulting in a lower frequency in
MGUS patients.

Copy number changes

In addition to translocations, copy number abnormali-
ties are common in myeloma (Figure 1). These abnormal-
ities have been studied by many techniques from kary-
otyping and fluorescence in situ hybridization (FISH)

through to SNP-based mapping arrays, and more recently,
exome sequencing. The most prevalent copy number
abnormality is the presence of hyperdiploidy, through tri-
somy of chromosomes 3, 5, 7, 9, 11, 15, 19 and 21, and
like the translocations is considered a primary event.
Hyperdiploidy is present in approximately 50% of myelo-
ma samples and is almost mutually exclusive with IGH
translocations, where both translocations and hyper-
diploidy occur in only 9% of samples. The most common-
ly gained chromosomes are 9, 15 and 19 but the genetic
mechanism of gain and pathogenic advantage still remain
elusive. Hyperdiploid patients tend to have a better prog-
nostic outcome than those with IGH translocations. The
myeloma genome is rife with additional copy number
abnormalities, with almost all chromosomes being affect-
ed across samples, indicating genomic instability in
myeloma. Aside from the trisomies related to hyper-
diploidy, the most common chromosomal abnormalities
are del(1p) (30%), 1q+ (36%), del(6q) (33%), del(8p)
(25%), 11q+ (24%), del(13q) (58%), del(16q) (35%) and
del(17p) (7%).19 In some of these chromosomes, the genes
of interest have been identified but in others they remain
elusive. For example, on 1p FAM46C, CDKN2C and FAF1
have been identified as potential targets,19-21 on 16q CYLD
and WWOX are targets of interstitial deletions,22,23 on 1q
CKS1B, ANP32E, BCL9 and PDZK1 have all attracted
interest,19,24,25 and on 17p TP53 is the clear gene of
interest.19,26,27 However, for many of the chromosomal
abnormalities (6q, 8p) there is no clear target gene. These
last two regions have not been so well studied, in part
because they currently have no prognostic value.  

Cytogenetic risk stratification

Cytogenetics has been used to determine which genetic
lesions have an impact on overall and progression-free
survival. Concerning the translocation groups, t(4;14),
t(14;16) and t(14;20) are considered to be high risk genetic
events resulting in a decreased overall survival.28

However, much of the high risk nature of the t(4;14) can
be overcome by treatment with bortezomib.29 t(11;14) and
t(6;14) are considered standard risk groups, as is hyper-
diploidy. Many of the copy number abnormalities do have
a prognostic value in several datasets.  In the UK MRC
Myeloma IX trial, we have shown del(1p), 1q+ and
del(17p) all have an independent statistically significant
impact in overall survival.19,26 This has been confirmed in
other datasets with several different treatment contexts.30-
33 Together with t(4;14), these cytogenetic markers have
been used to identify patients with high-risk myeloma,
which could be managed differently to standard risk
patients. One analysis has also determined that the poor
prognostic effect of high-risk genetics (t(4;14), t(14;16),
t(14;20) or del(17p)) can be ameliorated by the presence
of trisomies.34 Bortezomib administration can also
improve outcome in patients with del(17p) when adminis-
tered before and after autologous stem cell transplan -
tation.35

The accumulation of adverse markers has a profound
effect on the overall survival of a patient. Many of the
adverse lesions co-segregate, so the chance of a patient
having more than one abnormality is increased, for exam-
ple 72% of patients with an IGH translocation also have
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Figure 1. The common genetic abnormalities in myeloma.
The circos plot shows chromosomes arranged around the
outside in a clockwise direction. The internal track shows
the common copy number changes with deletions (red)
and gains (blue) shown with their frequencies in myeloma.
Translocations are indicated by lines across the center
between loci. The genes of interest are shown around the
outside of the circle and are color-coded according to the
legend. 



1q+. By integrating these known adverse lesions it is pos-
sible to more accurately estimate the overall survival of a
patient where those without any adverse markers
(OS=60.6 months) do better than those with one (OS=41.9
months), two (OS=23.4 months) or three (OS=9.1 months)
adverse markers. 36

Somatic mutations

The most recent developments in myeloma genetics
revolve around genome and exome sequencing of sam-
ples, allowing the identification of somatic mutations and
structural variations. This has been exemplified by the ini-
tial publication of the landscape of mutations in myeloma
through sequencing of 38 myeloma samples.37 The num-
ber of non-synonymous (NS) somatic mutations found in
myeloma is around 30-35.37,38 This number is higher than
some other hematologic malignancies such as hairy cell
leukemia (NS-mutations = 5),39 acute myeloid leukemia
(NS-mutations = 8)40 but much lower than solid tumors
such as lung cancer (NS-mutations = 540).41 This level of
mutation indicates that myeloma is more complex than
most hematologic malignancies.

The main finding of this initial screen is that there is no
unifying mutation in myeloma. In some other hematologic
malignancies, a common mutation in most or all samples
has been discovered and is thought to be the primary driv-
er mutation. For example, in hairy cell leukemia, the
BRAF V600E mutation is found in all samples,39 and in
Waldenströms macroglobulinemia, the MYD88 L265P
mutation is found in 91% of samples.42 In myeloma, the
most frequent mutations were found in NRAS (23%) and
KRAS (26%), followed by FAM46C (13%, previously
identified as deleted and mutated)19,20 and TP53 (8%). The
NRAS and KRAS mutations, with the addition of BRAF
mutations (4%), indicates the ERK pathway is critical in at
least 53% of myeloma patients and points to a treatment
strategy that has so far not been harnessed. ERK pathway
mutations are not new to myeloma, but the whole genome
strategies have identified some novel mutations not previ-
ously identified by other means. These include DIS3
(mutated in 10%) on chromosome 13, a highly conserved
RNA nuclease, which is also deleted in 58% of samples.
The function of this mutation is not understood, but may
be involved in regulation of the available pool of mRNAs
available for translation.43 However, the number of myelo-
ma samples sequenced to date is small and the true land-
scape of somatic mutations is yet to be realized. As the
number of samples sequenced increases, it will be possible
to identify groups of genes with related functions or path-
ways that can be used as therapeutic targets. For example,
DNA and histone methylation are important biological
processes in myeloma which is characterized by overex-
pression of MMSET, a histone methyltransferase, in
t(4;14) myeloma, and mutations in other methyltransferas-
es, such as EZH2 and MLL3, can also be present.
Additionally, histone lysine demethylases such as KDM6A
(also known as UTX) can be deleted or mutated in myelo-
ma,44 making histone methylation a common and attrac-
tive target for drug therapy.

The discovery of BRAF mutations in 4% of myeloma
patients has also brought the possibility of targeted thera-
py to the forefront of myeloma treatment in the clinic.

BRAF is part of the MAP kinase pathway, which is acti-
vated by RAS through phosphorylation and results in the
subsequent activation of the MEK/MAPK/ERK signaling
cascade, resulting in proliferation and survival.45 The
BRAFV600E mutation is present in 50%-60% of all
melanomas and results in constitutive activation of BRAF,
bypassing the requirement for RAS, activating the
MEK/MAPK/ERK cascade, and culminating in cell pro-
liferation and malignant conversion.46 The drug vemu-
rafenib is a competitive selective inhibitor of BRAFV600E

which is approved for use in melanoma and results in rel-
ative reduction of 63% in risk for death compared to other
treatments.47 Vemurafenib, therefore, represents a poten-
tial targeted therapy for patients harboring a BRAFV600E

mutation and clinical trials are underway in myeloma to
determine its efficacy.

Intraclonal heterogeneity

Like many malignancies, myeloma cells are not uniform
within a patient. A great deal of genetic variation exists
within the population of tumor cells, and it is this variation
that allows the cancer to persist and diversify. The genetic
events within a cancer cell consist of ‘driver’ and ‘passen-
ger’ lesions, where drivers confer a selective advantage to
the progeny. The acquisition of these lesions allows for the
rapid evolution of a clone in a Darwinian fashion.
Selection pressures are exerted on the tumor cells allowing
the outgrowth of any favorable trait. These selection pres-
sures may give a growth advantage to a cell, confer a bet-
ter interaction with the bone marrow microenvironment,
or even allow independence from the bone marrow result-
ing in a plasma cell leukemia or an extramedullary tumor.
Aside from this, mutations gained in subpopulations of
cells may confer drug resistance, allowing the eventual
repopulation of the tumor in a drug resistant state.

Although myeloma is considered to be a clonal disease,
due to the presence of one V(D)J rearrangement and a
monoclonal secreted immunoglobulin, at a genetic level
the cells are far from clonal. IGH translocations and
hyperdiploidy are accepted as being primary events in
myeloma pathogenesis; however, the rate at which other
abnormalities are accrued has been less well studied.
Studies utilizing FISH were the first to investigate the
relationship of abnormalities within a sample by using
probes to a translocation and a copy number abnormality
and comparing the frequencies. When comparing a
translocation with del(13q) it was found that the majority
of cells carry the translocation (as expected given it is a
primary event) but the proportion of cells with del(13q)
can vary dramatically from patient to patient, but is always
lower than the frequency of the translocation.48 It can be
inferred from these data that the copy number abnormali-
ties occur subsequent to the translocation. By analyzing
the disease at different time points it becomes clear that
the frequency of any given abnormality increases through
MGUS and SMM towards MM in a population of individ-
uals. This has been shown for del(13q), del(17p) and 1q+
where the proportion of myeloma patients with an abnor-
mality increases as the disease progresses.18,49 However,
such an analysis can be even more informative if sequen-
tial samples from the same patient are used, particularly
when they are taken at different stages of disease (for
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example SMM and MM). Several papers have been pub-
lished analyzing such patients by FISH and SNP-based
mapping array.49,50 The overarching theme of these papers
is that the frequency of abnormalities increases within a
tumor sample as the disease progresses, but they are gen-
erally always present at low levels in the preceding stage
of disease.  For example, in a patient there may be 29% of
cells with del(17p) when the patient is diagnosed with
high risk-SMM and this may increase to 86% when they
present with symptomatic MM.51 The genetic landscape of
these tumors gets more interesting as the technologies
used get more advanced.  Using genome sequencing tech-
nologies it is possible to estimate the proportion of cells in
a tumor mass with any somatic mutation found. This has
been achieved in many cancers,52,53 including myelo-
ma.38,54 Taking the RAS pathway mutations as an example,
it has been shown that these activating oncogenic driver
mutations are not necessarily present in the dominant
clone. That is, they can be present only in a subset of the
cells in the tumor.38 This is true for NRAS, KRAS and
BRAF mutations, indicating that although they are known
oncogenic drivers they are not necessarily present early on
in the disease and can be acquired as the tumor evolves.
Using information on the subclonal nature of multiple
mutations or copy number abnormalities it is possible to
piece together the history of a tumor, determining which
genetic events occurred first or occurred together.52,55 This
can also be done at the single cell level using FISH with
multiple probes per cell, or at a nucleotide level using sin-
gle cell sorting and genotyping assays.38,55 These tech-
niques clearly indicate a complex substructure of branched
evolution in tumor development. Other studies have
focused on the genetic evolution of myeloma following
treatment.54 Analysis of tumor DNA collected at multiple
time points during a patient’s treatment can illustrate the
genetic diversity within a myeloma tumor and the effect
that treatment has on the dynamics of the sub-clones pres-
ent. By studying seven time points from diagnosis, remis-
sion, four relapse phases and progression to plasma cell
leukemia the different subclones present can be seen using
arrays, gaining and losing dominance in the myeloma pop-
ulation as the patient undergoes different treatment regi-
mens. Ultimately, the clone that was dominant as the dis-
ease progresses to PCL was barely detectable at diagnosis.

Given that myeloma exists as multiple foci of lytic
lesions throughout the bone marrow, it remains to be
determined how these subpopulations of cells relate to one
another, whether they evolve independently, and whether
they can be treated as a whole. 

Conclusions

Myeloma is a genetically complex malignancy in which
translocations involving the IGH locus and hyperdiploidy
are primary events. These events are followed by an accru-
al of additional lesions through MGUS and SMM before
transforming to MM. These additional lesions include, but
are not limited to, chromosomal gains and losses, somatic
mutations and DNA methylation changes. It is clear that
there is a subclonal genetic structure within the myeloma
cell population where copy number and somatic mutations
are gained or lost over time, resulting in a mixed popula-
tion of cells capable of exploiting any selective advantages

laid upon them. This intraclonal heterogeneity may prove
to be an extra obstacle in the fight towards curing myelo-
ma, but through using therapies towards key genetic
mechanisms it should prove possible to selectively target
mutated clones.
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Treatment of relapsed and refractory multiple myeloma

Introduction

Multiple myeloma (MM) is a clonal plasma
cell malignancy characterized by bone, renal,
hematologic, and often neurological complica-
tions.1 The overall survival for patients with
symptomatic myeloma has dramatically
improved over the last decade due to the broad
use of high-dose therapy and autologous trans-
plant for suitable patients, as well as the avail-
ability of novel agents whose mechanisms of
action are distinctly different from alkylators
or steroids. However, even with these
advances, most patients will eventually die of
complications associated with the develop-
ment of resistant disease.2 Plasma cells spend
their time in the marrow microenvironment
supported by autocrine and paracrine secretion
of growth factors such as IL-6, TNFα, IGF-1
and VEGF,3 as well as direct interaction of the
bone marrow microenvironment with plasma
cells via integrins and cell adhesion molecules
which promote growth and inhibit apoptosis.4

However, the practical delivery of anti-myelo-
ma therapy in the context of relapsed or refrac-
tory disease is a constantly evolving area of
research, and one which needs to take into
consideration factors of clinical importance.
These include: i) which disease setting the
patient comes to us in (early vs. late); ii) dis-
ease specific biology (standard- or high-risk);
iii) prior therapies; and iv) prior toxicities
from therapy. Through clinical integration of
these factors, a treatment strategy can be
defined for patients with relapsed or refractory

myeloma with the highest chance of response
and good tolerance for any given patient. 

How to define relapse

Response criteria in myeloma represent an
evolving work in progress. While the defini-
tion of complete response (CR) continues to
become more and more stringent, the defini-
tion of relapse or progression has been rela-
tively constant. Relapse from a CR is defined
as reappearance of the serum or urinary para-
protein, of 5% or over bone marrow plasma
cells, new lytic bone lesions/soft tissue plas-
macytomas, an increase in size of residual
bone lesions, and/or development of hypercal-
cemia (corrected serum calcium >11.5 mg/dL)
not attributable to another cause.5 Following
the increased depth of response seen with new
therapies, the ‘CR penalty’ was addressed by
allowing patients who have achieved a CR to
be defined as relapsed when they develop a
protein of at least 0.5 gm/dL rather than the
historical definition of immunofixation nega-
tive to immunofixation positive.6 Criteria for
progressive disease (PD) when a CR has not
been achieved include new or expanding bone
lesions, hypercalcemia, and a more than 25%
increase in either serum monoclonal parapro-
tein concentration, 24-h urinary light chain
excretion, or plasma cells within a bone mar-
row. Relapsed MM refers to the circumstance
wherein a patient treated to the point of maxi-
mal response experiences PD, whereas refrac-

Multiple myeloma 

Treatment options and outcomes for patients with relapsed myeloma have dramatically changed
over the past ten years due in large part to the availability of novel agents such as bortezomib, thalido-
mide and lenalidomide. These have now been incorporated into the treatment approach for newly
diagnosed patients and also raise questions about bow best to manage patients who relapse. In addi-
tion to existing and approved agents, several others have recently been or are soon to be approved, as
well as new classes of agents in phase III trials that are likely to not only improve long-term outcomes,
but that will also complicate treatment algorithms. We will review data on the optimal use of existing
approaches for relapsed disease, as well as new agents under development for relapsed and refractory
myeloma.  

Learning goals

At the conclusion of this activity, participants should understand:
- when a patient needs therapy for relapsed myeloma;
- how best to use available treatment options for managing relapsed myeloma;
- which are the new agents under development and how to use them for the management of relapsed

and refractory myeloma. 
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tory MM refers to a clinical scenario in which a patient is
either unresponsive to current therapy or progresses within
60 days of last treatment. It is important to recall that
‘patients with refractory disease’ has historically referred
to patients who were resistant to dexamethasone and alky-
lators and, given the short duration of response to both
alone, patients often developed refractory disease. More
recently, the availability of different classes of agents
including proteasome inhibitors and immunomodulatory
agents, the generic term ‘refractory’ requires more speci-
ficity. Currently, the term ‘refractory’ requires a descrip-
tion of what the patient is refractory to, i.e. steroids, borte-
zomib or lenalidomide. In addition, there may be biologi-
cal differences between patients who are defined as refrac-
tory by progression on treatment versus those who
progress within 60 days of stopping therapy and, as such,
they should be specified when base-line patients’ charac-
teristics are described in clinical trials. Patients who fail to
achieve any response to induction therapy (< minimal
response, MR) and then progress on therapy are an espe-
cially challenging category of patients with primary
refractory myeloma.7

As we now have more tools with which to approach
relapsed disease, the decision as to when to treat this con-
tinues to be an issue. The current International Myeloma
Working Group guidelines (IMWG) state that patients
should be observed until they develop symptomatic
relapse (the same criteria used to differentiate smoldering
myeloma from symptomatic myeloma). This raises the
issue of differences between patients with biochemical
relapse (blood or urine protein only) versus those patients
with symptomatic relapse (new evidence of end organ
damage according to the CRAB criteria). Most clinical tri-
als require patients to have symptomatic relapse prior to
study entry, and it is clear that there are patients who can
have long-term low-level disease burden and who do not
require therapy. Early initiation of salvage therapy in those
patients would not necessarily offer benefit, while there
may be others with high risk or aggressive relapse for
whom waiting till there is evidence of end organ damage
may ultimately limit the efficacy of therapy. At this point,
it remains prudent to observe patients who have ‘biochem-
ical relapse’ only, unless there are other factors (prior his-
tory of rapid relapse, high-risk genetics, etc.) that suggest
to the clinician that delaying therapy may cause the patient
harm. 

How to systematically approach a relapsed
patient

While there is no clear simple algorithm to define how
a patient should be treated in the relapsed setting, there are
some general principles that can guide the choice of ther-
apy.8 For patients with indolent or relapse early in their
disease course, the use of single agents, depending upon
what was used in their initial therapy as well as treatment-
related toxicity, is a reasonable approach. For patients who
received thalidomide or lenalidomide-based induction
therapy, switching to bortezomib-based salvage makes
sense in order to switch drug class at the time of relapse.
Similarly, patients who received bortezomib-based induc-
tion may gain benefit from switching to an immunomodu-
latory agent in the relapsed setting. In addition, for

patients who did not have a transplant as part of their ini-
tial treatment, or for patients with long duration of remis-
sion following transplant, salvage autologous transplant
could be considered. Incorporation of patient- or treat-
ment-related AEs (existing cytopenias, neuropathy, or
thrombosis) should also play a part in the choice of agents
in the relapsed disease setting. For patients with more
advanced relapse, or with aggressive disease biology, the
use of combinations of agents or novel agents in combina-
tion with cytotoxic agents may be a more appropriate
approach. Even among patients with aggressive relapse,
the use of salvage transplant has a role if cytopenias are
limiting treatment options, as long as some form of main-
tenance therapy is used afterwards in an effort to stave off
early or rapid relapse. Disease biology can also influence
the choice of therapy for relapsed/refractory MM, and reg-
imens including bortezomib or lenalidomide are preferred
in individuals with the higher risk t(4;14) disease as well
as the use of some form of maintenance therapy, which
appears to be of greater importance among patients with
biologically defined high-risk disease. Importantly, the
optimal therapy of patients with deletion of 17p (p53),
who usually derived short benefit from available therapies
outcomes, is not known at this time and thus for these
patients aggressive combination therapy with aggressive
maintenance treatment may be warranted.9,10 More sophis-
ticated biological correlatives for the selection of treat-
ment are obviously desirable but are not currently avail-
able for routine clinical practice.  

Interestingly, most of the novel combination approaches
in MM explored to date have reliably produced response
in the majority of patients, and CR/nCR is not uncommon.
One unresolved question in MM therapy is whether use of
combinations of novel agents to achieve high response
rates is better than the sequential use of these agents alone
or with corticosteroids. Emerging data from large phase III
studies suggest that progression-free survival is superior
with a 3-drug combination compared with a doublet, but
so far no survival improvement has been noted.11 Several
currently ongoing phase III trials are evaluating a similar
comparison (lenalidomide/dexamethasone +/- carfil-
zomib, lenalidomide/dexamethasone +/- elotuzumab,
bortezomib/dexamethasone +/- panobinostat) and these
data are critically important as we begin to evaluate the
benefit of inducing deeper responses and their impact on
long-term outcomes in the relapsed disease setting. 

Second autologous transplant

For over 20 years, conventional chemotherapy and high-
dose therapy (HDT) with either autologous stem cell sup-
port has been utilized in the management of relapsed
and/or refractory MM. Regimens based on conventional
chemotherapy have included: high-dose dexametha-
sone;12,13 vincristine, doxorubicin, and dexamethasone
(VAD);14-18 vincristine, melphalan, cyclophosphamide,
prednisone, vincristine, carmustine, doxorubicin, and
prednisone (VMPC/VBAP);19 and doxorubicin, vin-
cristine, dexamethasone, etoposide, and cyclophos-
phamide (CEVAD).20 The use of melphalan as high-dose
therapy (HDT) in relapsed and/or refractory myeloma was
introduced by McElwain and colleagues21 and subsequent-
ly by Barlogie and colleagues, who demonstrated that
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high-dose melphalan with stem cell support could over-
come resistance to conventional-dose chemotherapy.22

Available data on second autologous transplants for
relapsed patients suggest that these procedures are rela-
tively well-tolerated, with a 100-day mortality of less than
10%.23-26 The overall response rates (ORR) in more recent
studies, in which most patients have received novel
agents, range from 55%-69%.23,24,26,27 A recent analysis
suggests that a relapse-free survival of more than 18
months after the first auto-SCT is the most reliable predic-
tor of clinical outcome after a second auto-SCT,28,29 though
the impact of planned post-transplant maintenance therapy
on the duration of first response post-auto transplant is
currently unknown.  

As such, for patients who experienced an initial duration
of remission of more than 24 months following their initial
autologous transplant, the use of a second autologous
transplant can potentially offer clinical benefit following a
short course of salvage therapy to re-induce some level of
a response. Additionally, for patients who have significant
cytopenias as a consequence of salvage therapy, the use of
a salvage autologous transplant may provide a method by
which more normal hematopoiesis can be re-established
even in the setting of short duration of remission from pre-
vious autologous transplants. This may allow patients to
receive additional salvage therapy that would ultimately
be limited by low blood counts. 

Novel agents in relapse

The emergence of novel therapies over the past decade
has dramatically altered the therapeutic landscape and nat-
ural history of relapsed and refractory myeloma. The abil-
ity of the immunomodulatory drugs (IMiDs) thalidomide,

lenalidomide, and pomalidomide, as well as the protea-
some inhibitors bortezomib and carfilzomib, to overcome
drug resistance was clearly demonstrated in pre-clinical
models and confirmed in the context of clinical trials lead-
ing to US Food and Drug Administration (FDA) approval
of these compounds in the treatment of MM. This review
will elaborate on the role of novel agents in the treatment
of relapsed and refractory MM, with discussion of other
emerging compounds that may yet have a further impact
on the field.   

Specific therapeutic agents

Thalidomide
Thalidomide was one of the first novel agents to be eval-

uated in relapsed and refractory patients.30,31 A recent
review from Glasmacher et al. demonstrated that thalido-
mide alone produced a partial response or better in 30% of
relapsed patients, with a 1-year survival of 60% and medi-
an survival of 14 months.31 While the depth and duration
of response may seem short by current standards, at the
time this represented a major step forward for patients
with few other options. Toxicities of thalidomide included
sedation, constipation, and increased risk of venous
thromboembolism (VTE), as well as peripheral neuropa-
thy. It was noted later on that the incidence of peripheral
neuropathy (PN) increased if the daily dose of thalidomide
exceeded 200 mg or if administered for six months or
more.32,33 It was subsequently noted that the addition of
steroids to thalidomide increases the overall response rate
to 50%, typically with prolonged remission duration, as is
now known to be the case for all the immunomodulatory
agents.34

Thalidomide has also been combined with conventional
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Table 1. Selected thalidomide combinations in relapsed or refractory MM.

Author/year N. Regimen Overall response rate CR/nCR rate Median PFS Median OS 
(%) (%) (mos) (mos)

Kropff 200335 60 Hyper CDT 72 11.0 (EFS) 19.0

Garcia-Sanz 200436 71 TCD 57

Offidan 200638 50 T/PLD/D 76 22.0 NYR

Palumbo 200637 24 MPT 42 9.0 14.0

T: thalidomide; C: cyclophosphamide; D: dexamethasone; PLD: pegylated liposomal doxorubicin; P: prednisone; M: melphalan; CR: complete remission; nCR: near CR; PFS: progression-free survival; OS: overall sur-
vival; EFS: event-free survival; NYR: not yet reached; mos: months.

Table 2. Selected bortezomib combinations in relapsed or refractory MM.

Author/year N. Regimen Overall response rate CR/nCR rate Median PFS Median OS 
(%) (%) (mos) (mos)

Pineda-Romané 200839 85 VTD 63 22 -- 22

Biehn 200740 22 V + PLD 63 36 9.3 (TTP) 38.3

Terpos 200541 60 VMPT 59 11 9.5 --

Reece 200842 13 V+C+P 85 54 >12 >12
T: thalidomide; C: cyclophosphamide; D: dexamethasone; PLD: pegylated liposomal doxorubicin; P: prednisone; M: melphalan; CR: complete remission; nCR: near CR; PFS: progression-free survival; OS: overall sur-
vival; EFS: event-free survival; NYR: not yet reached; mos: months.



cytotoxic drugs (Table 1)35-37 and anthracyclines,38 as well
as with novel agents such as bortezomib,39 in
relapsed/refractory MM (Table 2).39-42 Combination thera-
py with thalidomide improves the overall response rate
and CR rates in several phase I-II studies. In a recent series
from Garderet et al., the 3-drug combination of VTD was
superior to TD in the relapsed setting with a PFS of nearly
20 months (the longest reported in a phase III clinical trial
in relapsed myeloma) compared with 12 months for TD
alone. These data suggest that the combination of novel
agents can be administered, and result in a very prolonged
duration of remission, far superior to what is seen when
single agents are administered separately. While there was
no difference in overall survival, there is a trend favoring
the group that received VTD salvage therapy.11

Thalidomide combinations carry an increased risk of
venous thromboembolism (VTE) that requires some form
of prophylaxis.  Individuals with a prior history of VTE
should be fully anti-coagulated, as should patients with
other risk factors for the development of VTE. The use of
aspirin, low molecular weight heparin (LMWH) and war-
farin have all been evaluated,43 and the International
Myeloma Working Group has published guidelines based
on a risk assessment model, with LMWH for patients with
more than one risk factor, while aspirin (ASA) can be con-
sidered for those with lower risk profiles.44 In a random-
ized trial from Palumbo and colleagues, patients who were
receiving IMiD-based therapy (including thalidomide)
were randomized to receive either LMWH, warfarin, or
ASA. In this trial, patients received bortezomib containing
regimens were used as a ‘low risk’ group for comparison.
There was no statistically significant difference in inci-
dence in VTE among the 3 randomized arms, and all 3
arms had a low incidence of VTE, supporting the equiva-
lence and utility of ASA as a convenient oral antithrom-
botic agent in this setting.45

Lenalidomide
Lenalidomide is a 2nd generation immunomodulatory

agent that is more potent than thalidomide, and has a very
different safety profile. Similar to thalidomide, the effica-
cy of lenalidomide can be significantly enhanced through
the co-administration of steroids. The primary registration
trials for lenalidomide in the relapsed setting were the
MM-009 and MM-010 trials. The dose of lenalidomide
administered was 25 mg Days 1-21 of a 28-day schedule,
with pulse dexamethasone given Days 1-4, 9-12 and 17-20
for the first 4 cycles; subsequently, the dose of dexametha-
sone was decreased to only Days 1-4 per cycle.46,47 The

results of the two trials were identical, with overall
response rates of 60% and 61% for lenalidomide + dexam-
ethasone compared with 20% and 24% with high-dose
dexamethasone as a single agent. The median TTP was
approximately 11 months in both trials, while the OS with
the combination had not yet been reached in the North
American trial (MM-090) at the time of the last report;46

OS was 29.6 months in the European trial (MM-010).47

Moreover, the benefit of lenalidomide + dexamethasone
was apparent despite extensive crossover of patients from
the dexamethasone arm to lenalidomide-based therapy.  

The main toxicity of lenalidomide avoids some of the
more common toxicities of thalidomide, such as somno-
lence, constipation and significant peripheral neuropathy.
However, it is associated with an increased risk of VTE,
similar to thalidomide, and thromboprophylaxis is
required.43,44 A retrospective analysis from Nooka et al.
sought to validate the IMWG guidelines for lenalidomide
thromboprophylaxis.48 In this series, all patients being
treated with lenalidomide in the relapsed or refractory set-
ting were evaluated, and the incidence of VTE, with ASA
prophylaxis, was low. Among patients who did develop
VTE, each of them had more than 1 risk factor suggesting
that their VTE episode was predicted by the International
Myeloma Working Group (IMWG) guidelines.

Different to thalidomide, the most common adverse
event associated with lenalidomide therapy is neutropenia
and thrombocytopenia.46.47.49 though these events do not
typically limit the duration of therapy. If significant neu-
tropenia occurs, either the dose of lenalidomide can be
reduced, or intermittent dosing of granulocyte-colony
stimulating factor (G-CSF) can be administered.  In the
experience reported at Princess Margaret Hospital,
Toronto, Canada, an average of four doses of G-CSF per
cycle is usually sufficient, and is typically given twice
weekly starting Day 15 of each cycle.50 Interestingly, at
least when used as initial therapy, more neutropenia was
observed in patients given a low-dose weekly, rather than
full-dose pulse dexamethasone.51

Lenalidomide combinations have also been studied,
mostly in phase I and II studies, but have also documented
improved overall and depth of response when combina-
tions are used. These include combinations with doxoru-
bicin or pegylated liposomal doxorubicin52,53 and
cyclophosphamide54 (Table 3). Lenalidomide + borte-
zomib +/- dexamethasone has shown especially encourag-
ing activity and excellent tolerability in this context.56 The
maximum tolerated doses of this regimen were borte-
zomib 1.0 mg/m2 on Days 1, 4, 8 and 11 and lenalidomide
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Table 3. Selected lenalidomide combinations in relapsed or refractory MM. 

Author/year N. Regimen Overall response rate CR/nCR rate Median PFS Median OS 
(%) (%) (mos) (mos)

Knop 200953 66 LDoD 73 15 8 88% (1year)
Reece 200954 15 LCP 74 45 (VGPR) -- --
Baz 200652 52 L/PLD/Vi/D 75 29 (nCR) 61% (1year) 84% (1year)
Anderson 200955 62 LVD Ph II 69 26 12 29
CR: complete remission; nCR: near CR; TTP: time to progression; OS: overall survival; L: lenalidomide; Do: doxorubicin; D: dexamethasone; C: cyclophosphamide; P: prednisone; PLD: pegylated liposomal doxorubicin;
Vi: vincristine; V: bortezomib; VGPR: very good partial remission; Ph: phase; mos: months. 



15 mg on Days 1-14 of a 21-day cycle with an overall
response rate (ORR) of 60% and an encouraging median
OS of 37 months. This combination has been evaluated
with dexamethasone 20 mg on the day of and the day after
bortezomib for the first 4 cycles and 10 mg on the same
days after cycle 4, with the phase II trial of this regimen
reporting at least a partial remission (PR) in 54%, includ-
ing near CR in 6%, very good PR (>90% reduction in
serum monoclonal protein) in 30%, and minimal response
(MR) in 18%.55

Bortezomib
Bortezomib is a proteasome inhibitor with potent anti-

myeloma activity as a single agent.57-59 The randomized
APEX trial demonstrated the superiority of bortezomib on
Days 1, 4, 8 and 11 of a 21-day cycle over pulse dexam-
ethasone in MM patients with relapsed/refractory disease
who had early relapse (1-3 prior lines of therapy). The
overall response rate was 38% with a median time to pro-
gression (TTP) of 6.2 months, compared with only 18%
and 3.5 months with high-dose dexamethasone.60 Further
follow up yielded a response rate of 43% with bortezomib,
and a longer median overall survival of 29.8 versus 23.7
months for the high-dose dexamethasone-treated patients.
This improvement in OS occurred despite the fact that
over 60% of patients in the dexamethasone arm were
allowed to cross-over to receive bortezomib.61 Among a
subset of patients treated in first relapse, the ORR for the
bortezomib group was 51%.61

In the initial phase II studies, dexamethasone, was
added for a suboptimal response or progression, with a
resultant improvement in the degree of response in 18%-
39% of patients.62 Two smaller single arm phase II trials in
relapsed and refractory patients have described the use of
bortezomib +/- dexamethasone from the onset of therapy,
with overall response rates ranging from 54%-74%, with a
CR rate of 7% in both.63,64

The toxicity profile of bortezomib has been well-charac-
terized, and includes nausea, diarrhea, cyclic reversible
thrombocytopenia, and peripheral neuropathy.57-60,65

Peripheral neuropathy occurs in approximately one-third
of patients, and can be painful; however, with early inter-
vention this can be reversible. Dose modification or dis-
continuation of bortezomib is required for moderate or
severe neuropathy, especially if associated with pain; the
neuropathy usually improves or resolves in a high propor-
tion of affected individuals, although often over several
months.66 The use of subcutaneous and/or weekly dosing
has changed the intensity and severity of bortezomib-
induced PN. When used in combinations, weekly therapy
results in a much lower incidence of grade 3/4 PN and also
overall incidence of PN. In a randomized trial comparing
intravenous (iv) and subcutaneous (sq) dosing of borte-
zomib in the relapsed disease setting, the overall response
rate, time to progression (TTP) and OS were similar
between each dosing method with a significant reduction
in severity and overall incidence of PN. These data have
led to a wholesale change in the route of administration of
bortezomib with a resultant improvement in related toxic-
ity.67,68

Bortezomib is an attractive agent to use in combination
with other drugs and can safely be used in the setting of
renal insufficiency.69,70 Many bortezomib combinations
have been evaluated in phase I-II trials (Table 2).39-42

These combinations generally produce high overall
response rates, in the range of 50%-80%, with encourag-
ing duration of response and OS. The best example of
bortezomib + chemotherapy in the relapsed setting is the
trial comparing bortezomib alone with bortezomib + pegy-
lated liposomal doxorubicin. This trial demonstrated the
superiority of the combination in terms of TTP (9.3 vs. 6.5
months), and also overall survival.71

New agents

HDAC inhibitors
Histone deactylase inhibitors are known to be effective

targets in several cancers and are thought to work primari-
ly through epigenetic modification of gene expression. In
the context of plasma cell disorders, the potential mecha-
nism is thought to be related to the effects of HDAC
inhibitors on HDAC 6, which is critical to the function of
an alternative pathway of protein catabolism, the aggre-
some/autophagy pathway.72 Inhibition of proteasome
function results in activation of the alternative pathway,
the aggresome pathway, and protein catabolism occurs via
this. The combination of proteasome inhibition and
HDAC 6 inhibition (accomplished using HDAC
inhibitors, or tipifarnib73) results in pre-clinical synergy
that has been demonstrated clinically. Preliminary data
from phase I studies combining vorinostat with borte-
zomib demonstrated responses particularly among the
patients who were defined as bortezomib resistant, with an
overall response rate of 30%.74,75 When this was tested in
large phase II randomized trials, the use of vorinostat with
bortezomib was found to be no different from bortezomib
alone in terms of progression-free and overall survival, but
there was significant toxicity associated with vorinostat
administration at the dose and schedule used for the study
that likely limited the ultimate durability of what was
noted to be a higher overall response rate.76,77 In a similar
series of clinical trials, panobinostat (LBH589) was also
tested alone and in combination with bortezomib.78,79

While the single agent activity was limited, the activity in
phase I and II studies combining panobinostat with borte-
zomib demonstrated encouraging response rates with what
appears to be an improved safety profile when compared
with vorinostat. The results of the randomized phase III
Panorama 1 study are currently pending; this is testing
bortezomib/dexamethasone versus panobinostat/borte-
zomib/dexamethasone in an early relapsed myeloma
patient population, and should shed some light on the true
efficacy of this approach in relapsed myeloma. 
Antibodies

The effects of thalidomide and lenalidomide on immune
function have been demonstrated in a number of animal
and pre-clinical models, and include enhancement of NK
cell function, CD8+ T-cell activation, and increased secre-
tion of IL2 and interferon-g.23,80,81 Data with antibodies
directed against plasma cell and B-cell antigens such as
CD40 and CS1 were evaluated in pre-clinical models with
lenalidomide and demonstrated significant synergy.82,83

Experience with the potent CS1 antibody elotuzumab
(known as Huluc63) demonstrates that this target is rela-
tively plasma cell specific, and that the functional activity
of the CS1 antibody requires NK cells to be present for
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activity.84,85 A phase I/II study was designed to test the
clinical efficacy of this approach combining lenalidomide
with elotuzumab (HuLuc63) and low-dose dexametha-
sone.86 In the phase I portion of the trial, patients received
up to 20 mg/kg without experiencing DLT. The ORR for
the phase I study was 82% with 95% of lenalidomide
naïve patients achieving PR or better.86 In a more recent
phase II expansion of this study in which patients were
randomized to receive either 10 or 20 mg/kg of elotu-
zomab in combination with lenalidomide and low-dose
dexamethasone, a recent update of the data suggests not
only does the high response rate hold up, but that the dura-
tion of response is very long as well. With a median follow
up of nearly 21 months, the median PFS was 18 months
for the group that received 20 mg/kg of elotuzomab versus
‘still not reached’ for the group that received 10 mg/kg.87

When compared with historical cohorts of patients who
were treated with lenalidomide and high-dose dexametha-
sone, there is the suggestion that the addition of elotu-
zomab enhanced the ORR and PFS in the context of
relapsed myeloma. Follow up from the randomized phase
III study (Eloquent 2) is clearly needed to better under-
stand the clinical benefit for patients in the relapsed dis-
ease setting, but trends to date are very exciting. 

While there are several other exciting antibody targets in
myeloma with early data (including CD138, CD56, anti-
BAFF, and anti-DKK-1), the antibody which does appear
to provide very early and exciting response data is the
anti-CD38 antibody daratumomab.88 This was initially
presented in 2012 in the context of a phase 1 single agent
study; an encouraging overall response rate and complete
remission rate was noted, suggesting that this may be the
first antibody with single agent activity in the context of

relapsed myeloma. Additional data are needed to under-
stand more fully the extent of response in relapsed and
refractory myeloma. 
Carfilzomib

Carfilzomib is a 2nd generation proteasome inhibitor that
has been studied in a number of different clinical settings,
and was recently approved for use by the FDA in the setting
of relapsed myeloma. The approval was based in part on
clinical experience from several phase II studies evaluating
the efficacy of carfilzomib in relapsed myeloma (Table 4).89-
94 Two phase II clinical studies evaluated carfilzomib in
MM patients, the 003-A0 trial (n=46) in relapsed and
refractory MM89 and 004 trial (n=129) in an earlier relapsed
myeloma patient population.90 In both studies, patients
received carfilzomib 20 mg/m2 iv on Days 1, 2, 8, 9, 15 and
16 every 28 days for up to 12 cycles. The most common
AEs were fatigue, anemia, thrombocytopenia, nausea,
upper respiratory infections, increased creatinine, and diar-
rhea. PN occurred in fewer than 10% of patients with 1
grade 3 in a patient with pre-existing grade 2 PN. The treat-
ment-emergent PN rate was low with grade 3/4 2.2%,
despite the fact that 78% of patients had grade 1/2 PN at
enrollment. The response rate in 003-A0 was 18% PR, 7%
MR, and 41% stable disease (SD) in this cohort of refracto-
ry patients. Subsequently, a ‘stepped-up’ dosing schedule
incorporated a higher dose of 20/27 mg/m2 in order to max-
imize the clinical benefit of carfilzomib. Additional patients
were enrolled to a ‘stepped-up’ dosing in the 003-A1 study
and received 20 mg/m2 for the first cycle and 27 mg/m2

thereafter.91 In the 003-A1 study, in which the increased
dose was used in a refractory myeloma population, a total
of 266 patients were enrolled and 257 were response-evalu-
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Table 4. Carfilzomib trials.

Trials Type/disease N Dose and schedule  Results Serious adverse event
(every 28 days)

PX-171-002  Phase I 37 1.2-27 mg/m2 on Days 1,2, 8,9,15,16 PR 11% (MM) MR 3% (MM) Hypoxia, thrombocytopenia; 
Alsina, et al.94 (hematologic SD 16% (6% MM; 10% NHL) elevated creatinine

malignancies)

PX-171-003-A0 Phase II 46 CFZ: 20 mg/m2 on Days 1,2,8,9,15,16  >PR 18%; MR 26%; 5.1 Anemia, thrombocytopenia
Jagannath, et al.89 (R/R myeloma) SD 41% median TTP neutropenia, fatigue, 

mos; median DOR 7.4 mos URTI; dyspnea

PX-171-003-A1 Phase IIb 257 CFZ: Days 1,2,8,9,15,16 >PR 24%; median DOR-7.4 mos Anemia, 
Siegel, et al.91 (R/R myeloma) (20 mg/m2 cohort 1; >PR in pts with CTG abnormalities: 28%; thrombocytopenia  

27 mg/m2 cohort 2-12) median DOR-7.0m; median OS 15.5m neutropenia

PX-171-004 Phase II 129 Cohort 1: 20/20 mg/m2 Cohort 1:ORR 42%; CR 3%; VGPR 14%. Anemia, thrombocytopenia
Vij, et al.90 (R or R myeloma; Cohort 2 : 20/27 mg/m2 Cohort 2: ORR 52%; CR 2%; VGPR 27% neutropenia, pneumonia,

bortezomib naïve) fatigue, dyspnea

PX-171-005  Phase II 39 CFZ: 15/20 mg/m2 escalation  CBR 37% (PR 23%; MR 14%); SD 37% Fatigue, anemia, diarrhea,
Badros, et al.92 (R/R myeloma with to 27 mg/m2 nausea, thrombocytopenia, 

renal impairment) on Days 1,2,8,9,15,16 constipation

PX-171-006  Phase Ib/II 52 CFZ: 20/27 mg/m2 on Days 1,2,8,9, 15, 16; ORR 78% (PR 38%; VGPR 22%, Neutropenia, anemia
Wang, et al.93 (R/R myeloma) L 25 mg Days 1-21; D 40 mg Days 1,8,15,22 CR/sCR 18%) thrombocytopenia

CFZ: carfilzomib; L: lenalidomide D: dexamethasone; PR: partial response; MR: minimal response; SD: stable disease; TTP: time to progression; DOR: duration of response; CR: complete response; nCR: near CR;
sCR: stringent complete response; OS: overall survival; ORR: overall response rate; VGPR: very good partial response; CBR: clinical benefit response; MM: multiple myeloma; NHL: non-Hodgkin’s lymphoma; CTG: clini-
cal trials group; URTI: upper respiratory tract infection; mos: months.



able. ORR was 24% with median duration of response of
7.4 months. The most common treatment-related AEs were
predominately hematologic events with a very low inci-
dence of neuropathy.  

As a consequence of the higher response rate seen with
the ‘stepped-up’ dosing in the 003 trial, the 004 trial was
also modified to increase the dose and assess responses.90

A subsequent cohort of patients were treated with
‘stepped-up’ dosing with 20 mg/m2 for the first cycle and
27 mg/m2 thereafter in cohort 2 (n=70). The study includ-
ed patients who were naïve to bortezomib treatment
(n=129) and patients who had received prior bortezomib
(n=35). The subset of patients who were bortezomib-treat-
ed patients had an ORR of 18%. The overall response rate
for cohorts 1 and 2 were ORR 42% and 52%, with VGPR
rates of 17% and 29% or over, and CR rates of 3% and 2%,
respectively. The median PFS was 8.3 months for all
patients, and the most common grade 3/4 toxicities were
lymphopenia 14% and 19%, anemia 12% and 17%, throm-
bocytopenia 15% and 11%, neutropenia 12% and 14%,
pneumonia 14% and 11%, fatigue 12% and 1%, and dys-
pnea 5% and 6%, respectively. Interestingly, grade 1/2 PN
was seen in only 14% and 19% patients and grade 3/4 in
only 2% and 0%, respectively. 

An additional area of exploration for carfilzomib was
the efficacy and safety in the context of renal dysfunction.
Badros and colleagues performed a phase II trial to assess
the safety and efficacy of carfilzomib in relapsed myeloma
patients with varying degrees of renal insufficiency.92

Patients were enrolled on the basis of base-line renal func-
tion broken down into normal (CrCl 80 mL/min), mild
(50-79), moderate (30-49), and severe (<30) renal func-
tion. Patients received iv carfilzomib at a dose of 15
mg/m2 on Days 1, 2, 8, 9, 15 and 16 every 28 days for
cycle 1, escalating to 20 mg/m2 in cycle 2 and to 27 mg/m2

in cycle 3. Grade 3/4 AEs include anemia, thrombocytope-
nia, fatigue, increased creatinine, and mental status
changes. Dose adjustments were not required suggesting
manageable toxicity in renal failure patients. 

Finally, as single agent activity was defined, combina-
tion therapy represented the next step. In this process, one
of the first combinations to be used was the phase I/II trial
combining carfilzomib with lenalidomide and dexametha-
sone.93 Dosing consisted of carfilzomib 20 mg/m2 on Days
1-2 of cycle 1; 27 mg/m2 thereafter is administered on
Days 1, 2, 8, 9, 15 and 16, oral (PO) lenalidomide 25 mg
Days 1-21, and 40 mg dexamethasone PO (Days 1, 8, 15,
22) in a 28-day cycle. Among the 52 patients enrolled, no
DLTs were reported and 11.5% of patients had serious AEs
(6 of 52). Hematologic AEs, including grade 3/4 neutrope-
nia (n=12), anemia (n=8), and thrombocytopenia (n=8),
were manageable. The ORR was 78% (Cr/sCR 18%,
VGPR 22%, PR 38%, MR 2%, SD 8%) and toxicities with
prolonged administration of this regimen were manage-
able (14-23 months). This trial was used as the basis for
the recently completed phase III ASPIRE trial in which
patients were randomized to receive either CRd (carfil-
zomib/lenalidomide/dexamethasone) versus Rd (lenalido-
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Table 5. Pomalidomide trials.

Trials Type/disease N Dose and schedule  (every 28 days) Median prior therapy Overall response, ≥PR

Schey95 Phase I 24 POM 1,2,5,10 mg 3 (1-6) 54%
Days 1-28 q 28 

Richardson96 Phase I 38 POM 2,3,4,5 mg 6 (2-17) 25%
Days 1-21 q 28 
D 40 mg weekly  

Richardson97 Phase II 221 POM 4 mg 5 (2-13) 13%
Days 1-21 q 28
POM 4mg + Days 40 mg/wk 34%
Days 1-21 q 28

Leleu98 Phase II 84 POM 4 mg + D 40 mg/wk 5 (1-13) 35%
Days 1-28 q 28
POM 4 mg + D 40 mg/wk 34%
Days 1-21 q 28

Lacy99 Phase II 35 POM 4mg + D 40 mg/wk 6 29%
Days 1-28 q 28

Shah103 Phase I 30 POM 4mg + D 40 mg/wk 6 (1-15) 50%
Days 1-28 q 28
CFZ escalating dose

Richardson101 Phase I 15 POM 1-4 mg Days 1-14 q 21 2 (1-4) 73%
D 20 mg day of and after V
V 1-1.3 mg/m2 Days 1,4,8,11

Palumbo102 Phase 1 55 POM 1-2.5 mg continuous 3 (1-3) 51%
P 50 mg qod
C 50 mg qod

PR: partial response; POM: pomalidomide; D: dexamethasone; CFZ: carfilzomib; V: bortezomib; P: prednisone; C: cyclophosphamide; 



mide/dexamethasone) in the setting of relapsed myeloma.
Results are currently not available from the trial but
enrollment has been completed. 
Pomalidomide

Pomalidomide is the newest of the immunomodulatory
class of agents that is now being evaluated in larger phase
clinical trials. Data initially presented by Schey and col-
leagues demonstrated favorable tolerability and activity of
this agent in myeloma patients with early relapse (Table
5).95-102 Trials initially from the Mayo Clinic group demon-
strated a good overall response rate in the context of
relapsed myeloma, and this has now been tested in a num-
ber of different dosages and schedules.103,104 It appears
that, across the board, the response rate among patients
with lenalidomide-resistant disease using pomalidomide
and dexamethasone is 30%. This was seen in trials from
the US99,105 as well as in Europe.98 In recently reported data
from a European study comparing pomalidomide/dexam-
ethasone with high-dose dexamethasone alone among
refractory myeloma patients, not only was the overall
response rate and progression-free survival superior for
pomalidomide/dexamethasone, the overall survival also
favored the use of pomalidomide/dexamethasone.106 Trials
have varied the starting dose of pomalidomide (2-4 mg) as
well as the dosing schedule (continuous vs. ‘3 weeks on/1
week off’) with different results, but most studies testing
the use of pomalidomide in the relapsed setting are using
4 mg on a ‘3 weeks on/1 week off’ schedule, though effi-
cacy with fewer side effects has been seen at the 2 mg
dose. Similar to data with lenalidomide and thalidomide,
there are now trials that demonstrate very encouraging
overall response rates when pomalidomide is combined.
Trials were recently reported combining pomalidomide
with cyclophosphamide as well as bortezomib and carfil-
zomib with very encouraging response rates. In the
cyclophosphamide combination trial, the overall response
rate was 51% with a maximum dose of pomalidomide of
2.5 mg in combination with 50 mg of cyclophosphamide
given every other day and 50 mg of prednisone also every
other day.102 In the bortezomib combination trial, the over-
all response rate was 73% with full-dose bortezomib at the
standard dose and schedule with pomalidomide 4 mg
given on Days 1-14.101 In the carfilzomib combination, the
overall response rate was 50% with full-dose carfilzomib
(20/27 mg/m2) and pomalidomide at 4 mg on Days 1-21.100

Many other studies are ongoing combining pomalidomide
with existing agents or agents under development, and it is
clear that this agent has single agent activity, as well as
good potential in combined therapies. 

Conclusion

Combinations of agents in relapsed and refractory MM
are clearly moving forward. Advantages of combination
therapy include higher overall response rates and, in many
cases, better depth of responses, as well as the ability to
revisit classical agents such as immunomodulatory agents
and proteasome inhibitors that have formed the backbone
of earlier treatment approaches. The question about
sequencing versus combination therapy in the relapsed
setting has yet to be settled, but emerging data suggest that
combinations are more effective, and that as patients

develop more and more resistant disease, the sensitivity to
any agent begins to decline. This supports the use of com-
bination therapy in the context of initial diagnosis, and this
is now also being tested in the relapsed setting. In the bal-
ance is the concept that sequential therapy may be associ-
ated with less toxicity than is seen with combination ther-
apy, and since few (if any) of these patients are cured of
their disease, whether to treat a patient with single agents
in sequence rather than combinations is an area of active
study and ongoing debate. It is also clear that there are
many new tools to use at our disposal and many more will
be developed. As such, the use of genomics and whole
genome sequencing will be critically important as we seek
to tailor therapy to a given patient’s disease, and to maxi-
mize duration of response while minimizing treatment-
related toxicity. 
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Allogeneic stem cell transplantation 
in multiple myeloma patients

Multiple myeloma 

A B S T R A C T

Introduction

Allogeneic stem cell transplantation (allo-
SCT) is probably the only treatment for multi-
ple myeloma (MM) with a curative potential.
This is likely due to the graft-versus-myeloma
effect (GvM) which was proven by the
achievement of sustained complete remissions
by donor lymphocyte infusions (DLI) without
any other therapy in patients with a relapse
after allo-SCT.1-5 Clinical responses to DLI
after myeloablative and non-myeloablative
conditioning have been reported in up to 50%
of patients, including 20% of patients with a
complete remission (CR).4,5 In several
patients, these CRs were durable for more than
ten years. The role of allo-SCT in multiple
myeloma, however, is still a subject of debate
due to the high mortality and morbidity related
with this procedure. Particularly myeloabla-
tive conditioning in MM has an unacceptably
high transplant-related mortality (TRM).6-12

Due to better selection of patients, improved
surveillance and therapies for opportunistic
infections, and the use of peripheral blood
stem cells (PBSC) instead of bone marrow
stem cells, the European Bone marrow
Transplantation (EBMT) group reported a
reduction in TRM from 46% to 30%.
However, survival at three years improved
from 35% to 56% without a plateau in progres-
sion-free survival (PFS) or overall survival
(OS) curves.13

Reduced intensity conditioning 

Retrospective studies and phase II studies
The initial promising results of transplanta-

tions with non-myeloablative conditioning
(NMA) have renewed interest in allo-SCT as a
treatment option for multiple myeloma.
Establishing donor lympho-hematopoieses
without the acute toxicity associated with
ablative SCT could be a major advantage for a
disease like multiple myeloma that affects
older patients and may be sensitive to allo-
reactivity as shown by DLI. The pioneering
studies in multiple myeloma were performed
by the Seattle group who showed that donor
engraftment could be achieved with the com-
bination of low-dose total body irradiation
(TBI) only (2Gy) and high-dose immune sup-
pressive drugs ciclosporin and mycophenolic
acid (MMF).14 The Seattle group introduced
the strategy of tandem autologous transplanta-
tion followed 2-4 months later by a reduced
intensity conditioning (RIC) allograft. In 52
patients treated with this tandem modality, a
CR was achieved in 48% of them and progres-
sion-free (PFS) and overall survival (OS) at 48
months were 48% and 69%, respectively.
However, TRM was still 22%.14 A wide variety
of conditioning regimens for MM have since
then been pioneered and published, ranging
from low-intensity schemes such as
cyclophosphamide/fludarabine, to fairly dose-
intensive regimens with moderately high-dose

Allogeneic stem cell transplantation (allo-SCT) as a treatment option for multiple myeloma (MM)
patients is heavily debated.  In this educational review, results from prospective and retrospective
studies of allo-SCT in myeloma are presented. Although the introduction of reduced intensity condi-
tioning (RIC) has lowered the high treatment-related mortality associated with myeloablative condi-
tioning, there is no convincing evidence that allo-RIC improves survival compared to autologous stem
cell transplantation. New strategies are discussed aimed at lowering transplant toxicity and boosting
the graft-versus-myeloma effect, and these are urgently needed to make allo-RIC safer and more
effective for myeloma patients. But until this is achieved, allo-RIC in myeloma should only be recom-
mended in the context of clinical trials. 

Learning goals

At the conclusion of this activity, participants should be able to:
- discuss treatment options for high-risk myeloma with the emphasis on a possible role for allogeneic

stem cell transplantation;
- discuss which conditioning regimens are most appropriate for patients with myeloma; 
- speculate on the post-allogeneic stem cell transplantation options to boost the graft-versus-myelo-

ma effect.



melphalan. In a review by the EBMT, 26 different condi-
tioning schemes with and without T-cell depletion were
identified for myeloma. No definite conclusions, however,
could be drawn from these studies as most were retrospec-
tive evaluations of small numbers of patients who in many
cases had been heavily pre-treated.15

Prospective studies of NMA allo-SCT as part
of first-line therapy

The definite value of NMA allo-SCT for MM should be
determined by prospective phase III studies with newly
diagnosed patients that include a biological randomization
(donor vs. no donor comparison). Five larger studies of
this kind have been published. In the French IFM study,
patients with an HLA identical sibling donor and high-risk
MM defined by beta2(β2)-microglobulin 3 mg/L and dele-
tion of chromosome 13 were candidates for auto-SCT fol-
lowed by allo-SCT after NMA with busulfan, fludarabine
and 5-day antithymocyte globulin (ATG). Patients without
a sibling donor were treated with double auto-SCT. The
intention to treat analysis showed no significant difference
in event-free survival (EFS) (25 months auto/allo vs. 30
months double auto) and OS (35 auto/allo vs. 41 months
double auto). A major criticism of this study design was
the use of high-dose ATG included in the conditioning that
results in profound in vivo T-cell depletion. The beneficial
effects of this in vivo T-cell depletion are the low incidence
of acute and chronic graft-versus-host disease (GvHD).
However, the detrimental effect is the elimination of the
GvM effect.16

A more positive result was published by Bruno et al. In
this study, 58 patients with an HLA identical sibling donor
assigned to be treated with tandem auto/RIC (conditioning
low-dose TBI only) achieved higher CR (55% vs. 26%),
and after a median follow up of 45 months had significant
prolonged EFS (35 vs. 29 months) and OS (80 vs. 54
months) as compared to the 59 patients assigned to be
treated with double myeloablative auto-SCT. The criti-
cisms of this study were the small number of patients and
the relatively inferior outcome of the double autologous
arm.17 An encouraging note was, however, given by the
fact that TRM of RIC in the up-front setting may be
strongly reduced (IFM 10.9%, Bruno et al. 11%). Of the
357 patients in the prospective EBMT study, 108 patients
with an HLA-identical sibling donor were allocated to the
auto-allo arm and 249  patients without a matched sibling
donor were allocated to the auto arm.18 Conditioning for
the auto arm was melphalan 200 mg/m2; conditioning for
the allo arm was TBI 2 Gy plus fludarabine 30 mg/m2/d
for three days. After a median follow-up time of 61
months, PFS at 60 months was seen to be significantly bet-
ter with auto/allo than with auto-SCT alone (35% vs. 18%;
P=0.001), as was the risk of death and of relapse in the
long term (P=0.047 and P=0.003, respectively). Overall
survival at 60 months was 65% versus 58%, and relapse
incidence was 49% versus 78%. Dutch HOVON per-
formed a donor versus no-donor analysis of patients treat-
ed in the HOVON-50 study, a study that was originally
designed to examine thalidomide combined with intensive
therapy.19 In this study, 138 patients without an HLA-iden-
tical sibling donor and 122 patients with a donor were
evaluated after a median follow up of 77 months. There

was no significant difference in complete remission, PFS,
or OS between the 2 groups. PFS at six years was 28% for
patients with a donor versus 22% for patients without a
donor (P=0.19) and OS at six years from high-dose mel-
phalan was 55%, irrespective of having a donor (P=0.68)
(Figure 1). Cumulative incidence of non-relapse mortality
at six years after autologous-SCT was 16% in the donor
group versus 3% in the no-donor group (P<0.001).
However, PFS was significantly prolonged in the 99
patients who actually proceeded to allo-SCT compared
with the 115 patients who continued maintenance or
received a second high-dose melphalan therapy, but the
difference did not translate into a prolonged survival ben-
efit. The large US multi-center trial from the Blood and
Marrow Transplant Clinical Trials Network (BMT CTN)
including 710 patients also compared tandem autologous
transplants with autologous-reduced intensity allografts
based on biological randomization criteria.20 Patients were
classified as standard risk or high-risk on the basis of cyto-
genetics and β2-microglobulin concentrations. There was
no difference in 3-year PFS or OS between the 2 groups:
43% versus 46% in the auto/auto group (P=0.7) and 77%
versus 80% in the auto/allo group (P =0.19), respectively.
The results of these prospective studies do not support a
general application of allo-SCT as part of first-line therapy
in standard-risk myeloma patients. This was confirmed by
two recent meta-analyses that showed no benefit for auto-
allo in the up-front setting with regard to OS compared to
single or double auto-SCT. 20-22

The results of the prospective donor versus no donor
studies are summarized in Table 1. 

Allo-SCT in high-risk myeloma

High-risk myeloma defined by cytogenetic abnormalities
An important question is whether patients with high-risk

myeloma might benefit from a donor mediated graft-ver-
sus-myeloma effect. As mentioned above, in the IFM
study, patients with high-risk disease, defined as β2-
microglobulin less than 3 mg/L and chromosome 13 dele-
tion (by fluorescence in situ hybridization, FISH) did not
benefit from auto/allo-SCT as compared to the patients
who were treated with double auto. The registry of the
Société Française de Greffe de Moelle et de Thérapie
Cellulaire, performed a retrospective study including 143
myeloma patients transplanted between 1999 and 2008.23

When patients were grouped according to the presence of
any of the poor prognosis cytogenetic abnormalities
t(4;14), del(17p) or t(14;16) (n=53) or their absence
(n=32), no difference in outcomes was observed between
these 2 groups. The authors conclude that allo-SCT could
potentially be of benefit to high-risk myeloma patients. 

The incidence and impact of achievement of molecular
remission (mCR) and high-risk cytogenetics was prospec-
tively investigated in 73 patients after tandem auto/allo-
SCT including 16 patients with high-risk cytogenetic fea-
tures defined by positive FISH for del(17p13) and/or
t(4;14).24 Response, including CR and molecular CR
(mCR), were equal irrespective of risk features. After a
median follow up of six years, overall 5-year PFS was
29%, with no significant difference between patients har-
boring del 17p, t(4;14) and others (P=0.70). The 5-year
progression-free survival differed substantially according
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Figure 1. Progression-free survival (PFS) (A) and overall survival (OS) (B) according to availability of an HLA-identical sib-
ling in the HOVON 50 study. PFS (C) and OS (D) according to treatment started after auto-SCT, i.e. allo-RIC versus main-
tenance with thalidomide or α-interferon. RIC, reduced intensity conditioning

Table 1. Prospective donor versus no donor studies in myeloma.

Study group Number TRM CR PFS OS

IFM16

Donor 65 11% 33% 0% / 5yr 33% / 5yr
No donor 219 5% 33% 0% / 5 yr 44% / 5yr

Bruno et al.17

Donor 82 10% 55% 42% / 4yr 75% / 4 yr
No donor 80 4% 26% 20% / 4 yr 53% / 5 yr

HOVON19

Donor 122 16% 37% 26% / 6 yr 55% / 6 yr
No donor 138 3% 43% 22% / 6 yr 55% / 6yrs

EBMT18

Donor 108 12% (24 months) 51% 55% / 5 yr 65% / 5 yr
No donor 249 3% 41% 22% / 5 yr 58% / 5 yr

BMT-CTN20

Donor 189 11% (36 months) 58% 43% / 3 yr 77% / 3 yr
No donor 436 4% (36 months) 48% 46% / 3 yr 80% / 3 yr



to the achieved remission rates: 17% for PR, 41% for CR,
57% for mCR, and 85% for sustained mCR. The authors
suggest that auto/allo-SCT may overcome the negative
prognostic effect of del(17p13) and/or t(4;14), and that
achievement of molecular remission resulted in long-term
freedom from disease.

More solid data about the effect of allo-SCT in high-risk
MM may come from the prospective EMN-02/HOVON
95 study. Patients with high-risk features based on FISH
included in this study are candidates for auto/allo after
induction therapy and may be compared to patients with-
out a donor treated according to the other 2 arms of the
protocol (Figure 2).
High-risk myeloma defined by early relapse after autolo-
gous stem cell transplantation

Patients with relapsed disease after first-line therapy
have a poor prognosis. This is illustrated by the median
survival of only 19 months after relapse from thalidomide
maintenance of patients who were included in the
HOVON 50 study.25 Relapse after auto-SCT may be even
more challenging when the novel anti-myeloma agents
like bortezomib and/or lenalidomide were part of the
induction and maintenance. The design of the recently
started EMN05/HOVON 108 study is based on a condi-
tioning regimen with maximal T-cell depletion by alem-
tuzumb to create a platform for subsequent immunothera-
py with preventive DLI and mHag dendritic cell vaccina-
tion in patients with a suitable mHag mismatch. To pre-
vent early relapse after allo-SCT, patients start with a short
course of consolidation therapy three months after stem
cell infusion to prevent early relapse. Figure 3 shows the
study design. A similar study led by Perez in first-relapsed
patients has been started in Spanish transplantation cen-
ters. No data from this study are available yet.

Post-transplant strategies to improve the
graft-versus-multiple myeloma effect

A role for the novel anti-myeloma agents?

Lenalidomide is an immunomodulatory drug with
potent stimulatory effects on host anti-tumor T and natural
killer (NK) cell immunity and cytotoxicity. Lenalidomide
is 50-2000 times more potent than its analog thalidomide.
It increases proliferation, secretion of IFN-γ by T cells and
enhances cytotoxic T-cell and NK-cell mediated killing of
MM tumors.26-28 Given these properties, lenalidomide is
expected to have a significant impact on the GvM effect. 

Bortezomib is a proteasome inhibitor and blocks the
activation of NF-κB, a highly important pathway for MM-
cell survival. Since proteasomes and the NF-κB pathway
are also important components of antigen processing and
cell-mediated cytokine responses, a number of studies
explored the influence of bortezomib on the cellular
immune system. Bortezomib inhibited in vitro allo-reac-
tive mixed lymphocyte responses but increased the T-cell
dependent killing of the tumor cells.29 Consistently, in a
murine BMT model, bortezomib down-regulated cytokine
production, induced T-cell apoptosis and prevented
GvHD, while the GvT effect was preserved.29

Nonetheless, delayed bortezomib administration appears
to accelerate GvHD, underscoring the need for further
careful studies on the timing and schedule of administra-
tion.30 On the other hand, bortezomib can down-regulate
HLA class I on MM cells, while this is not the case for nor-
mal cells like B cells, lymphocytes, monocytes, CD34
progenitor cells and dendritic cells.26 Thus, bortezomib
sensitizes tumor cells toward NK-cell mediated lysis by
down-regulating MHC class I. Taken together, these
results indicate that bortezomib may be highly beneficial
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Figure 2. Patients included in the EMN02/HOVON 95 study
with high-risk disease may be allocated to auto/allo-SCT
following induction therapy with cyclophosphamide, vel-
cade, dexamethasone (CVD). 

Figure 3. Patients with a first chemo-sensitive relapse fol-
lowing auto-SCT may be included. The allo-RIC is per-
formed after conditioning with fludarabine, busilvix and
alemtuzumab. Patients with a suitable mHag mismatch
are candidates for a second DLI combined with vaccination
with dendritic cell (DC) loaded with the relevant mHag pep-
tide. DLI: donor lymphocyte infusion.



in tempering the potential immune side effects of lenalido-
mide, in particular GvHD. 
Efficacy of novel anti-myeloma agents in relapsed 
myeloma after allo-SCT 

Clinical observations support a possible role for the
novel anti-myeloma agents as post-allo immune modulat-
ing agents stimulating graft-versus-myeloma. Thalido -
mide improved the response to DLI, apparently without
enhancing GvHD.31 Lenalidomide as salvage therapy in a
group of patients with progressive symptomatic disease
after allo-RIC induced responses in 14 of 15 patients,
including 3 patients with a CR.32 Unfortunately, some of
these responses were accompanied by fulminating GvHD.
These favorable results were recently confirmed in a mul-
ticenter retrospective study including 52 patients receiving
lenalidomide alone or in combination with dexamethasone
as salvage therapy after allo-SCT.33 Lenalidomide induced
a high response rate of 83% (including 29% complete
response). However, 16 patients developed or exacerbated
acute graft-versus-host disease and 2 patients (4%) died,
one from treatment toxicity and one to graft-versus-host
disease. 

In MM patients, bortezomib has been reported to both
stimulate and improve GvHD.29-30 In the study recently
published by Corradini et al., bortezomib was remarkably
effective in patients with relapsed disease after allo-SCT,
without apparent excessive stimulation of GvHD.34 The
dissociation of GvHD and GvM is of vital importance in
improving the efficacy of allo-SCT and DLI. The novel
anti-MM agents in the post allo-SCT setting may favor
such a separation. However, exact mechanisms of action,
as well as the optimal timing of these agents post- trans-
plant, have yet to be determined. 
Lenalidomide maintenance following tandem auto-SCT/
allo-SCT 

In the HOVON 76 study, lenalidomide 10 mg daily
maintenance therapy was started 1-6 months after tandem
auto-allo-SCT that had been part of first-line therapy for
patients aged 65 years and under.35 Thirty-five eligible
patients were enrolled of whom 30 started with lenalido-
mide. After 2 cycles, 14 patients (47%) had to stop treat-
ment, mainly because of the development of acute GVHD;
5 patients (17%) had to stop treatment because of other
adverse events, and 5 patients (17%) because of progres-
sion. Responses improved in 37% of patients, and the esti-
mated 1-year PFS from start of maintenance was 69%.
Lenalidomide increased the frequency of human leukocyte
antigen-DR+ T cells and regulatory T cells, without corre-
lation with clinical parameters.

Kroger et al. performed a prospective phase I/II study to
define the dose-limiting toxicity and the immunological
effects of lenalidomide given early (Day 100-180) after
allograft for 2 cycles in patients with MM.36 Also in this
study, acute GvHD was a major problem and maximum
tolerable dose was 5 mg/daily. GvHD after start of
lenalidomide occurred in 38% of patients after a median of
22 days, and was a leading reason to discontinue the study
in 29% of the patients. Natural killer (NK) cells isolated
from the peripheral blood of patients demonstrated a sig-
nificantly improved anti-myeloma activity after lenalido-
mide treatment. Although strong positive immune effects
may be induced, however, the conclusion from these stud-

ies must be that lenalidomide maintenance after non-mye-
loablative allo-SCT with unmanipulated grafts is not fea-
sible in MM patients, mainly because of the induction of
acute GVHD.

Other strategies to boost the GvM effect 

Other strategies that can be explored are NK-cell thera-
pies, adoptive T-cell therapy and vaccination studies.37-45

Adoptive T-cell therapy and vaccination

A crucial role for professional antigen presenting cells in
the graft-versus-tumor effect

Over the past years, several experimental studies
demonstrated that the development of GvHD, as well as of
graft-versus-tumor (GVT) effect, is not only dependent on
the presence of donor CD4+ and CD8+ T cells in the trans-
plant but also on the presence of professional antigen pre-
senting cells (APCs) capable of properly activating these
T cells.46-49 Murine studies also showed that DLI applied in
a mixed-chimeric status induced GvT due to the presence
of host APCs but had no beneficial effect after the achieve-
ment of full donor-chimerism, a condition in which host
APCs were no longer present.50,51 In agreement with these
results, clinical studies showed that the development of
GvT was indeed dependent on a mixed-chimeric status in
the patients.52-54 Thus, there is now compelling evidence
that the presence of professional APCs capable of present-
ing host antigens is crucial for the development of effec-
tive GvT responses after DLI. This strongly suggests that
the GvT responses after DLI could be specifically
improved by co-injection of professional APCs loaded
with GvT-associated antigens.
Dendritic cells: key APCs for initiation of T-cell responses

A rare population of blood cells, named dendritic cells
(DCs), are currently the best known APCs to T cells. Over
the past decade, the development of in vitro DC-culture
techniques has facilitated several DC-based therapeutic
vaccination studies for cancer.55 Many clinical trials have
demonstrated that vaccination with antigen pulsed and
optimally-maturated DCs is safe, well tolerated and results
in enhanced immunity to the loaded antigens.56

Minor histocompatibility antigens (mHags): major target
antigens of GvT in HLA-matched allo-SCT

In allo-SCT, the GvHD-risk can be significantly reduced
by matching the recipient and the donor for HLA antigens.
Nonetheless, strong GvT effects can develop even after a
transplant between fully HLA-identical donor-recipient
pairs.57 This illustrates the prime importance of the so-
called ‘minor histocompatibility antigens’ (mHags) in
GvT after HLA-identical allo-SCT. In fact, mHags are
polymorphic peptides presented by HLA molecules to
donor T cells.58 These peptides are derived from cellular
proteins that are not entirely identical in the donor and the
recipient. Many of these differences are due to non-syn-
onymous single nucleotide polymorphisms (SNP) in allel-
ic genes.59 The clinical relevance of mHags has been
demonstrated by several studies (reviewed by Spaapen
and Mutis60) showing that:
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i) mHag specific T cells can be readily isolated from
patients with good clinical anti-tumor responses;

ii) virtually all mHag-specific T cells tested so far can
lyse malignant cells from leukemia, lymphoma and
myeloma patients;

iii) the emergence and expansion of mHag specific
CTLs in the circulation is frequently associated with clin-
ical responses after DLI.
GvT-associated, hematopoietic system specific mHags:
tools for improving GvT with low risk of GvHD

Since mHags are important for both GvT and GvHD,
initially it seemed impossible to utilize mHags for thera-
peutic purposes. However, in the mid-1990s, it was dis-
covered that some mHags were solely expressed in
hematopoietic cells, including their malignant counter-
parts. The mHags HA-1 and HA-2 were the first identified
hematopoietic mHags. They are broadly expressed in all
hematologic malignancies. Subsequently, several other
hematopoietic-restricted mHags were identified: the B-
cell associated mHags PANE-1 and HB-1 and ACC-1,
ACC-2, LRH-1 and UTA2-1 which are expressed by var-
ious myeloid and lymphoid malignancies, including
MM.61 Finally, we have recently identified the first gen-
uine hematopoietic mHag presented by HLA class II mol-
ecules to CD4+ CTLs.62 This antigen is encoded by a sin-
gle amino acid substitution on the B-cell specific molecule
CD19, which is expressed by almost all B-cell malignan-
cies with the exception of MM.

Although the HLA restriction of mHags and the require-
ment of a mHag mismatch between the recipient and the
donor are main restrictions for the general applicability of
mHag-based therapies, the availability of these 8 antigens
now makes it possible to offer this therapy to 23% of the
patients in the HLA-identical sibling setting, and to a min-
imum of 40% of patients in the HLA-matched MUD allo-
SCT setting. 
Clinical responses to host DC vaccinations in MM patients

We recently performed a DC vaccination trial to
improve the GvT effects in DLI non-responder MM
patients. In this trial, a second DLI was combined with
infusion of ex vivo generated but antigen unloaded host-
DCs. Eight patients received DC vaccinations combined
with DLI. A fraction of DC vaccines were pulsed with a
foreign protein (KLH) in order to evaluate the potency of
vaccination. In 5 of 6 patients, skin tests two weeks after
the last vaccination revealed strong positive indurations
against host-DCs. In all patients, functional assays (T-cell
proliferation, IFN-γ release) revealed the development of
T-cell responses against KLH and host-DCs starting from
the second or last vaccination. In one patient, we also
detected T-cell responses against host PBMCs as well as
against malignant cells. Although vaccination did not
result in an objective GvT effect in 6 patients, one patient,
who had a very low level of tumor load at the time of vac-
cination, entered into remission and is still free of disease
after 48 months. These results indicated that DC vaccina-
tions combined with DLI is feasible, safe and capable of
inducing T-cell responses. However, a more efficient tar-
geting of the donor T cells toward malignant cells is nec-
essary to achieve better overall clinical responses. The
next step logical step is the loading of the autologous DC
cells with myeloma associated, hematopoietic system spe-

cific mHags to improve the clinical responses of MM
patients to DLI with low risk of GvHD. Such a study was
recently initiated in DLI non-responding patients with
relapsed or residual disease after allo-SCT.

Future aspects

A future role for allo-SCT in myeloma will depend
mainly on 2 aspects. Are we able to reduce morbidity and
mortality of the conditioning regimen and can we substan-
tially boost the graft-versus-tumor effect. One attractive
approach seems to be that of depleting T cells from the
graft to reduce GvHD and create a platform for immune
manipulation to enhance GvM.63 Tools to create this may
be CD34 selection, CD3/CD19 depletion or αβ T-cell
depletion of the graft.64-66 We apply alemtuzumab in the
conditioning regimen as cited above. However, the first
results show that there is probably a very narrow window
between too great a depletion of T cells resulting in post-
transplant severe infections and graft failure, and insuffi-
cient T-cell depletion resulting in acute and chronic
GvHD. Both situations impede the subsequent
immunotherapy of the protocol. It is also not clear what is
the best way to specifically boost the GvM effect. For this,
greater insight is still needed into the role of the different
T-cell subsets involved, including Treg cells and mecha-
nisms of immune resistance, like the role of PDL-1, IDO
in MM cells and the contribution of the myeloma microen-
vironment. The final conclusion is that a possible future
role for allo-SCT in MM can only be established by
prospective studies exploring novel approaches.
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Introduction

Myelodysplastic syndromes (MDS) are a
heterogeneous group of chronic myeloid neo-
plasms characterized by varying degrees of
cytopenia with dysplastic blood cell morphol-
ogy, frequently terminating in acute myeloid
leukemia (AML).1 Reflecting their hetero-
geneity, MDS show varying degrees of lineage
involvement, blast/ring sideroblast counts and
cytogenetic lesions, depending on which the
current WHO classification distinguishes sev-
eral subtypes of MDS, including refractory
cytopenias with unilineage (RCUD) or multi-
lineage (RCMD) dysplasia, refractory anemia
with ring sideroblasts (RARS), refractory ane-
mia with excess blasts (RAEB), MDS with
isolated del(5q) and other subtypes.2 However,
the discrimination between MDS and other
myeloid cancers, such as acute myeloid
leukemia (AML), myeloproliferative neo-
plasms (MPN) and myelodysplastic/myleo-
proliferative neoplasms (MDS/MPN), and
among different MDS subtypes is frequently
obscured in many borderline cases, suggesting

common underlying mechanisms shared by
these apparently different entities of myeloid
malignancies. Meanwhile, dramatic advances
in high-throughput genome technology of
recent years have provided a novel opportuni-
ty to understand the molecular genetics/patho-
genesis of MDS and other myeloid malignan-
cies in terms of gene mutations through com-
prehensive detection of genetic lesions using
massively parallel sequencing.3-8 Moreover,
deep sequencing of large numbers of somatic
mutations detected by whole genome sequenc-
ing in consecutively obtained tumor speci-
mens has enabled detailed analysis of the
intratumoral structure of gene mutations and
their clonological behaviors that shapes pro-
gression from MDS to secondary AML
(sAML) in terms of clonal evolution. In this
review, recent progress in molecular genetics
of MDS and its relevance to pathogenesis will
be discussed.

Spectrum of gene mutations in MDS

Somatic gene mutation in MDS was first

Myelodysplastic syndromes

During the past ten years, major mutational gene targets of myelodysplastic syndromes (MDS) have
been revealed relying on high-throughput genomic technologies such as massively parallel sequencing
of MDS genomes. Frequent mutations in epigenetic regulators and RNA splicing machinery are among
most relevant discoveries, although their functional impacts on MDS pathogenesis has not been fully
clarified. The spectrum of gene mutations is largely overlapped to that found in other myeloid neo-
plasms including acute myeloid leukemia (AML), myelodysplastic syndromes/myeloproliferative neo-
plasms (MDS/MPN) and myeloproliferative neoplasms (MPN), indicating common molecular patho-
genesis among them. Meanwhile, some mutations, including spliceosome mutations, are more preva-
lent in MDS and therefore more tightly linked to MDS-specific pathogenesis. Many MDS patients show
multiple subclones originated from a common ancestor at diagnosis that are dynamically shaped by
acquisition of new gene mutations and subsequent clonal selection, progressing to secondary acute
myeloid leukemia (sAML). Deep sequencing of recurrent gene mutations in multiple cases indicates the
presence of a hierarchy among different mutations, which might be relevant to disease progression
and prognostication of clinical outcomes. Understanding of gene mutations and their impacts on the
pathogenesis and clinical parameters of MDS should provide knowledge essential to improving the
clinical outcomes of MDS.

Learning goals

At the conclusion of this activity, participants should have an understanding of: 
- a spectrum of gene mutations found in myelodysplastic syndromes (MDS) and their phenotype 

correlations; 
- the functional relevance of major mutations to the pathogenesis of MDS/myeloid neoplasms, 

especially roles of mutations in epigenetic regulators and RNA splicing factors;
- Intratumor heterogeneity and hierarchy of gene mutations and their relevance to development and

progression of MDS.
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described in 1987 by Hirai et al., in which mutant NRAS
alleles were isolated through in vivo selection of NIH3T3
cells transduced with patients’ genomic DNA in nude
mice.9 However, since then, only a few common gene tar-
gets of somatic mutations, such as KRAS, TP53 and
RUNX1, had been reported until early 2000, hampering
our understanding of molecular pathogenesis of MDS.10-12

The situation has been dramatically improved during the
past ten years in which major targets of gene mutations in
MDS have been exhaustively identified using high-
throughput genomics, including mutations in additional
RAS pathway genes (PTPN11, NF1 and CBL)13-17 and
other signal transducing molecules (c-KIT, JAK2, FLT3
and cMPL)18-21 as well as hematopoietic transcription fac-
tor genes (CEBPA and ETV6) (Figure 1).22,23 Among oth-
ers, the discovery of frequent mutations of epigenetic reg-
ulators and RNA splicing factors represents the most sig-
nificant progress, shedding light on novel aspects of the
molecular pathogenesis of MDS.

Mutations in epigenetic regulators

Frequent mutation of epigenetic regulators is one of the
major discoveries in recent cancer genome studies and has
been commonly observed in a wide variety of human can-
cers, suggesting that epigenetic alterations in cancers may
be caused, at least in part, by primary gene mutations.24 In

myeloid neoplasms, major mutational targets of epigenetic
regulators include TET2 and IDH1/2, DNMT3A, and sever-
al components of the polycomb repressive complex 2
(PRC2) (EZH2, EED, SUZ12 and JARID2) and other poly-
comb-related proteins (ASXL1 and BCOR/BCOR1).
TET2
TET2 was originally identified within a microdeletion at

4q21 as a mutational target in loss of heterozygosity
(LOH) in 4q arm.25,26 TET2 belongs to a TET family of
proteins encoding α-ketoglutarate (αKG)-dependent oxi-
dases engaged in hydroxylation of 5’-methylcytosine
(5mC) to 5hmC,27 which is now believed to be a critical
step of demethylation of methylated CpG (Figure 2).28,29

Mutations are most frequently found in CMML (approx.
40-50%) and MDS (approx. 25%), but are also common in
de novoAML and MPN.25,26,30,31 Most of the mutations are
either nonsense/frameshift changes or involving the cat-
alytic domains, and more likely to be hemizygous, leading
to haploinsufficiency of TET2 function. In fact, TET2-
mutated leukemic cells showed decreased 5hmC levels,
although it is less clear whether TET2-mutated cells
showed DNA hypermethylation.32 TET2-deficient mice
develop severe myeloproliferation, indicating the leuke-
mogenic role of TET2 dysfunction.33,34 Interestingly, a
recent study indicated that TET2 is also involved in his-
tone modification (O-GlcNAcylation) during gene tran-
scription.35
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Figure 1. Spectrum of gene mutations in MDS and other
myeloid neoplasms. More than 30 genes have been report-
ed to be recurrently mutated in MDS. Most of these muta-
tions, and other chromosomal lesions, such as -5/5q-, -
7/7q-, 20q-, 13q-, 17p-, are also prevalent in other myeloid
neoplasms, suggesting common mechanisms operate in
myeloid leukemogenesis, although their frequencies show
considerable variations depending on disease type. Some
gene mutations are more specific to particular diseases,
such as JAK2 mutations in MPN, NPM-1 and FLT3 muta-
tions in AML, splicing factor mutations in MDS and
MDS/MPN. 

Figure 2. Mutations in epigenetic regulators. Mutation of
epigenetic regulators is a common feature in human can-
cers. In MDS (and other myeloid neoplasms), major muta-
tional targets include DNMT3A and TET2, which regulate
DNA methylation, and components of PRC2 (EZH2, EED,
SUZ12 and JARID2) and other polycomb-related proteins
(ASXL1, BCOR), which are involved in gene repression
through di/trimethylation of H3K27 and ubiquitination of
H2A. Mutated IDH1/2 produces an oncometabolite, 2HG,
which inhibits multiple αKG-dependent oxidases by com-
peting with αKG, including TET2. These mutations are
thought to deregulate expression of critical genes involved
in epigenetic regulation of stem-cell functions, differentia-
tion and cell cycle regulation of hematopoietic progenitors,
leading to myeloid leukemogenesis. KDM: lysine(K)
demethylase.



IDH1/2
Mutations of IDH1 or IDH2 were first documented in

secondary glioma (approx. 85%) and de novo AML
(approx. 15%), and were shown to be also common in
MDS (approx. 10%).7,36,37 The IDH1 and IDH2 genes
encode isocitrate dehydrogenases that catalyze conversion
of isocitrate to αKG in cytosol and mitochondria, respec-
tively. Mutations exclusively involved R132 (IDH1) or
R140/R172 (IDH2) sites, indicating that they represented
gain-of-function mutations.38 In fact, mutated enzymes
catalyze conversion of αKG to 2 hydroxyglutarate (2HG),
rather than isocitrate to αKG, leading to aberrant accumu-
lation of the latter metabolite, which in turn inhibits many
αKG-dependent oxidases, including TET2 protein (Figure
2).39-41 In accordance with this, mutations of TET2 and
IDH1/2 occurred in a largely mutually exclusive manner,
although no TET2 mutations have been reported in glioma
and 2HG inhibits not only TET2 but also other oxidases
such as KDMs, which also use αKG as a substrate.
DNMT3A

DNA methylation occurs at CpG sites, which is mediat-
ed by DNA methyltransferases (DNMTs), including
DNMT1, DNMT3A and DNMT3B. The latter two are
responsible for de novo DNA methylation, while DNMT1
takes care of maintenance methylation during DNA repli-
cation (Figure 2).42 Mutations of DNMT3A were first
reported in de novo AML via high-throughput sequencing
of AML genomes almost exclusively involving M4/M5
subtypes,6,43,44 but also found in approx. 10-15% of MDS
and CMML and to a lesser extent MPN cases.45,46 Most
mutations are found in the C-terminal catalytic domain to
abrogate DNMT activity and approximately two-thirds of
mutations affected a highly conserved R822 residue.
Conditional deletion of Dnmt3a in mouse bone marrow
progressively impairs hematopoietic stem cell (HSC) dif-
ferentiation over serial transplantations, while simultane-
ously expanding HSC numbers in the bone marrow, which
is associated with upregulation of HSC multipotency
genes and downregulation of differentiation factors.47

PRC2 and other polycomb-related genes
Polycomb group (PcG) proteins are engaged in diverse

biological functions including differentiation, maintaining
cell identity and proliferation, and stem-cell plasticity in a
wide variety of organ systems, including hematopoiesis.48

These diverse functions are mediated in large part by tran-
scriptional repression, which is accomplished by co-ordi-
nated functions of several discrete protein complexes,
including polycomb repressive complex 1 (PRC1), PRC2
and PHO-repressive complex (PhoRC), and polycomb
repressive deubiquitinase (PR-DUB).49-51 PRC2 catalyzes
methylation of histone H3 at lysine 27 (H3K27) to
H3K27me3, to which PRC1 is thought to be recruited to
mediate monoubiquitination of Lys 119 of histone H2A
(H2AK119ub). PR-DUB, on the other hand, removes
monoubiquitin from H2A via the ubiquitin carboxy-termi-
nal hydrolase, BAP1, that binds to another component of
PR-DUB, ASX in Drosophila.50 In a subset of MDS, sev-
eral components of PRC2 are mutated/deleted, including
EZH2 within del(7q) region,52,53 and, less frequently, EED,
SUZ12 and JARID2, which were mutually exclusive
among mutated cases.54,55 ASXL1 is a mammalian
homolog of ASX and frequently mutated in MDS and other

myeloid neoplasms at high frequencies (approx. 20-25%),
although no mutation have been reported in BAP1 in
myeloid neoplasms. Even though no PRC1 components
have been reported to be mutated, mutations of BCOR
(and its homolog BCORL1), which is associated with
some PCR1 components (RING1 and RNF2), are mutated
in approximately 10% cases of AML and MDS.

Splicing factor mutations

The RNA splicing machinery is also a new class of
mutational target in human cancers, which were unexpect-
edly discovered through whole exome sequencing of MDS
and chronic lymphocytic leukemia (CLL).4,8,56-62

Papaemmanuil et al. identified SF3B1 mutations in 6 of
the 8 discovery RARS cases with whole exome sequenc-
ing and this was confirmed in the subsequent large scale
mutation analysis in MDS (72 of 354; 20%) but rare in
other myeloid neoplasms, including AML (3 of 57; 5%),
CML (0 of 53) and MPNs (12 of 420, 3%).8 Moreover,
Yoshida et al. analyzed 29 cases with different subtypes of
myelodysplasia and identified mutations of multiple com-
ponents of the RNA splicing machinery, including SF3B1,
U2AF35, SRSF2, ZRSR2, SF3A1 and PRPF40B in 16
cases.4 Affecting at least 8 components of the RNA splic-
ing machinery, mutations were found in 130 of 228 MDS
(57%), 48 of 88 CMML (55%) and 16 of 62 sAML
(25.8%) cases, but relatively rare in de novo AML (10 of
151; 6.6%) and MPNs (5 of 53; 9.4%).4 These observa-
tions were confirmed in subsequent studies,30,57,63-73

although splicing factor mutations seem to be rare in pedi-
atric myeloid neoplasms including juvenile myelomono-
cytic leukemia.74,75

RNA splicing provides a basic cellular mechanism for
expression of genetic information.76,77 Common to all
eukaryotes, it allows for generating a large diversity of
protein species in the face of a limited set of genes by way
of alternative splicing.78 RNA splicing is accomplished by
recruitment and disengagement of multiple small nuclear
ribonucleoprotein particle (snRNP) complexes and other
protein factors to newly transcribed pre-mRNA, through
which exon-intron boundaries are recognized and intronic
sequences were correctly spliced out to generate mature
mRNA.76 RNA splicing is initiated by the recognition of 5’
splice site by a U1 snRNP complex, followed by the
recruitment of a complex consisting of a U2AF35/65 het-
erodimer, ZRSR2 and an SR protein, such as SRSF1 and
2, and other factors to recognize the 3’ splice site. Finally,
a U2 snRNP complex replaces SF1 bound to the branch-
point sequence with one of its subcomponent, SF3B1, to
establish a splicing A complex (Figure 3).76,77,79 Of partic-
ular note, most of the mutated splicing factors in MDS are
involved in this complex, in which mutations are largely
mutually exclusive, indicating that the common functional
target of these mutations should be the 3’ splice site recog-
nition.4

Another conspicuous feature of splicing factor muta-
tions is the presence of mutational hot spots in major
mutational targets, including SF3B1, SRSF2 and U2AF35.
In U2AF35, the mutations almost exclusively involved
highly conserved two amino acid positions, S34 and
Q157, within the N- and C-terminal zinc finger domains,
while almost all SRSF2 mutations are missense changes at
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P95 or deletions involving this amino acid position.4,30,67,69

Less conspicuously but significantly, SF3B1 mutations
were confined to 5-7 amino acid positions within the
domains corresponding to exons 12-16, of which approx.
50% of the mutations were accounted for by K700E.4,8 No
homozygous mutations have been reported for these three
genes. The presence of hot spots and the absence of non-
sense or frameshift changes strongly indicated that they
could be associated with some gain-of-function rather than
representing simple loss of functions. In contrast, muta-
tions of ZRSR2 on the X chromosome were distributed
along the entire coding region.4 Approximately two-thirds
of mutations were either nonsense or frameshift changes,
causing a premature stop codon.4,30,69 The majority of the
ZRSR2 mutated cases were male in whom single muta-
tions resulted in complete loss of functions.4

Compromised 3’ splice site recognition seems to be a
common consequence of different splicing factor muta-
tions. In fact, forced expression of mutant U2AF35 alleles
in vitro induces global defects in RNA splicing, including
aberrant exon skipping and alternative exon usage, mis-
recognition of splice sites, especially in 3’ splice sites, and
increased intron retention.4,56 However, no functional gene
targets for abnormal splicing that explain MDS pathogen-
esis have yet been clarified. In addition, the presence of
strong genotype/phenotype associations among different
splicing factor mutations suggests discrete gene targets for
different mutations, which is most prominent for SF3B1
mutations and ring sideroblasts. SF3B1 mutations were
found in 68-82% of refractory anemia with ring siderob-
lasts (RSRS) and 57-76% of refractory cytopenia with ring
sideroblasts (RCMD-RS).4,8,57,64 Malcovati et al. reported
that, regardless of disease type, SF3B1 mutations strongly
predicted the presence of ring sideroblasts with 97.7% and
98.7% of positive and negative predictive values, respec-
tively, although the cases examined did not necessarily
satisfy the criteria for RARS or RCMD-RS (i.e. >15% of
all erythroblasts).80 Less prominently, SRSF2 mutations
were more frequently found in CMML (30.7-47%) than in
other subtypes of myeloid neoplasms.4,67 Interestingly,
SF3B1 mutations, but not other splicing factor mutations,
have also been reported in 5-15% of chronic lymphocytic
leukemia (CLL), especially in high-risk cases.58-62 In addi-
tion, SF3B1 are mutated in several solid cancers, including
breast, bladder, endometrial and other cancers, although
the mutation frequencies were low.8,81 These genotype-
phenotype associations may reflect gene-specific func-
tions of individual mutations. For example, SF3B1 was
shown to be essential for Hox gene regulation through
functionally interacting with polycomb and trithorax
genes.82 SRSF2 have been also implicated in genetic sta-
bility and their defects could lead to hypermutability.83

Several reports described the clinical impact of splicing
factor mutations.  However, there seemed to be some dis-
crepancies in their impact among different studies. Initial
reports indicated a significantly better overall survival for
SF3B1 mutated cases compared to unmutated cases in
MDS,8,80 while other studies showed no significant impact
of the mutations on survival.64,69,73 SRSF2 mutations were
reported to be associated with poor prognosis in univariate
analysis, but may not be an independent prognostic pre-
dictor.64,69,73 Also, U2AF35mutations were associated with
a poor prognosis or higher risk of progression to AML in
univariate analysis in some series56,84 but not in others. To

clarify the precise impact of splicing factor mutations, a
well-designed control study is needed.

Other mutational targets

Cohesin complex
Cohesin is a multimeric protein complex conserved

across species and composed of four core subunits, i.e.
SMC1, SMC3, RAD21 and STAG proteins, together with
a number of regulatory molecules.85,86 Forming a ring-like
structure, cohesin is engaged in cohesion of sister chro-
matids during cell division, post-replicative DNA repair,
and regulation of global gene expression through long-
range cis-interactions. Germline mutations in cohesin com-
ponents lead to congenital multisystem malformation syn-
dromes known as Cornelia de Lange syndrome and
Robert’s syndrome. Mutations of cohesin components
were first reported in colon cancer, glioblastoma, and other
solid cancers,87,88 and more recently revealed via whole
genome/exome/target deep sequencing of AML and other
myeloid malignancies89 (Kon et al., unpublished data,
2013) in which STAG2 was most frequently mutated, fol-
lowed by RAD21, SMC1A, and SMC3. Most of the STAG2
and RAD21 mutations were either nonsense or frameshift
changes, while SMC1A and SMC3mutations are more like-
ly to be missense changes. Combined, mutations of cohesin
components are found in 10-15% of the cases with AML,
MDS, and CMML, in a mutually exclusive manner. As for
the leukemogenic mechanism of cohesin mutations, many
cohesin-mutated cases showed completely normal kary-
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Figure 3. Pathway mutations in RNA splicing machinery.
RNA splicing is initiated by the recognition of the 5’ splice
site by U1 snRNP complex. After the recognition of the 5’
splice site, a protein complex consisting of a U2AF het-
erodimer, ZRSR2 and SRSF1/2 is recruited to the 3’ splice
boundary. SRSF1/2, members of the SR-family of proteins,
bind to splicing enhancer sequences and also interact with
other proteins through its SR domain. To the 5’ upstream
of the polypyrimidine tract lies a branchpoint sequence, to
which another splicing factor, SF-1, binds and together with
the U2AF heterodimer and other components, participates
in the establishment of the splicing E complex. Once the
splicing E complex is established, a U2 snRNP complex
replaces SF-1 to generate the splicing A complex. Targets
of gene mutation in MDS and other myeloid neoplasms are
indicated by arrows.



otypes, suggesting that compromised cohesion of sister
chromatids and consequent aneuploidy is not likely to play
a major role, but deregulated expressional regulation
and/or DNA hypermutability might be important for leuke-
mogenesis.
SETBP1
SETBP1 is a newly identified target of somatic muta-

tions in myeloid neoplasms, which are commonly mutated
in all subtypes of MDS/MPN, including CMML, JMML
and aCML, and also found in high-risk MDS and sAML,
while rare in de novo AML cases90 (Makishima et al. and
Sakaguchi et al., unpublished data, 2013). SETBP1 was
initially identified as a 170 kD nuclear protein which binds
to SET, a small protein inhibitor of putative tumor sup-
pressors, PP2A and NM23-H1, and recently identified as
the causative gene for Schinzel-Giedion syndrome (SGS),
a highly recognizable congenital disease characterized by
severe mental retardation, distinctive facial features, mul-
tiple congenital malformations and a higher-than-normal
prevalence of tumors, typically neuroepithelial neopla-
sia.91 Conspicuously, somatic mutations of SETBP1 in
myeloid neoplasms are identical to the hotspot germline
mutations in SGS, including p.D686N/Y, p.G870S or
p.I8781T, suggesting their gain-of-function nature. In fact,
mutant SETBP1-transduced cells showed higher prolifera-
tion and less apoptosis than wild-type SETBP1-transduced
cells which is thought to be due to increased protein stabil-
ity. SETBP1-mutations were significantly associated with
poor overall survivals.

Common and discrete gene mutations among
different myeloid neoplasms

Although more than 30 recurrent mutations have been
reported in MDS, only a handful of genes, including
TET2, SF3B1, SRSF2, ASXL1, RUNX1 and DNMT3A, are
found in more than 10% of the cases, while dozens of
other recurrent targets, which may or may not involve pre-
viously known pathways, are mutated at much lower fre-
quencies. Many of these recurrent mutational targets in
MDS, such as TET2, IDH1/2, ASXL1, DNMT3A, RUNX1,
cohesin components and RAS pathway genes, are also
commonly mutated in different myeloid neoplasms, sug-
gesting that these mutations are involved in common
pathophysiology among different myeloid neoplasms. In
contrast, other gene mutations correlate well with specific
phenotypes of myeloid neoplasms. For example, RNA
splicing factor mutations are more specific to those sub-
types showing myelodysplasia (MDS and MDS/MPN). A
very strong association between SF3B1 mutations and
increased ring sideroblasts has already been mentioned.
Mutations in NPM1, IDH1/2, c-KIT and FLT3 are more
common features of AML. Well-known gene fusions, such
as, CBF-fusions, PML/RAR� and MLL-fusions are almost
pathognomonic of CBF leukemia, acute promyelocytic
leukemia and MLL-leukemia, respectively. Similarly,
JAK2 gene mutations primarily characterize MPN and fre-
quently co-exist with SF3B1 mutation in RARS with
thrombocytosis (RARS-T). RAS pathway mutations and
SETBP1 mutations are more typical features of
MDS/MPN and RAEB subtypes and are associated with a
high risk of transformation to secondary AML.

Intratumor heterogeneity and clonal evolution
of MDS

Because MDS typically shows an indolent clinical
course, frequently terminating in sAML, the clonological
behavior of MDS in terms of relevant gene mutations,
especially during progression to AML, is of particular
importance in understanding the pathogenesis of MDS. In
exome sequencing, on average approximately 10-15 non-
silent mutations are detected per sample.4,8 However, deep
sequencing of these mutations discloses different allelic
burdens of individual mutations, corresponding to a more
complex clonal architecture showing multiple tumor sub-
clones within the relevant tumor population. Such intratu-
mor heterogeneity in MDS was best characterized by iden-
tifying large numbers of somatic mutations in clonologi-
cally obtained samples during evolution from MDS to
sAML, followed by deep sequencing of each mutant alle-
les. Walter et al. demonstrated that MDS typically consists
of multiple subclones at diagnosis, each of which was usu-
ally characterized by one or more driver mutations.
Subsequent progression to sAML is dynamically shaped
by multiple cycles of acquisition of mutations and other
chromosomal lesions and by clonal selection.92 Intratumor
heterogeneity is also found in sAML, indicating that clon-
al evolution and selection persist even after progression to
sAML. The process of clonal evolution/selection does not
seem be totally random, but there could exist a hierarchy,
if not very stringent, among common gene mutations with
regard to their order. For example, mutations of splicing
factors, TET2 and IDH1/2 tend to show highest allelic bur-
dens, whilst RAS pathway mutations frequently show
lower relative allele frequencies, indicating that the former
could represent founder mutations involved in the initia-
tion of MDS, while the latter mutations are more likely to
be involved in disease progression (Figure 4). Thus, such
a hierarchy of gene mutations could be closely related to
the biological mechanism of disease progression and
would be relevant to molecular diagnosis and prognostica-
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Figure 4. Other gene mutations. Intratumor heterogeneity
in terms of genetic lesions is quite common in MDS from
diagnosis, in which the tumor population consists of multi-
ple subclones derived from different progenies of ances-
tral/founder clones. These substructures of tumor popula-
tion are generated by acquisition of new genetic lesions
(such as mutations and chromosomal lesions) and subse-
quent clonal selection/expansion, leading ultimately to
sAML. The order of gene mutations to be selected does not
seem to be totally random, but selection of mutations
shows a trend, in which some mutations tend to precede
others in a hierarchical manner.



tion of clinical outcomes in MDS, although the exact
order/role of all gene mutations in such a hierarchy has not
been fully clarified.

Conclusion

Over the past ten years, our knowledge about the molec-
ular genetics of MDS has been dramatically improved
through identification of the major targets of gene muta-
tions. Although spliceosome and other mutations are more
prevalent in myelodysplasia, the majority of gene muta-
tions are commonly found in other types of myeloid
malignancies, suggesting a common molecular pathogen-
esis of myeloid neoplasms. Therefore, to understand the
molecular pathogenesis of MDS, we have to clarify the
commonality of the impact of these mutations on myeloid
leukemogenesis, together with the molecular mechanism
that explains MDS-specific pathogenesis. Frequent pres-
ence of intratumor heterogeneity and a dynamic temporal
behavior seems to be an intrinsic feature of MDS, and an
understanding of this would be indispensable not only to
clarify the pathogenesis of MDS and transformation to
sAML, but also for the development of better MDS diag-
nostics and therapeutics.
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Diagnosis and biomarkers in myelodysplastic 
syndromes 

Introduction
The myelodysplastic syndromes (MDS)

constitute a heterogeneous group of myeloid
malignancies originating in the hematopoietic
stem cell compartment of the bone marrow.
The common clinical features, which allow
MDS to be put together into one category of
hematologic disorders, are cytopenia, morpho-
logical dysplasia of bone marrow precursors,
and an increased risk for disease progression
to more advanced MDS or to overt acute
myeloid leukemia (AML). The current WHO
classification is based on these features and, to
a limited degree, on cytogenetic findings.1
However, several new molecular lesions and
aberrant pathways have recently been identi-
fied in MDS and it is likely that some of these
will influence the diagnostic process within
the next few years. Also, it may be anticipated
that the use of biomarkers for diagnosis and
prognosis, and for predicting outcome of spe-
cific treatment options will be introduced as a
part of the basic investigation of MDS. How
these newly identified mutations will influ-
ence existing classification and prognostic
systems still have to be worked out, but with-
out doubt, this will require considerable time,
effort and large patient cohorts. Hence, for a
number of years it will be necessary to adhere

to the current systems and learn how to use
individual new biomarkers as additive knowl-
edge. Variables with impact on the overall out-
come for patients with MDS are described
here, while those influencing therapeutic
strategies are mainly described in the paper
“Risk-adapted treatment of myelodysplastic
syndromes” by Dr Guillermo Sanz.

Diagnosis of myelodysplastic 
syndromes

Diagnosis as a result of multi-professional
consensus

Myelodysplastic syndromes is considered
by many to be a difficult diagnosis to make.
There is no typical malignant cell population
to identify, but rather more or less clear dys-
plasia of many cell types in the bone marrow
and alterations in their relative frequencies. In
order to classify a patient according to the
WHO classification, clinical information is
essential.1 A detailed family history is required
to exclude inherited bone marrow failures,
such as telomere disorders and MDS second-
ary to familial platelet disorders and germ-line
RUNX-1 mutations.2,3 In order to divide
patients into primary and therapy-related

Myelodysplastic syndromes

Myelodysplastic syndromes (MDS) is a heterogeneous group of clonal myeloid disorders character-
ized by cytopenia, bone marrow dysplasia and a high risk for disease progression. The marked variation
in clinical presentation sets high demands on the diagnostic process and on the possibility of predict-
ing general and treatment-specific outcomes. While some patients experience a close to normal life
expectancy without therapy, others are up-front candidates for allogeneic stem cell transplantation.
This review describes the currently recommended diagnostic and prognostic systems and looks at
newer tools with potential value for certain patient groups. The World Health Organization (WHO)
classification is mandatory as a basis on which to evaluate the impact of additional methods. The rapid
development of next generation sequencing has made it possible to detect a large number of somatic
mutations, some of which are likely to add significantly to the understanding of MDS, and provide
important tools for clinical decision-making. Most of these mutations, however, need further evalua-
tion before introduction into current prognostic models. Age and concurrent non-hematologic disor-
ders are also important outcome variables, and co-morbidity scores are introduced to help assess
patients evaluated for therapeutic intervention. 

Learning goals

At the conclusion of this activity, participants should be able to:
- describe state-of-the-art diagnostic procedures for MDS;
- apply standard prognostic assessment for younger and older patients with MDS of all risk groups;
- discuss currently available molecular markers as tools for clinical management in MDS;
- discuss co-morbidity scores as tools for clinical management in MDS.
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MDS, the previous history of chemotherapy and radiation
therapy is essential. Cytogenetics, morphology,
histopathology, and to an increasing degree multiparame-
ter flow cytometry, are cornerstones in the diagnostic
process. In particular, the distinction between secondary
cytopenia due to non-malignant disease and low-risk MDS
with mild cytopenia and no ring sideroblasts requires good
collaboration between all disciplines. It could be detri-
mental for an individual to be wrongly diagnosed with a
malignant disorder. Table 1 summarizes the recommended
diagnostic procedure in MDS.
World Health Organization classification: morphology and
histopathology

The World Health Organization (WHO) classification
constitutes the gold standard for diagnosis of MDS and
mixed MDS/myeloproliferative neoplasms (MDS/MPN)
and should serve as a basis, even when additional diagnos-
tic and prognostic procedures are implemented.1 The clas-
sification is built on three main procedures; morphology
of blood and bone marrow smears, a bone marrow biopsy,
and cytogenetics. The morphological examination of
blood and bone marrow smears stained with May-
Grünvald-Giemsa and iron staining should include a thor-
ough evaluation of the degree of dysplasia within the
respective hematopoietic lineages in order to distinguish
between uni- and multilineage dysplasia. The evaluation
of dysplastic features has recently been updated by an
international working group.4 A bone marrow biopsy at
diagnosis is mandatory in order to assess megakaryocyte
morphology, cellularity, and fibrosis. Hypoplastic MDS is
a condition that may be difficult to distinguish from aplas-
tic anemia and which usually requires several biopsies
including immunohistochemistry for CD34+ expression
before a final diagnosis could be made.5,6 Moderate to
severe fibrosis is a validated marker for poor prognosis.7,8

It is clinically relevant to distinguish hypoplastic from
normo/-hyperplastic or fibrotic MDS, since treatment
approaches for these entities may differ. In addition, the
histopathological material allows assessment of patholog-
ical bone marrow topography, such as abnormal localiza-
tion of immature progenitors (ALIPs).9 The biopsy speci-
men is also useful for assessing immunohistochemistry,
such as CD34 and CD117 expression, which could act as
a surrogate marker for blasts and immature erythropoiesis,
when the aspiration material is insufficient. Immune
histopathology for specific protein markers, such as p53,
has also a distinct prognostic value, as will be further dis-
cussed below. 
Cytogenetics

A cytogenetic analysis of bone marrow aspirate should
be performed in all patients with suspected MDS. At least
20 metaphases should be analyzed and described accord-
ing to the International System for Human Cytogenetic
Nomenclature (ISCN).10 Importantly, certain karyotypic
abnormalities, including but not confined to those involv-
ing chromosome 5, 7 and 17, can be sufficient to establish
an MDS diagnosis in cases with persistent cytopenia of
undetermined significance.11 This is particularly important
in younger patients who have been treated with
chemotherapy and or irradiation and in whom a diagnosis
of therapy-related MDS may lead to a rapid donor search
for allogeneic stem cell transplantation (allo-SCT). The

value of chromosomal analysis has been well established
for more than two decades and cytogenetics constitutes a
cornerstone in all current diagnostic and prognostic scor-
ing systems. It is, therefore, important to include a chro-
mosomal analysis in the workup of all patients with sus-
pected MDS. The non-interventional prospective clinical
European Union registry EU MDS will make it possible to
follow up how this works in clinical practice.12

Fluorescence in situ hybridization 
If the cytogenetic analysis fails due to absent or too few

metaphases, specific questions about numeric abnormali-
ties or loss of part of a chromosome may be addressed by
interphase Fluorescence in situ hybridization (FISH)
analysis.13 For example, this may be the case in hypoplas-
tic or severely fibrotic MDS. FISH has also been used to
complement conventional cytogenetics when the kary-
otype is complex, but it is questionable whether this will
remain an indication with genetic screening becoming
more common. Balanced translocations are uncommon in
MDS and are rarely investigated with this technique.
Current prognostic scoring systems are based on conven-
tional cytogenetics and FISH should not be regarded as a
substitution for this method.14 However, it may sometimes
be indicated to ask specific questions such as the absence
of chromosome 7 or chromosome location 5q.31 in cases
where these specific MDS subtypes are suspected. FISH
to detect targeted chromosomal abnormalities in inter-
phase nuclei is recommended in the case of failure of stan-
dard G-banding (L Malcovati et al., Diagnosis and treat-
ment of primary myelodysplastic syndromes in adults.
Recommendations from the European LeukemiaNet.
Submitted paper).
Immunophenotyping by multiparametric flow cytometry

Flow cytometry allows the malignant MDS clone to be
described in more detail, but the value of this technique
has for a long time been hampered by considerable
methodological variance between countries and individual
centers. Standardization has markedly improved due to the
ambitious process driven by the International Flow
Cytometry Working Group within the European Leukemia
Network, which over the past years has published several
consensus papers on this topic. Standard methods as well
as recommended combinations of antibodies for flow
cytometry analysis of dysplasia in MDS have been estab-
lished.15-19

Flow cytometry may evolve as a clinical tool to distin-
guish between low-risk MDS and non-malignant cytope-
nia, in cases when assessment of morphological dysplasia
is difficult and no markers for clonality can be detected.
By contrast, flow cytometry has limited value in the diag-
nostic process when a significant number of ring siderob-
lasts have been detected by morphology or when an aber-
rant karyotype has been confirmed.19 The European
LeukemiaNet Working Group describes surface markers,
which in combination allow a detailed assessment of neu-
trophils, monocytes, myeloid progenitors and, to some
extent, also erythroid progenitors16 (Table 2). Hence, flow
cytometry using these standardized protocols may distin-
guish non-sideroblastic anemia with normal karyotype
from cytopenia of non-malignant origin. Furthermore,
flow cytometry may be helpful in the assessment of high-
risk MDS, both as a tool to quantify CD34+ progenitors,
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Table 1. Diagnostic procedure in myelodysplastic syndromes.

Methodology Diagnostic value Priority 

Peripheral blood smear Number of dysplastic lineages Mandatory
Percentage of blasts
Number of monocytes

Bone marrow aspiration Number of dysplastic lineages Mandatory
Percentage of blasts
Percentage of ring sideroblasts

Bone marrow biopsy Cellularity, fibrosis Mandatory
Immunohistochemistry (CD34) Recommended1

P53 staining* Recommended1

Flow cytometry Distinction between MDS and Recommended1

non-clonal cytopenia
CD34+ assessment Recommended1

MRD assessment Recommended1

Cytogenetic analysis Chromosomal aberrations Mandatory

FISH analysis Specific chromosome Recommended1
re-arrangements

SNP arrays Detailed analysis of Not validated2

chromosome regions

Sequencing Mutations in candidate genes In specific cases3

1Recommended refers to the specific situations described in this review. 2May be useful in certain situations and when used with experience. 3Specific mutations may be very useful to predict prognosis and outcome
to treatment. Not dependent on specific technology.*In MDS with karyotype including del(5q).

Table 2. Proposed markers for flow cytometry analysis of dysplasia in MDS.16

General markers Erythroid lineage Hematopoietic progenitors Maturing neutrophils Monocyte lineage

CD45 CD45 CD45 CD45 CD45

CD71

CD235a

CD34 CD34 CD34 CD34

CD117 CD117 CD117 CD117 CD117

HLA-DR HLA-DR HLA-DR HLA-DR

CD11b CD11b CD11b CD11b

CD13 CD13 CD13 CD13

CD16 CD16 CD16

CD33 CD33 CD33

CD14 CD14 CD14

CD36 CD36

CD64 CD64

CD7 CD7

CD56 CD56 CD56 CD56

CD19 CD19

CD5

CD2

CD15 CD15

CD10



and to detect aberrant expression of high-risk markers,
such as CD7 on marrow blasts.20

A limitation of flow cytometry is when the bone marrow
aspiration is diluted by blood, which may falsely reduce
the relative numbers of immature cells. This is particularly
common in patients with significant fibrosis, and in these
cases immunohistopathology with staining for the same
markers may be more useful.
Molecular genetics as part of the diagnostic process

The WHO classification does not recommend the use of
specific mutational analyses in the workup of patients with
suspected MDS or MDS/MPN. The long list of recently
identified driver mutations that will be discussed below
are yet to be evaluated in relation to the conventional diag-
nostic methods. In this review, gene mutations are, there-
fore, described with regard to their impact on prognosis
rather than in their role in the diagnostic process. The only
method that so far has been considered as an aid in the
diagnostic process is single-nucleotide polymorphisms
(SNP) that may be used for high-resolution genome-wide
characterization of chromosomal aberrations without
metaphase generation.21 SNP array-based karyotyping has
been applied in a range of studies in patients with MDS
and other hematologic malignancies and may be used as a
tool to identify chromosomal defects that are not detected
by standard cytogenetics, or when karyotyping fails, such
as in hypoplastic MDS and MDS with fibrosis.22 The use-
fulness of this technique has been implicated in the dis-
tinction between hypoplastic MDS and aplastic anemia.24

SNP arrays, however, do not provide the same level of
detail as exome analysis or targeted sequencing and would
need the same kind of standardization work that was nec-
essary for flow cytometry to be clinically useful in a broad
sense.

The advantages and disadvantages of the
2008 WHO classification of myelodysplastic
syndromes

The most recent version of the WHO classification was
published in 20081,11 and included a few major and several
minor changes compared to the 2001 version. A major
change was that the WHO 2001 category ‘refractory ane-
mia’ (RA) with unilineage dysplasia was substituted by
the broader category ‘refractory cytopenia with unilineage
dysplasia’ (RCUD). This in turn is made up of three sub-
categories; RA, refractory neutropenia (RN), and refracto-
ry thrombocytopenia (RT). This made sense since many
patients with isolated cytopenia do not have anemia or
erythroid dysplasia. A diagnosis of RA may be difficult to
separate from that of secondary anemia, and it may be dif-
ficult to differentiate RN and RT from immune-mediated
neutropenia and thrombocytopenia, respectively, with nor-
mal karyotypes. In such cases, and in particular when the
cytopenia is moderate, it is wise to wait and observe the
course of the disease. Also, in these situations, flow
cytometry may add significant diagnostic value.
Moreover, the finding of recurrent mutations will probably
add to the understanding of these borderline conditions.

The rapid development of molecular genetics during the
last few years has already challenged some of the changes
implemented in the WHO 2008 classification. The 2008

edition fused refractory cytopenia with multilineage dys-
plasia with or without ring sideroblasts into one category
(RCMD). However, in 2011, a European consortium iden-
tified mutations in SF3B1, a core component in the
spliceasome, in the vast majority of patients with MDS
and ring sideroblasts, while finding these mutations in less
than 10% of other types of MDS.24,25 SF3B1 mutations
were significantly associated with the presence of ring
sideroblasts and a typical gene expression pattern with
underexpression of genes in the mitochondrial pathway.
Hence, RCMD and RCMD-RS should probably remain
two different MDS entities. Moreover, the MDS/MPN
subcategory RARS with marked thrombocytosis, RARS-
T, also carries SF3B1 mutations. These most likely occur
before the acquisition of JAK2 mutations and make this
category more similar to RARS and RCMD-RS than the
other mixed MDS/MPN.26

Another less useful change was to put therapy-related
MDS and AML together into one group, ‘therapy-related
myeloid neoplasms’ without requiring a more detailed
diagnosis of these patients with regard to cytogenetics and
morphology. For AML, it has been convincingly demon-
strated in large patient series that the value of specific
chromosomal aberrations is retained, even in therapy-
related AML.27-29 Similar large MDS cohorts are not avail-
able, but several smaller studies show that therapy-related
MDS respond as well to treatment with azacytidine as pri-
mary MDS, with the same cytogenetic pattern.30,31 By
analogy, the cytogenetic risk groups but not the division
into primary and therapy-related MDS, showed impact on
outcome in a large retrospective analysis of MDS patients
undergoing SCT.32

Pediatric myelodysplastic syndromes

Myelodysplastic syndromes in children constitutes a
rare but distinct entity, and since many of these children
are candidates for curative treatment with allo-SCT, a cor-
rect and early diagnosis is essential. Childhood MDS
cases are found in three different chapters in the WHO
2008 classification; juvenile myelomonocytic leukemia
(JMML) in the mixed MDS/MPN category, RAEB 1 and
2 in the main MDS category for adult MDS, and refractory
cytopenia of childhood (RCC) in a separate entity.1 RCC
often presents with a hypoplastic bone marrow and is
sometimes treated with immunosuppression. In JMML,
the current spectrum of commonly occurring mutations in
NF1, RAS, PTPN11 and CBL converge on the Ras/MAPK
pathway, which has also emerged as a potential target for
treatment.33 The most common cytogenetic abnormality in
this subgroup is monosomy 7.1 Generally, children with
MDS are more often treated upfront with allo-SCT than
adult patients, and the clinical response and tolerance to
chemotherapy differs from that of adult MDS. This review
has no ambition to cover this complex and interesting
topic, but very young adults with MDS may be more like
children than elderly patients, so specific investigation and
consultation with a pediatric MDS specialist may be
advisable. 
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Prognostic assessment in myelodysplastic
syndromes

The clinical course of MDS varies from indolent, with
life expectancy similar to that of age-matched healthy
individuals, to rapidly progressive myeloid disease, simi-
lar to AML.34 It is, therefore, important to apply risk-
adapted strategies, first by evaluating the prognosis with-
out treatment, and then for deciding about the optimal
choice of therapy. These categories of prognostic factors
may overlap.

Prognostic systems developed for untreated
patients

The current prognostic systems are based on degree of
cytopenia, percentage of myeloblasts in the bone marrow,
and cytogenetics, and are derived from patients who have
not received disease-modifying approaches. Karyotype
was first introduced in risk models for MDS by the Group
Francophone des Myélodysplasies (GFM) and subse-
quently in the IPSS risk model from 1997.14,35 The original
IPSS divided karyotypes into three risk groups; low-risk
(normal karyotype, -Y, and isolated del(5q) or del(20q)),
high-risk (complex as defined as three or more aberran-
cies, monosomy 7 and del(7q)), and intermediate (any
other abnormalities). This system was recently improved
by a series of large investigations including over 2000
patients from the German-Austrian group.36-38 First, the
patient cohort was used to demonstrate the prognostic rel-
evance of a more detailed subgrouping than in the previ-
ous IPSS system.36 Then, in collaboration with the MD
Anderson Cancer Center, the group showed that cytoge-
netics was underweighted as a prognostic marker in rela-

tion to marrow blast percentage and cytopenia.37 Finally,
the IPSS revision group published a new cytogenetic scor-
ing system including five risk groups.38 This scoring sys-
tem was subsequently incorporated into the revised IPSS
(IPSS-R) including over 7000 patients39 (Table 3). Major
advantages of the revised cytogenetic scoring system are:
i) a subset of patients with more favorable prognosis has
been defined; ii) isolated del(7q) has been identified as
less unfavorable than monosomy 7; and iii) a very high-
risk karyotype was defined as patients with more than 3
abnormalities, just as for AML. The latter category
includes most patients with a so-called monosomal kary-
otype, which has been shown to confer a very poor out-
come also in MDS.32 In addition, several new small cate-
gories with distinct prognostic relevance have been identi-
fied. Interestingly, fibrosis did not prove to be an inde-
pendent prognosis marker in the IPSS-R. This may be due
to the low frequency (19%) of patients with adequate
assessment of fibrosis, the variability in methodology, or
the fact that the revised scoring system detects outcomes
that previously were revealed by fibrosis. 

The IPSS-R also introduced categorical cut offs for blast
counts, thrombocytopenia, anemia and leukopenia. It still
has to be confirmed whether morphological examination
is a good enough tool for this level of blast count detail,
and if concordance between observers in clinical routine
practice is sufficient to allow for a distinction between less
than 2%, 2% to less than 5%, and 5% or over marrow
blasts. Moreover, it will be interesting to observe whether
IPSS-R will become established among clinicians before
the molecular markers influence the scenario.

Several risk factors with additional prognostic value
have been identified over recent years. The Pavia group
identified multi-lineage dysplasia as well as presence of a
regular transfusion need as independent risk factors, and
published the WPSS scoring system including also these
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Table 3. Revised International Prognostic Scoring System (IPSS-R) for MDS: based on 7012 patients.

Variable Points
0 0.5 1 1.5 2 3 4

Cytogenetics Very Good Good Intermediate Poor Very Poor

BM blast ≤2% >2%-<5% 5%-10% >10%

Hemoglobin ≥10 8-<10 <8

Platelets ≥100 50-<100 <50

ANC ≥0.8 <0.8

IPSS-R risk group Score

Very low ≤1.5

Low >1.5-3

Intermediate >3-4.5

High >4.5-6

Very high >6

Cytogenetic risk groups (% of patients); Very good (4%) -Y, del(11q); Good (72%) normal, del(5q), del(12p), del(20q), double including del(5q); Intermediate (13%) del(7q), +8, +19, i(17q), any other single or dou-
ble; Poor (4%) -7, inv(3)/t(3q)/del(3q), double including -7/del(7q); and Very poor (7%) complex: ≥3 abnormalities.39 



factors.40 Later, the same group showed a prognostic
impact of the degree of anemia, also in patients without
transfusion need.41 Recently, transfusion dependence was
again identified as an adverse risk factor in the prospective
European Registry for IPSS low and INT-1 risk MDS of
1000 patients.12 Moreover, the presence of bone marrow
fibrosis grade II or III confers a significantly worse prog-
nosis to all patients with MDS, irrespective of IPSS risk
group.7,8 Generally speaking, these additional risk factors
for untreated patients are more important in IPSS low and
INT-1 risk MDS than in higher-risk MDS, and may impact
the decision about allo-SCT in eligible patients. Patients
with higher-risk MDS have a short expected survival even
without these extra risk factors, and should be candidates
for curative regimens when age and co-morbidities allow.
Immunophenotyping by multiparametric flow cytometry
may also provide prognostic information, as described
above. A major role for flow cytometry would be if this
tool could be used to assess minimal residual disease in
remission or after allo-SCT.42

Somatic mutations as prognostic variables

Rapid methodological development within the field of
next generation sequencing has made it feasible and rela-
tively inexpensive to detect somatic mutations by exome
sequencing. An even more cost-effective approach, which
is developing into a potential clinical tool, is targeted
sequencing, in which a specific number of selectively
enriched genes are analyzed by direct (and/or deep)
sequencing. This has opened up a totally new understand-
ing of MDS and other hematologic malignancies.
Molecular lesions in MDS are outlined in detail in the
chapter “Recent advance in molecular genetics of myelo-
dysplastic syndromes as revealed by massively parallel
sequencing” by Seishi Ogawa. The number of genes in
which recurrent mutations in coding regions occur in more
than a few percent of patients with MDS seems to be
approximately 25, according to a large recent report of
more than 700 patients.43 Only four genes, SF3B1, TET2,
SRSF2 and ASXL1 were mutated in more than 10% of
patients, while more than 30 genes were mutated in less
than 5% of patients. Interestingly, there is a strong co-exis-
tence between certain mutations, while others almost
never co-occur in the same patient. The most common
mutations in MDS are found in genes involved in epige-
netic regulation and in the splicing process. Mutations in
regulators of methylation as well as chromatin remodeling
show significant overlap between MDS and AML and are
likely to affect the biology of these disorders.44-49 By con-
trast, mutations in splice factor genes are strikingly more
common in MDS than in AML and myeloproliferative
neoplasms.24,50-52 The downstream consequences of these
mutations are yet to be worked out, but they seem to be
associated with the morphological features of dysplasia.

As the majority of these mutations co-occur in the same
tumor clone and in a large number of different patterns, it
will be a monumental task to sort out the prognostic impli-
cations of the various patterns. Only one mutation has so
far been associated with a specifically favorable prognosis
and that is SF3B1, found in more than 75% of patients
with lower-risk MDS and more than 15% ring sideroblasts
(RARS, RCMD-RS, and RARS-T) but in less than 10% in

other MDS categories.24,25 One can argue that SF3B1 iden-
tifies a subgroup of MDS, which is already recognized as
an indolent MDS subtype, but the identification of a driver
mutation in this specific subtype will allow for a better
understanding and future therapeutic development. As an
example, altered exon usage and decreased expression of
the mitochondrial iron transporter ABCB7 has recently
been identified as a key mediator of erythroid failure in
RARS.53 Other mutations, such as TET2, are common but
do not seem to be associated with any particular out-
come.54 A number of mutations have in several studies
been associated with a short survival and risk for AML
transformation. In a pivotal paper by Bejar et al.,55 439
MDS patients were analyzed for 18 genes excluding the
splice factor mutations, whereof five mutations (TP53,
EZH2, ETV6, RUNX1 and ASXL1) were independently
associated with a worse outcome. Importantly, the IPSS
category still retained a major prognostic value. Bejar et
al. then assessed the same genes plus the splice factor
mutations in 288 patients with lower-risk MDS and vali-
dated the independent prognostic value of EZH2 in this
cohort.56 Some of these mutations have been verified as
prognostic markers also in other studies of MDS, while
others have not. It is clear that new molecular markers
have to be tested in independent patient cohorts and in the
multivariate setting before they could be introduced as
potential prognostic tools in clinical practice. Moreover,
the significance of these mutations probably lies in their
role in the biology of disease rather than in the prognostic
value of each mutation. Hence, this review deliberately
refrains from producing a table summarizing the prognos-
tic value of various molecular markers.  Moreover, differ-
ent WHO entities, such as the MDS/MPNs have to be
assessed separately.57 One important finding is that the
number of driver mutations in itself is associated with out-
come. In the large study by Papaemmanuil et al., patients
with 0-2 driver mutations have a better outcome than
patients with 3 or more mutations.43

The spread of massive parallel sequencing methods will
soon make it possible for clinicians to detect a broad range
of somatic point mutations in their patients. The question
is now what kind of recommendations should be given for
their role in predicting outcome with and without therapy.
A limited number of molecular markers are likely to
appear within the next few years. A few, however, already
seem to have proven their clinical importance.

Small subclones: the limitations 
of conventional sequencing  

We recently showed that the presence of small TP53
mutated subclones in lower-risk del(5q) MDS confer a
strong negative impact on the probability for survival as
well as for remaining in the low-risk MDS category.58 The
presence of such subclones was recently confirmed by two
other studies, of which the latter supports TP53 as strong
adverse marker both in high-risk and in low-risk MDS
with del(5q).59,60 Moreover, TP53 mutated high-risk
del(5q) MDS was reported to be resistant to treatment with
lenalidomide.61. Similar results have been reported in
AML,62 and it seems clear that TP53mutation is one of the
most unfavorable molecular markers in MDS and AML.
Importantly, these subclones of heterozygously mutated
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cells are relatively small. The median clone size in the first
study was 11% (1-54%), hence a majority of these sub-
clones would not have been detected by conventional
Sanger sequencing.58 In the case of TP53, p53 immunohis-
tochemical staining (IHC) is presently evaluated for its
role as a clinical biomarker in low-risk del(5q) MDS and
with regard to its concordance with underlying TP53
mutations. Other potentially important subclones are yet
to be discovered with improved sequencing techniques
and may eventually increase the understanding of relapse
after initial successful treatment. One important conclu-
sion of these investigations is that not only dominant driv-
er mutations impact the outcome, but that also clones too
small to be detected by conventional sequencing can be
extremely important for therapeutic decision-making. 

Co-morbidity evaluation

The median age of MDS diagnosis is close to 75 years,
which means that most patients are elderly.12,34,64 As a con-
sequence, a high prevalence of non-hematologic disorders
has been reported in MDS patients, with 50% of patients
having one or more co-morbidities. The role of co-mor-
bidities is stronger in lower-risk than in higher-risk MDS,
where disease biology usually affects outcome irrespec-
tive of performance status. A more detailed pattern of co-
morbidities will, in time, appear from the prospective
European MDS Registry.12 In general, the pattern of non-
hematologic diseases follows that of the general popula-
tion, with heart disease being the most frequent. It is pos-
sible, however, that the frequency of heart problems
increases with severity and duration of anemia. Co-mor-
bidity assessment is most critical when a patient is evalu-
ated for a specific therapy.65 For moderately toxic therapy,
such as azacytidine, co-morbidity rather than age is the
limiting factor for treatment. For more toxic therapy, such
as allo-SCT, it is well known that both age and co-morbid-
ity are strong determinants of transplant outcome. The
Hematopoietic Cell Transplantation Comorbidity Index
(HCT-CI) is a useful and validated tool to predict post-
transplantation outcomes for patients with MDS and
AML. Decision-making about SCT in MDS is a difficult
task, and host and donor variables, the doctor’s ‘gut feel-
ing’, and, in the end, the patient’s own expectations and
perceptions about risks and possibilities all have to be
taken into consideration. A more strict use of available
decision models may make this process more transparent
for those involved.

The present review does not aim to cover the field of co-
morbidities in detail, nor risk factors that have been
acquired during the course of disease, such as iron over-
load caused by transfusions.

Conclusion

Myelodysplastic syndromes may be a difficult diagnosis
to make and it is important to adhere to current diagnostic
and prognostic guidelines, including bone marrow mor-
phology, histopathology and cytogenetics. If possible,
patients should be discussed at multi-professional confer-
ences. Immunophenotyping by multiparametric flow
cytometry, and FISH may emerge as useful additional

diagnostic methods for selected patients. Newer biomark-
ers and, in particular, the finding of specific acquired
somatic mutations are likely to add to the understanding of
these disorders and provide important tools for clinical
decision-making. However, further evaluation will be
needed before these are introduced into current prognostic
models.
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Risk-adapted treatment of myelodysplastic syndromes

Introduction 

The selection of treatment and timing for
therapeutic intervention in patients with MDS
is complicated by different factors. First, as
expected for a group of disorders that encom-
passes very heterogeneous entities, the natural
course of the disease is highly variable, both in
terms of overall survival (OS) and risk of pro-
gression to acute myeloblastic leukemia
(AML). Second, de novo MDS mainly affects
elderly people (median age 75 years) who, in
many instances, present poor performance sta-
tus and relevant comorbidities. Additionally,
allogeneic hematopoietic stem cell transplan-
tation (allo-HSCT), the only curative treat-
ment option currently available, carries high
rates of morbidity and mortality that limit its
applicability to younger fitter patients with an
adequate donor. Finally, evidence for the effi-
cacy of different therapeutic alternatives
comes often from small, uncontrolled phase II
clinical trials that use quite different response
criteria. Due to all these facts, an individual
risk-adapted treatment strategy, with therapy
tailored to the expected outcome, is essential.

Furthermore, it should be emphasized that
treatment for most patients with MDS remains
disappointing and best supportive care contin-
ues to be an essential component of patient

management. Despite the recent availability of
new drugs able to modify the natural history of
MDS, such as hypomethylating agents, the
emergence of new modalities of allo-HSCT
which have notably increased its use, the
development of better prognostic scoring sys-
tems, and evident progress in our knowledge
on the molecular basis of these disorders, most
patients with MDS will die from the conse-
quences of progressive bone marrow failure
with or without overt AML evolution. Thus,
treatment of patients with MDS should always
be considered investigational, and patients
should be included whenever possible in well-
designed prospective clinical trials driven to
gain insight into our understanding of MDS
and to improve outcome.

Risk assessment in MDS

The natural history of MDS is extremely
heterogeneous. In an attempt to accurately
establish the expected outcome in individual
patients, during the last three decades there has
been considerable research into identifying
prognostic factors and developing prognostic
indexes capable of stratifying MDS patients in
different risk groups. In addition, factors pre-
dictive of response to a specific treatment

Myelodysplastic syndromes

Treatment choice in patients with myelodysplastic syndromes (MDS) is not an easy task. MDS are
heterogeneous clonal hematopoietic disorders mainly affecting the elderly. MDS are characterized by
varying degrees of cytopenias, dysplastic morphological features of hematopoietic cell lines, and
propensity to acute myeloblastic leukemia evolution. Consequently, prognosis of MDS patients varies
widely, with overall survival ranging from a few weeks to several years depending on disease-related
characteristics, mainly specific cytogenetic abnormalities, percentage of blast cells in bone marrow,
severity and number of cytopenias, and patient-related factors such as age, performance status and
comorbidities. Despite the recent availability of drugs able to modify the natural history of MDS, emer-
gence of new modalities of allogeneic hematopoietic stem cell transplantation (allo-HSCT), which
notably increase its applicability, development of better prognostic scoring systems, and evident
progress in our knowledge on their molecular basis, treatment for most patients remains unsatisfac-
tory. This review analyzes the prognostic factors and scoring systems that should be considered for
therapy planning in MDS, critically evaluates the information on the different treatment strategies
currently available, and, finally, suggests potential algorithms for risk-adapted treatment of MDS
patients.

Learning goals

At the conclusion of this activity, participants should be able to:
- accurately estimate the individual prognosis of patients with MDS; 
- describe treatment modalities currently available for patients with MDS;
- select appropriate treatment for patients with MDS based on individual risk assessment.
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alternative are also relevant for planning therapy. Thus,
three different kinds of prognostic factors can be recog-
nized and must be taken into account for risk-adapted
treatment: 1) disease-related, i.e. those due to the charac-
teristics of the abnormal MDS clone; 2) patient-related,
i.e. reflecting specific patient’s characteristics; and 3)
treatment-related, i.e. linked to the probability of success
of a particular treatment option.

Disease-related prognostic factors

Several earlier studies showed the independent prognos-
tic impact of percentage of blast cells in bone marrow,
cytogenetics, and number of cytopenias.1-3 Since its publi-
cation in 1997, the International Prognostic Scoring
System (IPSS),4 which is based on those variables (Table
1), has been unanimously accepted as the reference for
clinical decision-making as well as for the design and
analysis of clinical trials in MDS. The IPSS is able to strat-

ify patients into 4 risk groups (low-, intermediate-1-, inter-
mediate-2-, and high-risk) with significant statistical dif-
ferences in OS and rate of progression to AML. Its validity
to predict the outcome of both untreated and treated
patients has been demonstrated in independent series, and
it is extremely simple to use. Moreover, it can be re-
applied dynamically, both at diagnosis and during disease
evolution.5

The presence of multilineage dysplasia, as defined by
the World Health Organization (WHO) classification, and
red blood cell (RBC) transfusion dependence have also
shown independent prognostic relevance and were inte-
grated, along with the IPPS cytogenetic risk categories, in
the WHO classification-based prognostic scoring system
(WPSS),5,6 which is able to classify patients into 5 risk
groups (very low-, low, intermediate, high, and very high-
risk) with clearly different OS and probabilities of
leukemic evolution both at diagnosis and during follow up
(Table 2). The prognostic value of WPSS has also been
validated in external series but this scoring system has not
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Table 1. International Prognostic Scoring System (IPSS).4

Prognostic characteristic Points
0 0.5 1 1.5 2

Blasts in bone marrow (%) <5 5-10 11 - 20 21 - 30

Cytogenetic risk categorya Good Intermediate Poor

Number of cytopeniasb 0 or 1 2 or 3

IPSS risk group Score Median overall survival (years)

Low 0 5.7

Intermediate-1 0.5-1.0 3.5

Intermediate-2 1.5-2.0 1.2

High 2.5-3.5 0.4
aGood: normal, del(5q), del(20q), and –Y as single abnormalities; Poor: complex (≥3 abnormalities) or chromosome 7 abnormalities; Intermediate: other abnormalities.bCytopenias: hemoglobin <10 g/dL, neutrophil
count <1.8x109/L, platelet count < 100¥109/L. 

Table 2. WHO classification-based Prognostic Scoring System (WPSS).5

Prognostic characteristic Points
0 1 2 3

WHO 2001 category RA, RARS, MDS with isolated deletion (5q) RCMD RAEB-1 RAEB-2

Cytogenetic risk categorya Good Intermediate Poor -

RBC transfusion requirementb,c No Regular - -

WPSS risk group Score Median overall survival (months)

Very low 0 103

Low 1 72

Intermediate 2 40

High 3-4 21

Very high 5-6 12
RA: refractory anemia; RARS: refractory anemia with ringed sideroblasts; 5q–: myelodysplastic syndrome with isolated del(5q); RCMD: refractory cytopenia with multilineage dysplasia; RCMD-RS: refractory cytopenia
with multilineage dysplasia and ring sideroblasts; RAEB-1: refractory anemia with excess of blasts-1; RAEB-2: refractory anemia with excess of blasts-2. aGood: normal, del(5q), del(20q), and –Y as single abnormali-
ties; Poor: complex (≥3 abnormalities) or chromosome 7 abnormalities; Intermediate: other abnormalities. bRBC transfusion requirement was defined as having at least one RBC transfusion every eight weeks over a
period of four months. cSevere anemia (hemoglobin <9 g/dL in males or <8 g/dL in females) can substitute regular RBC transfusion requirement.7



been universally adopted, probably because it has not
demonstrated substantial improvement over IPSS and the
subjectivity inherent to the evaluation of morphological
dysplasia and to start RBC transfusion support. In an
attempt to deal with the later criticism, the Pavia group has
recently shown that the level of hemoglobin (≤8 g/dL in
women and ≤9 g/dL in men) could substitute RBC trans-
fusion dependence in the WPSS with similar predictive
power.7

In recent years, it has become clear that there is an inde-
pendent association with outcome for other disease char-
acteristics, such as raised serum ferritin (> 1000 ng/mL),5,8

bone marrow fibrosis (grade 2 [moderate] to grade 3
[severe] by the European consensus guidelines),9 and
severe neutropenia (PMN count <0.5¥109/L)10 and throm-
bocytopenia (platelet count <30¥109/L).11 The use of these
variables allows a more accurate definition of the progno-
sis of individual patients with MDS to be made, in partic-
ular those in low or intermediate-1 IPSS risk groups.9-11

Furthermore, the analysis of very large series of patients
has provided a better understanding of the prognostic
impact of specific chromosomal abnormalities, has clari-
fied the prognostic value of some specific abnormalities
not recognized in IPSS, has shown that prognostic weight
of cytogenetic risk categories in a prognostic index for
MDS should be at least similar to the one assigned to the
percentage of blast cells in bone marrow, and has defined
five cytogenetic risk categories for OS.12,13

To examine the prognostic impact of these new clinical
and cytogenetic variables and to refine the IPSS, the
International Working Group for Prognosis in MDS proj-
ect assembled a large multicenter database of 7012
untreated patients with MDS to generate a revised IPSS
(IPSS-R) that is shown in Table 3.14 The IPSS-R continues
to be based on the same variables already present in IPSS
but their categorization is rather different and, inevitably
to improve accuracy, more complex. The new IPSS-R is
able to stratify patients into 5 risk groups (very low-, 
low-, intermediate-, high- and very high-risk), with clear

differences in OS and risk of progression to AML. Patient
age was a significant additive feature for OS but not for
AML evolution. Other potentially differentiating charac-
teristics, such as serum ferritin and LDH level, RBC trans-
fusion dependency, beta 2 (b2)-microglobulin, bone mar-
row fibrosis, and performance status could not be incorpo-
rated into the general prognostic model because they were
not available in a substantial number of patients.

Several recent studies suggest that flow cytometry
immunophenotyping15,16 and gene mutations17-20 may pro-
vide more accurate risk stratification of individual
patients. However, further investigations are necessary to
precisely determine the independent prognostic impact of
these technologies and the advantages of their addition to
already available scoring systems before recommending
these approaches be performed on a routine daily basis
and incorporated into clinical decision-making in MDS.

Currently, the use of the IPSS, WPSS, and IPSS-R is
strongly recommended for predicting outcome and plan-
ning treatment for patients with MDS.21-24

Patient-related prognostic factors

In MDS, as a group of disorders basically affecting eld-
erly patients, the decision to treat or not to treat, and also
the choice of treatment selected, is in many instances high-
ly influenced by age, functional ability (performance sta-
tus), comorbidity, frailty, and other nutritional, social, eco-
nomic or personal circumstances.21-24

Increasing age is an independent adverse prognostic fac-
tor for OS in MDS,2,4,6,14,25 especially in lower-risk
patients.14,25 ECOG performance status, despite its subjec-
tivity, has also been shown to influence OS.14 Several
comorbidity scores, such as the MDS-Specific
Comorbidity Index (MDS-CI)26 and the Hematopoietic
Cell Transplantation Comorbidity Index (HCT-CI),27 have
demonstrated an independent association with OS in
MDS. Whereas in lower-risk patients comorbidity directly

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 255 |

Stockholm, Sweden, June 13-16, 2013

Table 3. Revised International Prognostic Scoring System (IPSS-R).14

Prognostic characteristic Points
0 0.5 1 1.5 2 3 4

Cytogenetic risk categorya Very good Good Intermediate Poor Very poor

Blasts in bone marrow (%) ≤2 >2-<5 5-10 >10

Hemoglobin (g/dL) ≥10 8-<10 <8

Platelet count (x109/L) ≥100 50-<100 <50

Absolute neutrophil count (x109/L) ≥0.8 <0.8

IPSS-R risk group Score Median overall survival (years)

Very Low ≤1.5 8.8

Low >1.5-3 5.3

Intermediate >3-4.5 3.0

High >4.5-6 1.6

Very High >6 0.8
aVery good: –Y and del(11q) as single abnormalities; Good: Normal, del(5q), del(12p), and del(20q) as single abnormalities, double abnormalities including del(5q); Intermediate: del(7q), +8, +19, i(17q), and any other
single abnormalities, any other double abnormalities; Poor: -7 and inv(3)/t(3q)/del(3q) as single abnormalities, double abnormalities including -7/del(7q), complex (3 abnormalities); Very poor: > 3 abnormalities.



increases the risk of non-leukemic death, in higher-risk
patients its potential impact is largely overcome by the
severity of the disorder. Nonetheless, in the latter patient
population comorbidity also influences the final outcome
by reducing eligibility for and tolerance of intensive treat-
ment strategies. Thus, the objective assessment of comor-
bidity and functionality by validated scoring systems is
advisable for therapeutic decision-making in both lower-
and higher-risk MDS patients.

Treatment-related predictive factors

As will be discussed below, the likelihood of response to
a particular treatment modality should be also taken into
account for decision-making regarding treatment choice.
Characteristics or biomarkers included in this category
may be disease- or patient-related and in many instances
the underlying biological reasons for their predictive
capacity are still undefined.

Definition of lower- and higher-risk patients for
therapeutic purposes

Despite the ability of currently available prognostic
scoring systems to define 4 or 5 clearly distinct risk groups
of patients, from a practical point of view MDS patients
have been classically stratified for therapeutic purposes,
both in clinical daily practice and for inclusion into clini-
cal trials, only into two risk categories: lower-risk and
higher-risk.22-24 This has been mainly due to the limited
treatment armamentarium currently available and the non-
specific efficacy of most treatment modalities for a partic-
ular subset of MDS patients. Lower-risk patients are
defined by IPSS as those having low or intermediate-1 risk
scores (IPSS score, 0-1 points), whereas higher-risk
patients are those with intermediate-2 or high-risk scores
(IPSS score, 1.5-3.5 points).4 When using the WPSS or
IPSS-R, lower-risk patients are those belonging to the very
low- or low-risk categories, and higher-risk patients are
those categorized as high- or very high-risk patients.5,14

Remarkably, despite the likely better prognostic segrega-
tion achieved by WPSS or IPSS-R over IPSS, those more
recent scoring systems create a dilemma for physicians
taking care of MDS patients: what do we do with patients
in the intermediate-risk category? Median OS for interme-
diate-risk patients in WPSS and IPSS-R were 40 months
and 3 years, respectively.5,14 The IPSS-R intermediate cat-
egory appears closer to the initial IPSS intermediate-1
group both in terms of OS and AML risk, but the probabil-
ity of dying from AML for IPSS-R intermediate-risk cate-
gory was distinctively greater than for low- or very low-
risk categories. Thus, for Greenberg and colleagues it
seemed reasonable to suggest placement of IPSS-R inter-
mediate patients into the lower-risk group as far as their
potential therapeutic management in daily practice is con-
cerned, but to include them in clinical trials for both
lower- and higher-risk clinical trials to substantiate this
point.14 These authors also recommend the use in this risk
category of additional differentiating features for better
prognostic assessment. To cope with this specific issue,
and in the light of available evidence, the Grupo Español
de Síndromes Mielodisplásicos (GESMD) has recently

recommended that patients categorized as intermediate-
risk by IPSS or WPSS, and having high-risk or very high
cytogenetics, bone marrow fibrosis (moderate or severe),
severe neutropenia (PMN count <0.5¥109/L) or severe
thrombocytopenia (platelet count <30¥109/L) should be
considered as higher-risk patients.28 One major advantage
of this definition of lower- and higher-risk patients is that
the only clinical reason that remains for starting treatment
in lower-risk MDS patients is the management of sympto-
matic anemia, except for rarer cases of reiterated infec-
tions or bleeding in patients without severe neutropenia or
thrombocytopenia, respectively. This feature notably sim-
plifies the development of treatment algorithms for MDS
patients. 

Another important question is how the discrepancies in
risk assignment between the three main prognostic scoring
systems (IPSS, WPSS, and IPSS-R) should be resolved. In
my opinion, a patient that is categorized as higher-risk by
just one of them should be considered as higher-risk for
therapeutic purposes.

The GESMD definition of lower/higher-risk MDS will
be followed throughout this text except when specifically
indicated. 

Reasons for starting treatment and treatment
aims

The decision to start an active treatment in MDS
patients must be based on the individual prognosis and
presence of symptomatic cytopenias. The main objective
of treatment in higher-risk MDS is to modify the natural
history of the disease and to prolong OS. Thus, all patients
with higher-risk disease are candidates for active treat-
ment at initial presentation. Furthermore, in those patients
treatment should not be substantially delayed. In contrast,
as there are no therapies that have undoubtedly demon-
strated an increase in OS in lower-risk MDS patients and
their life expectancy is longer, treatment for them is
intended to improve symptoms and quality of life. For that
reason, patients with lower-risk MDS are candidates for
active intervention only when a symptomatic cytopenia is
present. That is, a watchful-waiting strategy is advisable
for asymptomatic lower-risk patients without clinically
significant cytopenias. This policy is supported by data
showing that the mortality rate of patients with very low
risk MDS by WPSS is similar to that of the general popu-
lation.5 It must be stressed that the safety of this non-inter-
ventional approach in asymptomatic lower-risk patients is
dependent on regular monitoring of peripheral blood and
bone marrow features to recognize findings of progression
that deserve therapeutic intervention at an early stage (L
Malcovati et al., submitted manuscript, 2013).24

Best supportive care 

Delivering the best supportive care (BSC) available
remains a key element of treatment for every single MDS
patient. Very advanced age, comorbidities, frailty, and
functional disabilities may disqualify many patients for
any active therapy; those patients will exclusively receive
BSC. BSC includes RBC and platelet transfusion support,
management of iron overload, and antimicrobial therapy.
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RBC transfusion support
Chronic anemia is associated with a significant deterio-

ration in the functional status and quality of life of elderly
MDS patients and worse OS.5-7,29 Anemia increases car-
diac output, leads to ventricular hypertrophy and cardiac
remodeling, and exacerbates coronary symptoms of
patients with cardiac comorbidity.29,30 Remarkably, in
some series of lower-risk MDS patients, cardiac failure
was the primary cause of non-leukemic death.6,31 The
objectives of RBC transfusions are to improve quality of
life by relieving anemia-related symptoms and to avoid
ischemic organ damage. No single hemoglobin concentra-
tion can be recommended as being the optimal level below
which red cell support should be given (L Malcovati et al.,
submitted manuscript, 2013).21-24 The decision to indicate
RBC transfusion support should not be based only on
hemoglobin level but mainly on patient’s symptoms and
presence of comorbidity. A hemoglobin level below 7 g/dL
should be avoided. Thus, it seems advisable to always
transfuse when the hemoglobin level is lower than 8 g/dL
and to increase this threshold up to 10 g/dL in those
patients with symptomatic milder anemia or comorbidities
(L Malcovati et al., submitted manuscript, 2013).24

Platelet transfusion support
The incidence of thrombocytopenia is close to 40%,14

being severe (platelet count <30¥109/L) in 8-16% of the
patients.11 Several series have shown the negative impact
of thrombocytopenia on outcomes2,4,14,32 and in one study
of lower-risk patients severe thrombocytopenia increased
the risk of death due to bleeding.11 There is no specific evi-
dence of criteria for administering platelet transfusions in
MDS to prevent major bleeding. In patients who only
receive supportive treatment, with chronic long-lasting
thrombocytopenia, the use of platelet transfusion should
be very restrictive and probably limited to the presence of
bleeding to avoid alloimmunization.9 In contrast, in
patients receiving active treatment with transient thrombo-
cytopenia, the use of platelet transfusions should follow
the same criteria employed in patients with AML. In those
instances, prophylactic administration of platelet transfu-
sions is recommended when the platelet count is lower
than 10¥109/L or lower than 20¥109/L if any risk factor for
bleeding is present (L Malcovati et al., submitted manu-
script, 2013).22,24

Antimicrobial prophylaxis
There are no data to support the use of any prophylactic

antimicrobial therapy in neutropenic MDS patients and its
use is not generally recommended (L Malcovati et al., sub-
mitted manuscript, 2013).24 Patients with MDS receiving
active treatment with transient neutropenia could be con-
sidered for antibiotic prophylaxis but efficacy of this poli-
cy is still unproven.33

Iron chelation therapy
Chronic RBC transfusion support invariably results in

development of iron overload. The potential role of excess
of iron in organ damage in MDS is supported by indirect
data showing a markedly higher incidence of different
comorbidities in RBC transfusion-dependent patients, and
T2* magnetic resonance imaging (MRI) and autopsy data
in heavily transfused patients.31,34,35 Furthermore, several
retrospective series in MDS have also demonstrated that

RBC transfusion dependency and raised serum ferritin
(presumed to be due to iron overload) are independently
associated with poorer outcomes both in untreated
patients5,6,8,14 and patients undergoing allo-HSCT.36-38 This
effect seems more remarkable in OS of lower-risk
patients,6,14 but in one large study raised serum ferritin
reduced OS and increased AML risk also in higher-risk
patients.8 Whether iron chelation therapy will not only
reduce iron overload but also improve OS in MDS patients
is still unclear and a subject for debate because no data
from a prospective randomized trial with OS as primary
efficacy end point are available. Three retrospective com-
parative studies have suggested that iron chelation therapy
would be beneficial in terms of OS in lower-risk MDS
with RBC transfusion dependency.39-41 Most treatment
guidelines in MDS, frequently translating the vast infor-
mation available in thalassemia and considering the pre-
liminary data obtained in MDS, currently recommend
starting iron chelation therapy in lower-risk RBC transfu-
sion-dependent patients with iron overload (mainly
defined as serum ferritin level > 1000 ng/mL or after
receiving 20-25 RBC transfusions) and in candidates for
allo-HSCT (L Malcovati et al., submitted manuscript,
2013).22-24 The iron chelators deferoxamine, deferiprone,
and deferasirox are all able to induce negative iron bal-
ance, reduce or normalize labile plasma iron, and reduce
ferritin levels and liver iron content in MDS patients.42-45

The route of administration, lack of serious hematologic
adverse events, and manageable safety profile make
deferasirox the preferred first-line treatment for iron over-
load in some guidelines.22,24 The most common drug-relat-
ed adverse events with deferasirox are gastrointestinal dis-
turbances and increased serum creatinine, leading to dis-
continuation in 25% of the patients.44,45 Deferasirox has
also recently been shown to transiently improve hemato-
logic parameters, including occasionally RBC transfusion
independency, in some patients (10%-20%).45,46 The
mechanism responsible for this effect is unclear. The rec-
ommended deferasirox starting dose is 10-20 mg/kg/d and
maintenance dose is 20-30 mg/kg/d that should be modi-
fied according to efficacy and transfusion requirements.24

Regular monitoring of iron overload by measuring serum
ferritin is strongly recommended.24

Hematopoietic growth factors

There is a huge amount of data regarding the use of
hematopoietic growth factors, especially erythropoiesis-
stimulating agents (ESAs), in patients with MDS, includ-
ing meta-analyses and systematic reviews of the literature,
randomized controlled trials and prospective and retro-
spective non-randomized clinical trials.
Erythropoiesis-stimulating agents

Despite the lack of specific approval in Europe for this
indication, ESAs are universally considered as first-line
treatment of symptomatic anemia in lower-risk MDS
patients (L Malcovati et al., submitted manuscript,
2013).21-24 Multiple prospective, randomized or uncon-
trolled, and retrospective studies have shown that a sub-
stantial proportion of MDS patients have an erythroid
response to ESAs treatment.47-50 Sixteen to 50% of patients
failing ESAs respond to the addition of G-CSF.48-50 A dose

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 257 |

Stockholm, Sweden, June 13-16, 2013



effect seems to be present with higher doses of ESAs (ery-
thropoietin [EPO], 60,000-80,000 IU per week; darbepo-
etin [DPO], 300 mcg per week-500 mcg every 2 weeks)
showing a superior response rate48,49 and equipotent doses
of DPO result in clinical effects similar to those obtained
with EPO.47,48,50 Most responses occur after 8-12 weeks of
treatment but very late responses may be occasionally
observed.51 Response rate has widely varied (median 40%-
50%; range 12%-71%) depending on the stringency of
response definition criteria, differences in incidence of
predictive factors for response between series, and ESA
dose. Though several characteristics have been associated
with response rate to ESAs,50 the two most important fac-
tors are endogenous serum level of EPO and RBC transfu-
sion dependency, and a validated predictive model for
response to ESAs plus EPO including these two variables
developed by the Nordic MDS study group52,53 is usually
recommended to guide ESA use in lower-risk MDS (L
Malcovati et al., submitted manuscript, 2013).22-24 In a
large retrospective study of 129 patients treated with EPO
and G-CSF median duration of response was 23 months,54

whereas in a series by the Group Francophone des
Myélodysplasies (GFM) on 99 patients treated with DPO
and with addition of G-CSF in non-responders median
duration of response had not been achieved after 52
months of median follow up,55 suggesting that response
duration with DPO is, at least, not inferior to that achieved
with EPO. Remarkably, no single study has reported an
increased incidence of cardiovascular events or transfor-
mation to AML, and two large retrospective studies com-
paring ESAs with or without G-CSF and best supportive
care have shown a beneficial effect of treatment on OS.56,57

Thus, current national treatment guidelines recommend
that lower-risk MDS patients with symptomatic anemia
and with serum EPO level lower than 500 mU/mL and/or
RBC transfusion requirement lower than 2 RBC units per
month should be considered for therapy with ESAs (L
Malcovati et al., submitted manuscript, 2013).21-24 ESAs
should be started at higher doses, with dosage regularly
adjusted according to hemoglobin level to avoid poly-
cythemia.24 Response should be evaluated after 8-12
weeks of therapy and G-CSF (300 mcg per week divided
in 2-3 doses for 8 additional weeks) added in case of ESA
failure.24 The association of ESAs and G-CSF from the
beginning may be considered in patients with refractory
anemia with ring sideroblasts. Patients losing their
response to ESAs must be fully evaluated for MDS pro-
gression and concomitant causes of anemia, including iron
deficiency.24

Granulocyte colony-stimulating factor
There are no data on efficacy and safety to recommend

the use of G-CSF for preventing or treating infections in
neutropenic MDS patients.33 It may be considered in two
circumstances: 1) for patients under active treatment in
whom neutropenia supposes a limitation or delay of such
therapy; and 2) for neutropenic patients with recurrent
severe infections.24 Though G-CSF mobilization does not
appear to induce the appearance of monosomy 7 clones in
healthy donors of hematopoietic progenitors of peripheral
blood,58 in vitro data of the preferential expansion by G-
CSF of clones carrying monosomy 7 are of concern,59 and
support restricting the use of this hematopoietic growth
factor in MDS patients with chromosome 7 abnormalities.

The use of G-CSF in conjunction with ESAs to manage
anemia has been discussed above.
Thrombopoietin receptor agonists

Romiplostim and eltrombopag, two thrombopoietin
receptor agonists that stimulate platelet production cur-
rently approved for use in chronic autoimmune thrombo-
cytopenia, are under investigation in MDS. In a small
phase I/II clinical trial in thrombocytopenic patients with
lower-risk MDS (IPSS low or intermediate-1 risk) receiv-
ing supportive care, romiplostim induced durable platelet
responses in 46% of the patients, respectively, with 9% of
the patients showing transient increases in marrow blast
counts.60 A large phase III randomized, placebo-controlled
trial in the same setting was prematurely terminated due to
concern of the data monitoring committee regarding a
potential increase of AML risk (6% vs. 2%) outweighing
the potential benefit in reduction of bleeding in patients
receiving romiplostim.61 However, a recent report with
more prolonged follow up has shown a similar incidence
of AML (9%) in both arms, and no differences in OS or
AML-free survival between patients treated with romi-
plostim or placebo.62 In that study, the number of platelet
transfusions in patients with severe thrombocytopenia and
the number of clinically significant bleeding events in
those with moderate thrombocytopenia was significantly
lower in patients receiving romiplostim. This drug has also
been tested in small series of lower-risk patients treated
with azacitidine,63 decitabine64 or lenalidomide.65 In all of
these studies there was a reduction, though no statistically
significant, in the incidence of clinically significant
thrombocytopenic events, number of platelet transfusions
or bleeding events in romiplostim-treated patients.
Eltrombopag is being evaluated both in lower- and higher-
risk MDS. Preliminary data on both cohorts of patients
show eltrombopag may be effective in raising platelet
counts and reducing bleeding events.66,67 Thus, available
data do not allow us to recommend the use of thrombopoi-
etin receptor agonists, and these should be restricted to
clinical trials.

Lenalidomide and other immunomodulatory
drugs

By still undefined biological mechanisms, MDS
patients with chromosome 5q deletion (del(5q)) have a
special sensitivity to lenalidomide, a thalidomide deriva-
tive with potent immunomodulatory and antiangiogenic
properties but lacking the neurotoxicity of the maternal
compound. Lenalidomide induces high rates of RBC
transfusion independence (RBC-TI 43%-67%) and cyto-
genetic response (25%-73%), including complete cytoge-
netic response (16%-45%), in lower-risk MDS patients
(IPSS low or Intermediate-1) with del(5q) and RBC trans-
fusion dependency.68-70 Rates of RBC-TI and cytogenetic
response after lenalidomide seem higher with cycles of 10
mg per day for 21-28 days every 28 days than with 5 mg
per day for 28 days68-70 and, therefore, the former is the
recommended dose for starting therapy. Erythroid
response is usually seen after only 1-3 cycles of lenalido-
mide (median time to response 5 weeks) and median dura-
tion of RBC-TI is longer than two years.68-70 The most
common grade 3 or 4 adverse events in patients treated
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with lenalidomide are neutropenia (55%-75%) and throm-
bocytopenia (33%-44%), and G-CSF is commonly used to
prevent or ameliorate neutropenia.68-70 The occurrence of
deep venous thrombosis has been reported in 1%-6% of
the patients.70 Data on the effect of lenalidomide treatment
on OS and progression to AML are limited. Long-term
outcomes were not addressed in the earlier single-arm
clinical trials of lenalidomide in this subset of patients68,69

and the cross-over design of the MDS-004 randomized
placebo-controlled clinical trial70 precluded meaningful
analysis of the long-term effect of lenalidomide. In that
study, the cumulative probability of AML evolution for
lenalidomide-treated patients was 17% at two years and
25% at three years from randomization.70 Thus, lack of
data and reports of a possible increase in the risk of pro-
gression to AML, especially in non-responders,71 are of
concern.72 As there is no randomized clinical trial in
progress or planned to determine the potential long-term
influence of lenalidomide, the only way to address this
issue is by means of large retrospective comparative stud-
ies that use the most adequate methodology to reduce their
limitations. Interestingly, three such studies currently
available employing different methodologies did not show
any significant impact of lenalidomide treatment on AML
risk (J Sánchez-García et al., submitted manuscript,
2013).73,74 In contrast, the effect of lenalidomide on OS in
these retrospective comparative studies differed. In the
GFM retrospective series, which used a complex propen-
sity score to try to match as much as possible their untreat-
ed control cohort (n=71) to the lenalidomide-treated group
(n=95) and accounting for the time-dependent characteris-
tic of treatment with lenalidomide by considering different
initial time points for estimating survival in both cohorts
(date of diagnosis for untreated and date of starting
lenalidomide for treated patients, respectively), OS was
similar in both cohorts.73 The retrospective multinational
study, which compared a cohort of 295 lenalidomide-treat-
ed patients included in previous clinical trials in RBC
transfusion-dependent patients with lower-risk MDS and
del(5q)69,70 with a historical untreated cohort of 125 similar
patients and that used left truncation to adjust for study
entry differences between cohorts, the lenalidomide-treat-
ed group had superior OS.74 This effect on OS was not evi-
dent in univariate analysis (P=0.76) and only become
apparent in multivariate analysis (P=0.012), which is sur-
prising because base-line characteristics, except for a
higher RBC transfusion burden in lenalidomide-treated
patients, were well balanced across cohorts. The GESMD
study, which assessed the effect of lenalidomide therapy
on outcomes by multivariable time-dependent methodolo-
gy and included 86 patients receiving lenalidomide with
125 untreated patients, did not reveal any significant
impact of lenalidomide treatment in OS either in the over-
all series of lower-risk MDS patients with del(5q) or in the
smaller group of RBC transfusion-dependent patients (J
Sánchez-García et al., submitted manuscript, 2013).
Nevertheless, in this study those patients who attained
RBC-TI or, more especially, those who showed a cytoge-
netic response with lenalidomide had a substantial sur-
vival benefit (J Sanchez-Garcia et al., submitted manu-
script, 2013). These results are in line with those observed
in the MDS-004 trial in which patients showing an RBC-
TI response with lenalidomide had longer OS and AML-
free survival than RBC-TI non-responders and where

there was also a trend for better OS for cytogenetic
responders compared with cytogenetic non-responders.70

Identification of biomarkers of response to lenalidomide is
important because benefit of lenalidomide treatment in
lower-risk MDS patients with del(5q) seems to be restrict-
ed to responding patients and the observation of stem cells
carrying del(5q) in most patients in cytogenetic remission,
which suggests that lenalidomide alone does not  cure
MDS with del(5q).75 A base-line platelet count lower than
150x109/L and presence of TP53 gene mutations, observed
in up to 20% of patients,76-78 have been associated with a
lower probability of response and greater risk of AML pro-
gression.70,77

Data for lenalidomide treatment in other subsets of
MDS patients are very limited. In a series of 47 higher-risk
patients, 12 became RBC-TI (median RBC-TI duration
6.5 months) and 7 achieved complete remission (CR) that
lasted for a median of 11.5 months.79 Significantly, 6 of 7
CR patients had del(5q) alone and all 7 a platelet count
greater than 100¥109/L. In a phase II study of 214 lower-
risk RBC transfusion-dependent MDS patients without
del(5q), 26% of patients attained RBC-TI (median dura-
tion 41 weeks) and the overall rate of hematologic
improvement was 43%; severe neutropenia and thrombo-
cytopenia occurred in 30% and 25% of patients.80 A phase
III clinical trial in this population is ongoing.

Taking all this information into account, lenalidomide
should be considered as first-line treatment in lower-risk
MDS patients with del(5q) and RBC transfusion depend-
ence with very low probability of response according to
the Nordic score52,53 or who have failed treatment with
ESAs (L Malcovati et al., submitted manuscript, 2013).24

Inclusion of these patients in clinical trials or prospective
registries is strongly recommended to enhance our knowl-
edge of lenalidomide’s mechanism of action and long-
term effect. Patients failing to respond or losing response
to lenalidomide should be fully evaluated for presence of
TP53 mutations or classical features of disease progres-
sion. Lenalidomide could be considered as second-line
therapy for non-thrombocytopenic higher-risk MDS with
del(5q) alone who have failed or who are not candidates to
other therapies.24 In non-del(5q) patients, lenalidomide use
should be restricted to clinical trials. Neurological toxicity
of thalidomide makes its use inadvisable, despite this
agent being able to induce major erythroid responses in a
fraction of patients.81

Immunosuppressive therapy 

Several reports have shown that treatment with anti-thy-
mocytic globulin (ATG) with or without cyclosporine A
(CSA) induces hematologic responses in one-third of
patients, especially in those with younger age, hypoplastic
marrow, lower-risk IPSS without excess of marrow blasts,
presence of DR15, and short disease duration.82-86

However, severe toxicity is frequent and one small series
reported a 90% treatment-related mortality (TRM).87

Although one retrospective comparative study reported a
survival benefit for ATG-treated patients in comparison to
untreated patients,85 a recent prospective randomized trial
of ATG plus CSA versus best supportive care did not
detect any significant difference in OS and AML-free sur-
vival.86 Based on these data, immunosuppressive therapy
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with ATG should only be offered to younger patients with
RBC transfusion dependency, lower-risk disease, and
hypoplastic marrow who have failed first-line therapy (L
Malcovati et al., submitted manuscript, 2013).24 This treat-
ment should be delivered only in centers with great expe-
rience in the use of ATG and under close surveillance.24

Hypomethylating drugs 

The notable efficacy of hypomethylating agents, azaci-
tidine and decitabine, in higher-risk MDS patients has sub-
stantially changed their therapeutic management.

Azacitidine has demonstrated in two prospective ran-
domized trials to be superior to conventional care
approaches in terms of overall response, partial remission,
and CR rates, time to progression to AML, OS, and quality
of life.88-90 The most frequent toxicity is hematologic, but
TRM is low.88 Survival benefit is apparent in different age,
FAB and WHO, and cytogenetic risk categories,90-92 and in
comparison with low-dose cytarabine,90,93 but azacitidine
advantage over intensive AML-type chemotherapy
remains unproven.90 The GFM has shown that OS after
azacitidine is poorer in patients with blasts in blood, inter-
mediate or high-risk IPSS cytogenetics, high RBC transfu-
sion dependency, and poor ECOG performance status.94

Preliminary results of azacitidine in patients in CR after
AML chemotherapy,95 and before96,97 and after allo-
HSCT98 are promising, but its benefit in comparison to
other approaches is uncertain. The approved schedule of
azacitidine is 75 mg/m2/day for seven consecutive days
every 28 days subcutaneously, but alternative schedules
avoiding weekend administration, such as 75 mg/m2/day
for five days, two days off, and 75 mg/m2/day for two
additional days or 75 mg/m2/day x five days are common-
ly used in daily practice. These alternative schedules have
shown mainly in lower-risk patients a similar RBC-TI rate
to the conventional schedule,99 and although their long-
term efficacy remains unproven, given the strong relation-
ship between achieving RBC-TI and OS after azaciti-
dine,94 it seems reasonable to use them.24 As pilot study
results with an oral formulation of azacitidine appear sim-
ilar to those achieved subcutaneously,100,101 more definitive
data are eagerly awaited.

Low-dose decitabine (15 mg/m2) given intravenously
over four hours three times a day for three days in 6-week
cycles has also shown in two prospective randomized tri-
als to be beneficial in comparison with supportive care in
terms of overall response, partial remission and CR rates,
time to AML, and quality of life.102,103 However, OS was
not significantly longer in any of both studies. Alternative
dose schedules not requiring hospitalization have similar
efficacy,104,105 and in a retrospective study have demon-
strated better OS compared to intensive AML-chemother-
apy.106 In a randomized trial, the best alternative decitabine
schedule was 20 mg/m2 intravenously daily for five
days.104 Despite no formal comparison between azaciti-
dine and decitabine having been performed, CR rate (but
not overall response rate) and neutropenic fever seem to
be higher with decitabine.

Based on current evidence, azacitidine is preferable to
decitabine (L Malcovati et al., submitted manuscript,
2013).24 Azacitidine should be considered as first-line
treatment in higher-risk MDS not considered candidates

for intensive treatment. Azacitidine should also be consid-
ered as first-line treatment in higher-risk patients who are
candidates to intensive treatment but lack an appropriate
donor for allo-HSCT (L Malcovati et al., submitted man-
uscript, 2013).24 In this situation, the selection of initial
treatment (azacitidine or AML-type chemotherapy) should
be based on patient-related (age and comorbidity) and dis-
ease-related (chromosomal abnormalities) factors.24 In
patients aged over 65 years or with comorbidity,24 and in
those presenting high-risk cytogenetics (L Malcovati et
al., submitted manuscript, 2013),24 azacitidine is the best
option. In the remaining cases, the choice is uncertain.

AML-type chemotherapy and autologous HSCT 
With remission induction AML-type chemotherapy, the

CR, early death and refractory disease rates are close to
50%, 25%, and 25%, respectively.24,106-111 Long-term
results after AML-type intensive chemotherapy are poor
with a high relapse rate (75%), short remission (median 8
months) and OS length (median 12 months), and low dis-
ease free-survival (DFS) rate (10%-15%).106-111 The use of
newer chemotherapeutic agents and G-CSF has not
improved those results.109,110 Probability of long-term DFS
is remote for patients aged over 65 years, with comorbid-
ity or high-risk cytogenetics.109,111 Although there are no
studies formally comparing quality of life after azacitidine
and intensive AML-type chemotherapy, hospital stay is
much more prolonged with chemotherapy.

There is no evidence to support the use of autologous
HSCT in MDS. Relapse rate is high (75%), especially in
patients with high-risk cytogenetics (close to 100%), and
DFS at four years is 15%.112,113 Furthermore, a recent ran-
domized trial has been unable to show a significant differ-
ence in OS between autologous HSCT and intensive
chemotherapy.114 For the moment there are no reasons to
recommend the use of low-dose cytarabine, as this agent is
inferior to azacitidine (L Malcovati et al., submitted man-
uscript, 2013).24,90,93

Allogeneic HSCT
The only proven curative modality in MDS is allo-

HSCT. The probability of DFS at three years after allo-
HSCT from an HLA-identical sibling is 40%.115 Main fac-
tors independently associated with outcome include age,
comorbidity index, disease status (FAB, WHO morpho-
logical subtype, and percentage of blasts at transplanta-
tion), cytogenetic risk group according to IPSS, RBC
transfusion dependency, iron overload, time from diagno-
sis to transplantation, and IPSS or WPSS score.27,38,115-120

Several relevant questions regarding allo-HSCT remain
unclear. One is the optimum time to proceed to transplan-
tation. The Center for International Bone Marrow
Transplant Research (CIBMTR), by using a Markov
model of decision analysis concluded that the greatest gain
in life expectancy was achieved by delaying transplanta-
tion until progression in patients with low or intermediate-
1 IPSS risk, and with early transplantation in intermediate-
2 or high IPSS risk.121 However, this study did not account
for the effect of age, comorbidity or delaying HSCT in
transplantation results and did not clearly define progres-
sion. Using a more sophisticated decision model, the
Italian Group of Bone Marrow Transplantation (Gruppo
Italiano di Trapianto di Midollo Osseo, GITMO) has con-
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Figure 1. Therapeutic algorithm for lower-risk MDS patients as defined by GESMD (see text). ESAs: erythropoiesis-stimu-
lating agents; G-CSF: granulocyte colony-stimulating factor; del(5q): deletion 5q; BSC: best supportive care; AZA: azaciti-
dine; ATG: anti-thymocytic globulin; Allo-HSCT: allogeneic hematopoietic stem cell transplantation. Probability of response
to ESAs according to Hellstrom-Lindberg et al.51,52 (see text).

Figure 2. Therapeutic algorithm for higher-risk MDS patients as defined by GESMD (see text). BM: bone marrow; Allo-
HSCT: allogeneic hematopoietic stem cell transplantation; CT: AML-type chemotherapy; AZA: azacitidine. High-risk cyto-
genetics includes -7 and inv(3)/t(3q)/del(3q) as single abnormalities, double abnormalities including -7/del(7q), and
complex/very complex (≥3) abnormalities; and low-risk cytogenetics the remaining abnormalities. 



firmed the benefit of early transplantation in higher-risk
patients, but has suggested that delaying transplant may be
harmful in patients with intermediate-1 IPSS risk or inter-
mediate WPSS risk, and particularly more so the younger
they are.122 The preferable source of hematopoietic stem
cells has not been determined, although some retrospec-
tive series show better results with mobilized peripheral
blood,123,124 and the ideal conditioning regimen has not yet
been established.125 Finally, another important unsolved
issue is the convenience to administer AML-type
chemotherapy or, more recently, hypomethylating agents
before transplantation in patients with advanced disease
(i.e. >10% marrow blasts) or high-risk cytogenetics.
AML-type chemotherapy is an excellent method for
selecting good candidates for transplant (those who attain
CR) but prevents the transplant in a substantial number of
patients. Hypomethylating drugs, especially azacitidine,
are less toxic than AML-type chemotherapy, which make
them preferable when a reduced intensity conditioning
(RIC) regimen is planned. On the contrary, these drugs are
less efficient in terms of CR rate. No randomized prospec-
tive trial comparing both strategies has been reported. In a
retrospective study from Seattle transplant outcomes were
similar.97 The use of unrelated donors and RIC has greatly
expanded the access to transplant. Although the probabili-
ty of DFS is somewhat lower than after HLA-identical sib-
ling donors,126,127 the results of allo-HSCT with unrelated
donors have improved in recent years thanks to best HLA
typing and supportive care.125 Apart from the degree of
HLA compatibility, the characteristics with prognostic
influence in this transplant modality are very similar to
those after HLA-identical siblings.125-127 There has not
been enough experience with umbilical cord blood trans-
plantation to be able to draw meaningful conclusions.128,129

Allo-HSCT with RIC is especially attractive in MDS. A
large retrospective comparative multicenter study has
shown a lower relapse rate with myeloablative condition-
ing (MAC), lower treatment-related mortality with RIC,
and no clear differences in DFS between both types of
conditioning, despite the fact that many patients receiving
RIC where considered unsuitable for MAC due to
advanced age or comorbidity.130 Data on so-called sequen-
tial conditioning transplant are still immature.131

Taking all this information into account, allo-HSCT is
considered the treatment of choice for higher-risk MDS.
Thus, the first thing to consider in higher-risk patients is to
ascertain whether the patient is eligible for and accepts
such a procedure, and if so, whether a suitable donor is
available. As stated above, age comorbidity, performance
status, frailty, other personal circumstances, and patient’s
preference should be taken into account when defining eli-
gibility. The patient should be HLA-typed shortly after
diagnosis. If there is no HLA-matched family donor a
search for an unrelated donor, including both adults and
cord blood units, should be started immediately to be
ready to perform the transplant whenever indicated. An
RIC could be recommended for patients with advanced
age or comorbidity (L Malcovati et al., submitted manu-
script, 2013).24

New agents and combinations 

The available information on the use of new drugs, such

as histone deacetylase inhibitors (vorinostat, valproic
acid), novel nucleosides (clofarabine, sapacitabine), farne-
syltransferase inhibitors (tipifarn, lorafarnib), kinase
inhibitors (rigosertib, ezatiostat, erlotinib), aminopepti-
dase inhibitors (tosedostat) and others (siltuximab), is lim-
ited to preliminary results of phase I/II trials in a very
small number of patients. In most cases, the use of these
new agents is being investigated in patients who have
failed hypomethylating agents and have a dismal progno-
sis.132 Similarly, information about the use of combina-
tions of new agents is still at a very preliminary stage and
is, therefore, not able to establish any recommendation on
their use.

Risk-adapted treatment algorithm for patients
with MDS

Figures 1 and 2 show the suggested risk-adapted treat-
ment algorithm for lower- and higher-risk patients with
MDS of the current guidelines for management of patients
with MDS of the GESMD.24
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The biology of myeloproliferative neoplasms

Introduction

In 1951, William Dameshek speculated that
the conditions now known as Philadelphia-
negative myeloproliferative neoplasms
(MPNs) (polycythemia vera (PV), essential
thrombocythemia (ET) and primary myelofi-
brosis (PMF)) were pathogenetically related.1

This hypothesis was confirmed in 2005 by the
identification of the V617F mutation in the
JAK2 gene in over 95% of patients with PV
and 50-60% of those with ET and PMF.2-5

Several lines of evidence have confirmed that
JAK2V617F contributes to MPN pathogene-
sis, and have started to outline the biochemical
mechanisms responsible. In parallel, other
recurrent mutations have been identified in
smaller proportions of MPN patients: some
affect similar signaling pathways to
JAK2V617F (e.g. mutations in JAK2 exon 12
and MPL), whilst a growing group affects epi-
genetic modifiers that regulate chromatin

structure and function. In this review, we dis-
cuss the biochemical and signaling abnormali-
ties induced by JAK2V617F and mutations in
similar pathways, followed by the novel epige-
netic mechanisms implicated in MPN patho-
genesis. Finally, we consider the increasing
evidence that MPNs are disorders of signifi-
cant clonal complexity, both in chronic phase
ET and PV, and in the more ‘accelerated’ phas-
es of myelofibrosis and secondary acute
myeloid leukemia.

Signaling abnormalities in MPNs

Canonical signaling abnormalities downstream
of JAK2V617F

JAK2 is a cytoplasmic tyrosine kinase that
mediates signal transduction from several
cytokine receptors including those for erythro-
poietin and thrombopoietin.6 Binding of ligand
to the receptor drives autophosphorylation of
JAK2,7 receptor transphosphorylation and

Myeloproliferative neoplasms 

The last eight years have seen major advances in the understanding of the molecular pathogenesis
of the chronic myeloproliferative neoplasms (MPNs), beginning with the identification of the
JAK2V617F mutation. This review discusses recent evidence regarding the mechanisms through which
JAK2V617F causes disease, including the key signaling pathways implicated and how they may be per-
turbed by other specific mutations in MPNs. However, it is also increasingly apparent that JAK2V617F
and similar signaling mutations, whilst contributing to MPN phenotype, may require co-operating
mutations to drive disease. In particular, mutations in genes for epigenetic modifiers have an impor-
tant role in MPNs, including those positive and negative for JAK2V617F, as well as in other malignant
myeloid disorders. We, therefore, also summarize the mechanisms through which mutations in key
regulators, including TET2, IDH1/2, DNMT3A, ASXL1 and PRC2 components, may alter DNA and histone
modifications to affect hematopoietic stem cell function. Lastly, we review recent evidence that MPNs
are disorders of surprising clonal complexity. This complexity must be unraveled in order to understand
how different mutations co-operate or act independently to determine the phenotype of chronic-
phase MPNs and to drive disease transformation.

Learning goals

At the conclusion of this activity, participants should know that:
- the JAK2V617F mutation results in activation of JAK2 and of multiple downstream signaling path-

ways; for example, STAT5 activation appears to be particularly important in the phenotype of poly-
cythemia vera;

- non-canonical effects of JAK2V617F in the nucleus may be mediated through direct phosphoryla-
tion of histones by JAK2 and indirectly through modification of histone methylation;

- mutations in TET2, IDH1/2, DNMT3A, EZH2 and ASXL1 occur recurrently in myeloproliferative neo-
plasms but are also common in other myeloid malignancies, and are likely to influence hematopoi-
etic stem cell function by affecting DNA methylation or histone modifications directly;

- studies of clonal hematopoietic populations have shown that the structure of clonal hierarchies in
MPN patients may be complex, and that dynamic changes in these structures may influence disease
phenotype or drive disease transformation.

A B S T R A C T



binding of STAT proteins, which are phosphorylated and
translocate to the nucleus as homodimers or heterodimers
to affect gene transcription. The V617F mutation is locat-
ed within the JH2 or ‘pseudokinase’ domain of JAK2. This
region appears to have an auto-inhibitory function on the
catalytically active JH1 domain: JH2 deletion increases
JAK2 phosphorylation and the activity of downstream sig-
naling pathways,8 and when expressed in bacterial cells
the JH2 domain negatively regulates JAK2 activity.9 The
V617F mutation has an activating effect on JAK2 activity
in cell line-based assays of cytokine sensitivity, cytokine-
dependent survival and signaling activity, and it was pro-
posed that this could reflect interference with the JH2
auto-inhibitory function.2-5 Recent work has suggested one
mechanism for this: the JH2 domain itself has serine and
tyrosine kinase activity and phosphorylates specific
residues that regulate JH1 activity (Figure 1A),10 and this
JH2 kinase activity is impaired in the presence of V617F.
Moreover, it appears that V617F co-operates with other
specific residues within JH2 to actively promote JH1
kinase activity.11,12 A greater understanding of the bio-
chemical effects of the V617F mutation has been support-
ed by a recent report of the JH2 domain crystal structure
(wild-type and V617F), an advance that may also permit
design of more rational targeted drug therapies.12

Downstream of JAK2V617F and its cognate receptors,
a number of signaling abnormalities (Figure 1B) have
been shown using various experimental systems. A role
for STAT5 activation in human MPNs is supported by the
observation that constitutively active STAT5 in erythroid
progenitors can induce the formation of erythropoietin
(Epo)-independent endogenous erythroid colonies, a car-
dinal feature of PV.13 Increased STAT5 phosphorylation is
found in JAK2V617F-expressing cell lines2,4,5 retroviral
bone marrow transplantation mouse models,14,15 erythrob-
lasts cultured ex vivo from CD34+ cells of PV patients
compared to normal individuals,16 and in bone marrow
trephine biopsies from patients with JAK2V617F-positive
MPNs compared to normal individuals or JAK2V617F-
negative MPNs.17 Activation of phosphatidylinositol-3-
kinase (PI(3)K)/Akt  and MAPK/ERK pathways have
been shown in similar systems in some studies.2,5,15-17

The signaling and phenotypic consequences of
JAK2V617F have also been studied in mouse models.
Retroviral bone marrow transplantation models typically
developed erythrocytosis, leukocytosis, splenomegaly
and, in some cases, bone marrow fibrosis and/or late ane-
mia,14,15,18 and transgenic models developed variable phe-
notypes depending on the construct (e.g. use of human or
murine JAK2V617F) and expression levels.19-21 These
models confirmed the ability of JAK2V617F to drive a
myeloproliferative phenotype, but more recently the
development of four knock-in mouse models has allowed
study of the mutation when expressed at physiological lev-
els in hematopoietic cells.22-25 Three knock-in models with
a heterozygous murine mutant Jak2 gene showed a pheno-
type resembling PV with erythrocytosis, leukocytosis,
splenomegaly, variable thrombocytosis and increased
megakaryocyte-erythroid progenitors,23-25 whilst a fourth,
with a heterozygous human JAK2V617F construct,
showed thrombocytosis with only mild erythrocytosis,
similar to human ET.22 The explanation for the phenotypic
differences between the heterozygous models is not yet
clear, but may include technical issues reflecting the dif-

ferent targeting strategies, or inherent differences between
mutant human and mouse proteins.

All four knock-in models showed increased activation
of STAT5, either at baseline or following Epo stimula-
tion.22-25 In one model for which Jak2V167F-homozygous
mice were generated, STAT5 activation was more pro-
nounced compared to heterozygous mice, together with
increased Akt and ERK1/2 activation, and this was associ-
ated with more marked neutrophilia, thrombocytosis,
splenomegaly and marrow fibrosis.25 Moreover, the criti-
cal importance of STAT5 in JAK2V617F-driven PV has
been demonstrated by observations that Stat5 deletion in a
Jak2V617F knock-in mouse26 or retroviral bone marrow
transplantation27 model abrogates the erythrocytosis.
Interestingly, in the latter model the deletion of Stat5 did
not prevent the development of myelofibrosis,27 highlight-
ing that different pathways downstream of JAK2 may
account for different aspects of MPN phenotype. Recent
data also show that expression of Jak2V617F in the ery-
throid lineage is sufficient to drive a PV phenotype, since
erythrocytosis develops in murine models when the muta-
tion is activated only in cells expressing the Epo recep-
tor,28,29 although in one model this phenotype was attenu-
ated compared to expression from the hematopoietic stem
cell (HSC) level.28

Recent reports have also indicated the importance of
crosstalk between JAK2V617F and cytokine pathways
other than Epo. The mutation is associated with downreg-
ulation of the thrombopoietin receptor (TpoR) by proteo-
somal degradation in hematopoietic cells, and this has
been suggested to prevent anti-proliferative signaling
through the TpoR at high levels of JAK2 activation, thus
permitting clonal expansion.30 The presence of
JAK2V617F may also directly influence the microenvi-
ronment through upregulation of TNFα, a cytokine that
inhibits growth of normal hematopoietic progenitors but
does not inhibit, or may even stimulate, growth of
JAK2V617F-mutant cells.31 Levels of TNFα and other
inflammatory cytokines are increased in MPN patients and
it will be important to assess the contribution of related
molecules to disease pathogenesis.
Non-canonical effects of JAK2V617F

Whilst activation of signaling pathways such as STAT5
can be considered canonical effects of JAK2, a number of
non-canonical effects have also been recognized and may
contribute to MPN biology (Figure 1C). In 2009, it was
reported that JAK2 was present in the nucleus and could
phosphorylate histone H3 at Tyr41 (Y41).32 This phospho-
rylation prevents the heterochromatin protein HP1α bind-
ing to H3 and has direct effects on expression of genes
such as Lmo2. Analysis of the distribution of phosphory-
lated H3Y41 by chromatin immunoprecipitation coupled
to massively parallel DNA sequencing (ChIP-Seq) has
revealed three main locations for this chromatin mark: at
certain active promoters; at putative enhancers within non-
coding regions of JAK-STAT target genes, where STAT5
also binds; and ‘blanketing’ the entire coding regions of
some active hematopoietic genes.33 These data are starting
to throw light on the mechanisms by which JAK2-induced
chromatin modification directly regulates gene expres-
sion, both alone and in combination with activated STATs.
It also appears that JAK2V617F may modulate chromatin
by a second mechanism: the mutant protein was found to
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Figure 1. Molecular effects of JAK2V617F. (A) Domain structure of the JAK2 molecule. Recent evidence indicates that the
JH2 domain has kinase activity, resulting in phosphorylation of S523 and Y570, which negatively regulate the activity of
the JH1 catalytic domain.10 The JH1 domain usually phosphorylates additional residues including Y1007 and Y1008, of
which Y1007 is particularly important in JAK2 activation.7 The position of V617F in the JH2 domain is also shown. (B)
Canonical signaling effects of JAK2V617F. *Molecules other than JAK2 that are affected by recurrent mutations in MPN
patients. Note that two mutant JAK2 molecules are shown in association with the receptor, which would occur in cells
with JAK2V617F homozygosity and also for a minority of receptors in JAK2V617F-heterozygous cells. Crosstalk with other
pathways such as TNFα are not shown since the pathways responsible are not fully clarified. (C) Nuclear effects of
JAK2V617F (see text for details). (D) Complexity of signaling molecules interacting with JAK2 (see text for details). (E)
Model for signaling alterations in cells that persist in the presence of JAK2 inhibitors.35 JAK2 signaling in inhibitor-naïve
cells is associated with phosphorylation of the cytokine receptor, JAK2, STATs and activation of downstream pathways
(left). On acute treatment with inhibitor (Ieft), all of these processes are inhibited (center). In ‘persistent’ cells, levels of
JAK2 are increased and the tyrosine kinases JAK1 and TYK2 can transphosphorylate JAK2 (right). This leads to resump-
tion of downstream signaling, which may in part result from the inhibited JAK2 molecules acting as a scaffold for these
processes. P: phosphorylated protein; Me: methylated protein. 



bind and phosphorylate the arginine methyltransferase
PRMT5 more strongly than wild-type JAK2, thus impair-
ing its histone methylation activity.34 Given that PRMT5
knockdown in human CD34+ cells increased formation of
hematopoietic colonies and promoted erythroid differenti-
ation, these effects seem likely to contribute to MPN phe-
notype. 

Although the effects of JAK2V617F on STAT5,
PI3K/Akt and MAPK/ERK pathways are well document-
ed, it should also be noted that signaling consequences of
mutant and wild-type JAK2 have additional layers of com-
plexity. JAK2 not only associates with homodimeric
cytokine receptors such as EpoR and TpoR, but also with
the interferon-gamma receptor and receptors containing
bc, gc and gp130 subunits (e.g. GM-CSF, IL-2 and IL-6
receptors, respectively)6 (Figure 1D). STAT1, STAT2, and
STAT3 may be activated downstream in addition to
STAT5. Moreover, JAK2 has recently been reported to
heterodimerize with the related tyrosine kinases JAK1 and
TYK2, and trans-phosphorylation of JAK2 by these kinas-
es may represent a mechanism for persistence of JAK2-
mutant clones in the face of chronic pharmacological
JAK2 inhibition35 (Figure 1E). Therefore, the conse-
quences of a JAK2mutation will depend on the panoply of
receptors expressed by a given cell type and also the pre-
cise downstream signaling targets (e.g. STAT family mem-
bers) present in the cell.
Other signaling abnormalities in MPNs

Although some studies have investigated signaling
abnormalities in human MPN cells, these have frequently
required an ex vivo culture system which may not faithful-
ly reproduce the most important changes in vivo. A recent
study used intracellular flow cytometry to analyze signal-
ing in CD34+ and more differentiated cells directly from
MPN bone marrow. A notable result was that patterns of
pSTAT3, pSTAT5, pERK1/2 and pAkt correlated best with
disease subtype rather than with the presence of
JAK2V617F or its allele burden.36 For example, pSTAT5
levels in CD34- cells were higher in PV than ET, and
pSTAT3 levels were higher in myelofibrosis than PV.
These findings highlight that MPN patients with the same
mutation (JAK2V61F) may show significant heterogeneity
in signaling abnormalities, which may contribute to dis-
ease phenotype, and this seems likely to reflect the spec-
trum of other genetic lesions found in these patients. 

Conversely in patients with JAK2V617F-negative
MPNs, alternative molecular mechanisms must account
for activation of similar signaling pathways to those asso-
ciated with JAK2V617F (Figure 1B). Important examples
include: 1) JAK2 exon 12 mutations, found in most
patients with PV who lack JAK2V617F, which are associ-
ated with more marked activation of JAK2 than V617F;37

2) MPL mutations, found in 4-9% of patients with PMF
and 1-11% of those with ET, which result in increased sig-
naling from TpoR and activation of JAK2, STAT3,
STAT5, Akt and ERK;38-40 3) LNK mutations, identified in
a small proportion of patients with ET, myelofibrosis,
idiopathic erythrocytosis and blast-phase MPNs, and
which are likely to abrogate the negative regulatory effect
of LNK on Tpo- and Epo-dependent JAK-STAT signal-
ing;41-43 and 4) c-CBL mutations, found in approximately
6% of patients with myelofibrosis and in other myeloid
malignancies, which may impair the negative effects of c-

CBL on signaling by cytokine receptors through JAK-
STAT pathways and also by receptor tyrosine kinases such
as Flt3.44,45

Epigenetic abnormalities in MPNs

Mutations in the TET2 gene were first reported in MPNs
in 2009,46 and an increasing group of epigenetic modifiers
has since been implicated in MPN biology. These muta-
tions are predicted to alter several different DNA and his-
tone modifications through a variety of mechanisms
(Figure 2). With the exception of TET2, mutations in these
genes have mostly been identified in 5% or less of patients
with PV or ET (Table 1), but are found at higher frequen-
cies in myelofibrosis and/or blast-phase MPNs and have
also been identified in other disorders including
myelodysplasias (MDS) and acute myeloid leukemia
(AML). Most have also been identified in at least some
patients who also carry JAK2V617F or other classical
MPN signaling mutations, suggesting that mutations in
signaling molecules and those in epigenetic regulators
may have complementary functions in pathogenesis.
Mutations altering DNA methylation: TET2, IDH1/2 and
DNMT3A
TET2 is the most frequently mutated gene in chronic

MPNs apart from JAK247,48 (Table 1). TET proteins con-
vert 5-methylcytosine (5mC) in DNA to 5-hydrox-
ymethylcytosine (5hmC), thought to be an intermediate in
DNA demethylation, and can generate other products from
5mC including 5-formylcytosine and 5-carboxylcyto-
sine.59 TET2mutations in myeloid malignancies cause loss
of function and are associated with reduced levels of
genomic 5hmC in patient bone marrow samples.60 TET2
knockdown in human CD34+ cells leads to skewed differ-
entiation towards the granulomonocytic lineage, and espe-
cially an increase in monocytic cells.61 Consistent with
this, several groups have found that TET2 disruption in
mice causes a chronic myelomonocytic leukemia
(CMML)-like disease with leukocytosis, neutrophilia,
monocytosis, splenomegaly, extramedullary hemato -
poiesis and, in some cases, anemia and/or thrombocytope-
nia.62-65 A consistent finding in these models was an
increase in HSC numbers, with increased HSC self-renew-
al and colony-forming progenitors. These phenotypes con-
trast with the PV or ET-like phenotypes observed in
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Table 1. Mutations in epigenetic regulators and their fre-
quencies in human MPNs. References have been restricted
owing to space limitations. NF: mutations not found in
small cohorts of patients; NK: frequency of mutations not
known.

Gene PV (%) ET (%) MF (%) Blast phase (%)

TET246-48 10-16 4-5 7-17 17-32

IDH1/249,50 2 1 4 9-22

DNMT3A51-53 3-7 NF 2-15 14-17

EZH254,55 3 NF 7-13 NK

ASXL153,56-58 2-7 0-3 13-32 18-33



JAK2V617F mouse models, and highlight that TET2
mutations probably act in MPNs by conferring a selective
advantage to HSCs, rather than driving erythroid or
megakaryocytic differentiation. This concept is also con-
sistent with recent data that TET2 mutations can be iden-
tified in a significant proportion of elderly individuals
who show skewed X-inactivation in blood cells, in associ-
ation with altered DNA methylation but no hematologic
abnormalities.66

Mutations in the isocitrate dehydrogenase 1 and 2
(IDH1/2) genes the most common in PMF and blast-phase
MPNs and confer inferior overall and leukemia-free sur-
vival in chronic-phase PMF and inferior overall survival
in blast-phase.49,50,67 IDH1 and IDH2 catalyze oxidative
carboxylation of isocitrate to α-ketoglutarate, and the spe-
cific mutations found in myeloid neoplasms not only
impair this reaction, but also cause a neomorphic catalytic
activity converting α-ketoglutarate to 2-hydroxy -
glutarate.68 Levels of 2-hydroxyglutarate are raised in
myeloid malignancies with IDH1 and IDH2 mutations68,69

and have been suggested to inhibit conversion of 5-
methylcytosine to 5-hydroxymethylcytosine by TET2,
with subsequent impaired DNA demethylation.70 IDH
mutations may, therefore, share pathogenetic mechanisms
with TET2 mutations, and this is consistent with a report
that these are mutually exclusive in AML.71

A more recent report suggests that IDH mutations are
also associated with impaired histone demethylation, with
hypermethylation particularly at repressive H3K9
marks.72 A knock-in mouse expressing the most common
IDH1 mutation (R132H) in hematopoietic cells shows
anemia, splenomegaly, extramedullary hematopoiesis and

increased lineage-restricted progenitors, together with
increased 2-hydroxyglutarate levels and DNA and histone
hypermethylation, supporting the importance of these
mechanisms.73 Interestingly, IDH mutations in PMF have
recently been found to show a positive association with
mutations in SRSF2, a spliceosome component gene
mutated in approximately 17% of PMF patients.74 Whilst
the pathogenetic mechanisms for spliceosome mutations
remain unclear, these data hint at co-operation between
these two abnormalities.

Mutations in the DNA methyltransferase gene DNMT3A,
originally identified in AML,75 have also been found in
patients with PMF, blast-phase MPNs and a small number
with PV51-53 (Table 1), and in other myeloid disorders.
DNMT enzymes catalyze methylation of DNA at CpG din-
ucleotides, and although one residue is particularly affected
by missense mutations (R882), the finding of nonsense
mutations and deletions in other patients suggests that the
pathogenetic mechanisms reflect dominant-negative or
loss-of-function effects.75 Ablation of DNMT3A in murine
HSCs, followed by serial transplantation, has been reported
to cause an increase in HSC numbers, impaired differentia-
tion and altered DNA methylation, consistent with the con-
cept that loss of DNMT3A function may promote HSC self-
renewal in myeloid malignancies.76 It is interesting to note
that whilst TET2 and IDH mutations would be predicted to
cause increased DNA methylation, DNMT3A mutations
should impair DNA methylation. These different predic-
tions suggest that the different mutations may result in site-
specific methylation changes and that these may be more
important in disease pathogenesis than global hyper- or
hypomethylation.  
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Figure 2. Pathogenetic mechanisms of mutations in epigenetic regulators in MPNs. See text for details of individual muta-
tions. Note that mutations such as IDH1/2 and ASXL1 may have multiple points of action. 2-HG: 2-hydroxyglutarate; K:
lysine; me3: trimethylated histone; ub1: monoubiquitinated histone.



Mutations altering histone methylation: EZH2, ASXL1 and
PRC2 components

EZH2 is a histone methyltransferase that forms part of the
Polycomb Repressive Complex-2 (PRC2), and catalyzes
methylation of histone H3 at lysine 27 (H3K27), leading to
transcriptional repression through recruitment of DNA
methyltransferases.77 EZH2 mutations were found in
myeloid disorders following the identification of acquired
uniparental disomy at chromosome 7q.54 Within the MPNs
these mutations are most often present in myelofibrosis
(Table 1),54,55 in which they are associated with higher white
cell counts, larger spleen size at diagnosis and reduced
leukemia-free and overall survival.55 EZH2 mutations in
myeloid malignancies are typically nonsense or missense,
may be mono- or bi-allelic, and cause loss of histone methyl-
transferase activity.54 Interestingly, these characteristics con-
trast with the heterozygous EZH2 mutations found in B-cell
lymphomas, which affect a single residue (Y641), appear to
have a gain-of-function effect, and are associated with
increased H3K27 trimethylation.78 It, therefore, seems that
EZH2 may have either a tumor suppressor or pro-oncogenic
function depending on the disease context. However,
increased EZH2 expression in a murine model has also been
reported to cause a myeloproliferative disorder with leuko-
cytosis, splenomegaly, and increased HSCs and granulocyte-
monocyte progenitors.79 Given that EZH2 inhibition has
been suggested as a therapeutic strategy for EZH2-mutant
lymphomas,80 it will be particularly important to understand
its role in normal and clonal myelopoiesis, and to establish
how normal hematopoiesis may be affected by such pharma-
cological interventions. 

Mutations in ASXL1 (additional sex combs like 1), a mem-
ber of the Enhancer of Trithorax and Polycomb (ETP) gene
family, have been identified in patients with myelofibrosis,
MDS, AML, and occasionally in PV or ET,53,56-58 and may
confer an adverse prognosis in myelofibrosis.81 The muta-
tions are predominantly nonsense, leading to C-terminal
truncation and loss of protein expression.82 ASXL1 is the
mammalian homolog of the Drosophila gene Asx, which
forms part of a complex (Polycomb repressive deubiquiti-
nase) with the protein BAP1. This complex removes
monoubiquitin from histone H2A, and this property has been
confirmed in vitro for the mammalian complex.83 However,
more recent data suggest that the function of ASXL1 muta-
tions in myeloid disorders is BAP1-independent, and rather
depends on loss of H3K27 trimethylation.82 This is likely to
be mediated through an effect on the PRC2 complex, since
ASXL1 knockdown led to reduced EZH2 occupancy at target
genes, and co-immunoprecipitation experiments confirmed
that ASXL1 interacts with PRC2 components.82

Interestingly, an ASXL1 homozygous loss-of-function
mouse model, expressing a truncated protein similar to the
predicted products of mutations in myeloid disease, did not
display any myeloid malignancy or abnormalities of blood
counts, HSC numbers or function.84 The explanation for this
discrepancy with human MPN phenotypes is unclear.

The potential importance of PRC2 in disease is also high-
lighted by the identification of mutations or deletions in
other components of the complex, including SUZ12, EED
and JARID2, in smaller proportions of patients with myeloid
malignancies. 53,85,86 Most reports are of patients with MDS,
MDS/MPN or blast phase disease, but there are isolated
reports in MPNs including SUZ12 mutations in secondary
myelofibrosis and PV.53,86

Clonal complexity in MPNs

An important message that has emerged from the study
of molecular abnormalities in MPNs is that even in appar-
ently simple disorders such as PV and ET, which often
remain clinically stable for many years, there may be sig-
nificant clonal complexity. Indeed, a major strength of the
study of MPNs is that analysis of clonal hematopoietic
populations, such as through hematopoietic colony assays,
allows the reconstruction of clonal hierarchies to better
understand disease biology. The first suggestion of this
complexity was raised by studies in which patients with
JAK2V617F-positive ET or PV were found to have trans-
formed to AML in which the leukemic blast cells were
negative for the mutation.87 Overall, AML transformation
from JAK2V617F-positive MPNs is associated with loss
of JAK2V617F in approximately 60% of patients stud-
ied.87-89 Additional experiments showed that this did not
reflect reversion of the mutant JAK2 allele back to wild-
type, suggesting either that the AML arose in a pre-
JAK2V617F stem cell within the MPN clone, or in a clon-
ally unrelated, normal stem cell.87-89 A lower frequency of
JAK2V617F loss (9%) has been reported in one study,
although this patient group was notable in that a high pro-
portion had transformed to AML from JAK2V617F-posi-
tive myelofibrosis rather than from PV or ET.90

A detailed study of 16 patients who had undergone AML
transformation from a JAK2-mutant MPN, including 9
who developed JAK2-wild-type AML, showed that a vari-
ety of molecular lesions were acquired around the time of
transformation (e.g. TP53, RUNX1) and that these did not
show specificity for JAK2-mutant or wild-type AML.89

For a number of patients, clonal analyses of these addi-
tional mutations did not confirm a shared clone of origin
for the JAK2-mutant MPN and JAK2-wild-type AML.
Although a TET2 mutation could be identified as a shared
founder lesion in a patient with chronic-phase MPN, in
whom JAK2 and MPL mutations were found in separate
daughter clones, there was no evidence that a TET2 muta-
tion preceded JAK2V617F in 2 other patients with
JAK2V617F-wild-type, TET2-mutant AML.89 It, therefore,
remains possible that JAK2-wild-type AML arises from a
clonally unrelated, independent HSC, or from a shared
pre-JAK2 founder clone that has not been identified with
current methods. The ability of deep-sequencing technolo-
gies, including whole-genome sequencing, to identify
large numbers of mutations will provide an important tool
in resolving the clonal evolution events that occur in these
AML transformations.

A number of studies have highlighted complexity within
chronic-phase MPNs, by analyzing the clonal hierarchy of
multiple molecular lesions. Studies of patients carrying
both JAK2V617F and chromosome 20q deletions demon-
strated that these lesions could co-exist in the same clone,
that either lesion could occur first within an individual
patient, and that both del(20q) and 9p loss of heterozygos-
ity (LOH, causing JAK2V617F homozygosity) could
occur twice in the same patient.91,92 Similarly, in an indi-
vidual patient a TET2 mutation may occur before a JAK2
mutation, or vice versa, or the mutations may occur in dif-
ferent clones.89,93 These studies suggest that co-operation
between JAK2V617F and other lesions in driving disease
does not require a particular temporal order of mutation. 
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By contrast to patients with co-existent JAK2 mutations
and cytogenetic abnormalities, studies of patients with two
tyrosine kinase mutations (e.g. MPL and JAK2) demonstrat-
ed that in all cases the two mutations were in separate clones.
Moreover, in 2 cases X-chromosome inactivation studies
demonstrated that these had independent origins and did not
arise from a shared founder clone.92 It, therefore, appears that
the addition of a second tyrosine kinase mutation may not
confer a selective advantage to a particular clone, but sepa-
rate clones with independent mutations may arise and co-
exist persistently in chronic-phase MPNs. The recurrent
acquisition of pathogenetic mutations in such patients,
together with the identification of multiple acquisitions of
JAK2V617F in other patients,94 also raises the question of
whether these individuals are somehow predisposed to
developing such mutant clones. It is increasingly recognized
that germline factors may have roles in genetic predisposi-
tions to MPNs,95 although the underlying mechanisms are
frequently unclear. 

It is also apparent that differences in clonal substructure
may be important in distinguishing between disease pheno-
types, such as between PV and ET. A number of lines of cir-
cumstantial evidence have linked the development of a PV
phenotype to acquisition of homozygosity for JAK2V617F:
JAK2V617F-homozygous erythroid colonies were initially
identified in most patients with PV but not with ET;96 a high-
er JAK2V617F allele burden in granulocyte DNA correlates
with more extreme hematologic features in PV patients;97

higher JAK2V617F expression levels have been associated
with a PV rather than ET phenotype in transgenic mice;21

JAK2 exon 12 mutations have stronger signaling conse-
quences than JAK2V617F and are exclusively associated
with PV rather than ET;37 and, conversely, a germline
JAK2V617I mutation, with more limited effects on JAK2
activation, was only associated with thrombocytosis.98

However, a recent genotyping study of numerous erythroid
colonies grown at low erythropoietin concentrations showed
that small JAK2V617F-homozygous clones can, in fact, be
identified in approximately half the patients with ET.99

Homozygous-mutant clones in PV were larger than those in
ET and present in 80% of patients. Moreover, recurrent
acquisition of JAK2V617F homozygosity was shown to be a
frequent occurrence in patients with PV, and also occurred in
ET. PV and ET were, therefore, not distinguished by the
absolute presence or recurrent acquisition of JAK2V617F
homozygosity, but PV patients all showed a dominant
homozygous subclone, which was much larger than other
homozygous subclones in the same patient. These data sug-
gest a model whereby loss of heterozygosity for chromo-
some 9p, resulting in JAK2V617F homozygosity, is a fre-
quent event in MPNs but does not necessarily confer a sig-
nificant selective advantage to these clones. Instead, it is like-
ly that additional genetic or epigenetic lesions are required to
permit expansion of a particular clone, which, in the case of
JAK2V617F-homozygous clones, may lead to the develop-
ment of a PV phenotype (Figure 3).
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Figure 3. Model for mechanisms distinguishing JAK2V617F-positive PV and ET.  In this model, JAK2V617F-homozygous
precursors arise frequently, and may occur recurrently, in patients with both PV and ET through loss of heterozygosity
(LOH) at chromosome 9p. However, these homozygous-mutant cells do not necessarily have a selective advantage at the
HSC level. Patients with PV are distinguished by the expansion of a dominant homozygous subclone which is likely to
reflect a selective advantage imparted by additional genetic and/or epigenetic lesions.99 Note that other mechanisms
must account for the development of PV in approximately 20% of patients who lack evidence of JAK2V617F homozygos-
ity. Pink circles represent JAK2V617F-heterozygous precursors; red and purple circles represent independent JAK2V617F-
homozygous subclones. 



Conclusions and future perspectives

The identification of the JAK2V617F mutation demon-
strated the first molecular link between PV, ET and PMF,
confirming the close relationship between the pathogene-
sis of the three disorders. A series of advances has not only
identified the complex ways in which JAK2V617F can
contribute to MPN pathogenesis, but also the increasing
spectrum of mutations implicated in driving disease both
independent of and in co-operation with JAK2V617F.
Here we have discussed the epigenetic modifiers mutated
in myeloid malignancies, but other groups of regulators
have recently been recognized to be mutated in myeloid
malignancies. For example, spliceosome component
mutations were originally identified in MDS but also
occur in MPNs, and of these, SRSF2 mutations have
recently been associated with leukemic transformation of
MPNs and with adverse prognosis.100 Mutational hetero-
geneity probably contributes significantly to the phenotyp-
ic heterogeneity of the MPNs, especially between the dif-
ferent chronic-phase diseases and in driving the transfor-
mation events that occur in a proportion of patients. In the
future, large-scale whole exome and genome sequencing
projects are likely to identify additional mutations that
contribute to MPN pathogenesis. It will be particularly
important to learn how these mutations co-operate or
interact at a molecular level to drive the clonal expansion
and distinct phenotypes seen within MPNs and other
myeloid disorders. 
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Mast cell neoplasms 

Introduction

Mastocytosis is a term used for a heteroge-
neous group of clonal hematopoietic disorders
characterized by abnormal expansion and accu-
mulation of tissue mast cells (MC) in the skin
and/or in visceral organs.1-10 Depending on the
affected organ system(s), mastocytosis can be
divided into cutaneous mastocytosis (CM), sys-
temic mastocytosis (SM), and localized MC
tumors.1-15 The classification of the World Health
Organization (WHO) discriminates between sev-
eral different categories of CM and SM.11-15 The
clinical course and prognosis vary substantially
among these patients.11-18 In addition, patients
with mastocytosis may suffer from symptoms
caused by various MC-derived mediators, espe-
cially when an allergic disease is also present.19-24

Mediator-related symptoms may be mild, severe,
or even life-threatening.19-24 In some of these
patients, an overt MC activation syndrome
(MCAS) is diagnosed.22-24 Patients with SM may
also suffer from osteoporosis, gastrointestinal
symptoms, neurological or psychiatric symptoms
or/and symptoms related to skin lesions, such as
pruritus or flushing (Table 1).19-21,25-28 In advanced
mastocytosis, additional problems, such as

cytopenia, ascites, malabsorption, lym-
phadenopathy, splenomegaly, hepatopathy, or
osteolysis, may develop (Table 1).11-18 Whereas
the prognosis in CM and indolent SM (ISM) is
excellent, the prognosis and life-expectancy in
aggressive SM (ASM) and MC leukemia (MCL)
are poor.15-18 The current article provides an
overview on the biology, molecular features,
diagnosis, classification, and treatment of patients
with mastocytosis.

Biology, history and classification

Mast cells (MC) are myeloid cells that express
histamine and other pro-inflammatory mediators
as well as high-affinity binding-sites for IgE.29,30

Similar to other leukocytes, MC are constantly
replenished from a pool of pluripotent and com-
mitted hematopoietic progenitor cells.29-31 MC
progenitor cells express the tyrosine kinase recep-
tor KIT.29-32 The ligand of this oncogenic receptor,
stem cell factor (SCF), induces MC development
in uncommitted and MC-committed progenitor
cells.31-33 However, in patients with mastocytosis,
SCF-independent differentiation and accumula-
tion of MC is seen.6-10 Historically, mastocytosis

Myeloproliferative neoplasms  

Mast cell (MC) neoplasms comprise a heterogeneous group of clonal disorders characterized by
abnormal expansion and accumulation of tissue MC in one or multiple organs. In most adult patients,
systemic mastocytosis (SM) is diagnosed. Based on histopathological findings and organ damage, SM
is divided into indolent SM (ISM), smoldering SM (SSM), SM with an associated hematologic non-MC-
lineage disease (SM-AHNMD), aggressive SM (ASM), and MC leukemia (MCL). The clinical course and
prognosis vary greatly among these patients. In all SM-variants and most patients, neoplastic cells dis-
play the disease-related KIT mutation D816V, suggesting that additional, KIT-independent, molecular
lesions or other factors are responsible for disease progression. Indeed, additional mutations, including
RAS and TET2 mutations, have recently been identified in advanced SM. In SM-AHNMD, such addi-
tional lesions are often detectable in the “AHNMD-component” of the disease. Clinically relevant
symptoms of SM result from malignant MC infiltration and the subsequent organ damage seen in
advanced SM and/or the release of pro-inflammatory and vasoactive mediators from MC. Therapy of
SM has to be adapted to the individual situation in each case. In ISM, the aim is to control mediator-
release and mediator-effects. In advanced SM, a major goal is to control MC proliferation by conven-
tional or targeted anti-neoplastic drugs. In rapidly progressing ASM, MCL and drug-resistant AHNMD,
stem cell transplantation should be considered.

Learning goals

At the conclusion of this activity, participants should know:
- the correct classification and diagnosis of SM; 
- the correct application of diagnostic tests and algorithms;      
- the delineation between SM variants and various differential diagnoses;
- about the establishment of treatment plans in indolent and advanced SM.

A B S T R A C T



was first described as a skin disease, named urticaria pigmen-
tosa (UP).34 Indeed, most patients with mastocytosis present
with typical skin lesions. However, absence of skin lesions
does not exclude the presence of SM. The classification of
mastocytosis stems back to 1949, when a first case of masto-
cytosis with internal organ involvement was described in an
autopsy.35 Between 1950 and 1975, a number of different dis-
ease variants, including MCL, were described. A first compre-
hensive classification proposal was introduced by the Kiel
group with Karl Lennert in 1979.1 Later, in 1991, a similar
classification was proposed by Dean Metcalfe and his col-
leagues in the US.2 Between 1990 and 2000, a number of clin-
ical, histomorphological, immunological, and biochemical
markers of CM and SM were developed and were in part val-
idated.36-42 In the Year 2000 Working Conference on
Mastocytosis, these disease-related parameters were discussed
and formulated into criteria to define mastocytosis and to clas-
sify CM and SM variants.11 The resulting consensus proposal
was adopted by the WHO as official classification of masto-
cytosis in 2001.12 Later, in 2008, this classification was recon-
firmed by the WHO.14 Based on the WHO classification, the
following disease variants are defined: ISM, SM with an asso-
ciated hematologic non-MC-lineage disease (SM-AHNMD),
aggressive SM (ASM), and MCL. As mentioned above, the
clinical course and prognosis vary greatly among these
patients. The smoldering subtype of SM (SSM) was initially
described as a subvariant of ISM.11 However, later, the EU-US
consensus group described this entity as a distinct variant of
SM.21 The currently proposed classification of mast cell disor-
ders is shown in Table 2.

Between 2002 and 2013, the consensus group continued to
work on markers, criteria, and standards, in order to improve
diagnosis, staging and prognostication in CM and SM, and to
formulate treatment response criteria.15,21-23,43 In 2002, the
European Competence Network on Mastocytosis (ECNM)
was inaugurated.44,45 The main aim of this academic platform
is to provide doctors and patients with all available informa-
tion and to improve diagnosis and therapy in patients with MC
disorders.44,45

Diagnostic criteria 

Minimal diagnostic criteria of CM and SM, proposed by the
consensus group and the WHO, are widely used and generally
accepted. CM is defined by typical skin lesions detected by
inspection (macroscopy), a “positive” histology, and absence
of criteria sufficient to diagnose SM.11-14,21 It is important to
know that a minimal infiltration of the bone marrow by neo-
plastic MC often remains “subdiagnostic” regarding SM, so
that the final diagnosis is CM in these cases.11-14,21 Even in
patients in whom two minor SM criteria are fulfilled, the diag-
nosis remains CM.11-14 The major SM criterion is a histologi-
cally confirmed infiltration of MC in one or more extracuta-
neous (visceral) organs. In most cases, the bone marrow (BM)
is examined. The recommended two stains for detection and
enumeration of MC and MC infiltrates in the BM (and all
other organs) are KIT (CD117) and tryptase.11-14,40 In typical
cases of SM, smaller or/and larger compact infiltrates of spin-
dle-shaped MC are found in KIT- and tryptase-stained BM
sections.11-14,40 Minor SM criteria include: i) an atypical mor-
phology of MC; ii) expression of CD2 or/and CD25 in MC;
iii) the presence of KIT D816V in the BM or another extracu-
taneous organ; and iv) a basal serum tryptase level exceeding
20 ng/mL.11-14 If at least one major and one minor or at least

three minor SM criteria are fulfilled, the diagnosis SM is
established (Table 3). With regard to diagnostic algorithms,
assays and standards used in daily practice, we refer to the
available literature.11-14,21,22 An important aspect is that most
patients with CM are children, whereas in most adult patients,
SM is diagnosed. Therefore, in children, no BM biopsy is
required unless clear signs for advanced SM or an AHNMD
are found.21 By contrast, in adults, a BM biopsy is always
required to establish the final diagnosis.11-14,21 In adult patients
who present with skin lesions but refuse a BM biopsy, the pro-
visional diagnosis of “mastocytosis in the skin” (MIS) is
appropriate,21 whereas the traditional way to diagnose CM in
such cases is obsolete and should be avoided.

| 278 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association

Table 1. Recurrent findings and symptoms in patients with
systemic mastocytosis (SM).

Typically seen in patient with

Findings/symptoms indolent SM advanced SM*

Skin involvement (MIS) +/-** -/+ **

Leukocytosis - +/-

Eosinophilia +/- +

Circulating mast cells - -/+***

Marked cytopenia - +

Bone marrow (BM) fibrosis -/+ +/-

Marked BM dysplasia - +/-

Mast cells in BM smears >5% - +/-

Serum tryptase > 200 ng/mL +/- +

Splenomegaly -/+ +

Lymphadenopathy (abdominal) -/+ +/-

Hepatopathy with ascites - +

Elevated alkaline phosphatase - +

Large osteolysis - -/+

Osteoporosis +/- -/+

Recurrent severe anaphylaxis +/- -/+

Hypotension and tachycardia +/- +/-

Fever and night sweats - -/+

Fatigue +/- -/+ 

Psychiatric or neurological symptoms +/- -/+

Gastrointestinal (GI) cramps + +/-

Loose stools or diarrhea + +/- 

Ulcerative GI tract disease +/- +/-

Malabsorption - -/+ 

Weight loss - +

*Advanced SM includes aggressive SM (ASM) and mast cell leukemia (MCL). **In most adult patients with
indolent SM (ISM), urticaria pigmentosa-like skin lesions are found. Those who have indolent SM but do not
exhibit skin lesions are classified as (isolated) bone marrow mastocytosis (BMM). In these cases, it is impor-
tant to exclude advanced SM, a condition that typically presents without skin lesions (>50% of cases).
***Circualting mast cells are typically found in patients with classical MCL. MIS: mastocytosis in the skin;
BM: bone marrow. + frequently seen; +/- found in a subset of patients; -/+ rarely seen; - not found.



Molecular features and target antigens
Mastocytosis is a group of clonal myeloid neoplasms

defined by factor-independent expansion of neoplastic MC.
The key molecular lesions recurrently detected in patients with
mastocytosis, are activating KIT mutations that may explain
the autonomous growth and expansion of neoplastic
MC.10,37,38,42,46-48 In pediatric patients with CM, a number of dif-
ferent KITmutations, including KITD816V, have been identi-
fied.10,46-48 By contrast, in most adult patients suffering from
SM, the KIT mutation D816V is detected, independent of the
variant of SM.10-14,37,38,42 It is remarkable that in all these
patients, including cases with ISM, who have a (near) normal
life-expectancy, neoplastic MC display KIT D816V. This
points to additional mechanisms and molecular defects respon-
sible for disease progression in ASM, MCL, and SM-
AHNMD. In other words, manifestation of an AHNMD, ASM
or MCL cannot be explained by KIT D816V alone. Indeed,
recent data suggest that a number of additional lesions are
detectable in patients with SM-AHNMD, ASM and MCL.
These lesions include RAS mutations, TET2 mutations, muta-
tions in IgE receptor genes, and other mutations.49-52 A summa-
ry of molecular lesions typically found in advanced SM is
shown in Table 4. A special condition is SM-AHNMD. Based
on molecular and functional studies, the AHNMD-component
of the disease is considered to develop in distinct (yet mono-
clonal) subclones that may derive from an early (KIT D816V–)
or later (already KIT D816V+) common neoplastic stem cell. A
number of different AHNMD variants and related molecular
lesions have been identified.56,58-61 In most patients, an associat-
ed myeloid malignancy is detected.56,58-61 By contrast, lym-
phoid variants of AHNMD are rarely diagnosed. In some
cases, hypereosinophilia occurs. In these patients, chronic
eosinophilic leukemia (CEL) may be diagnosed. In rare cases,
the FIP1L1/PDGFRA fusion gene is detectable.53-55 However,
in these patients, the SM component is usually small and neo-
plastic cells usually lack KIT D816V. Moreoever, in most cases
of FIP1L1/PDGFRA+CEL, the criteria for SM are not fulfilled
even if MC are spindle-shaped cells expressing CD25.54,55 The
delineation between FIP1L1/PDGFRA+ CEL and KIT
D816V+ advanced SM with eosinophilia has important clinical
implications, as only patients with typical CEL with a
rearranged PDGFR, but not those with advanced SM exhibit-
ing KIT D816V, respond to treatment with imatinib.

Diagnostic algorithm and staging in patients
with suspected SM

In adult patients with histologically confirmed mastocytosis
in the skin (MIS), a BM biopsy is recommended, regardless of
the serum tryptase level.6,11,12,21 In adult patients without skin
lesions who are suffering from typical mediator-related symp-
toms, the basal serum tryptase level is an important “pre-inva-
sive” screen parameter. In patients who have a clearly elevated
basal serum tryptase level, a BM biopsy should be per-
formed.21 It is of great importance to know that the serum
tryptase increases transiently during an anaphylactic
episode.8,21,22,62,63 In these patients, serum samples for basal
tryptase measurements should be collected at least 48 h after
complete resolution of all symptoms.21 Another useful screen
approach is to examine peripheral blood cells for the presence
of KIT D816V by a highly sensitive test. The presence of KIT
D816V is highly indicative for the presence of SM in such
cases. In patients with known SM, a number of different stag-

ing investigations need to be performed. BM investigations
include BM smears (Wright-Giemsa staining), histology and
immunohistochemistry, cytogenetics, PCR to detect KIT
D816V, and flow cytometry if available.6,11-14,21,39 Flow cytom-
etry should be performed in order to document expression of
CD2 and/or CD25 on neoplastic MC.21,39 However, today,
expression of CD25 in BM MC can also be demonstrated eas-
ily by immunohistochemistry (IHC).64,65 In both staining
methods (flow and IHC), CD25 is the more sensitive and
more specific diagnostic stain.65 Peripheral blood investiga-
tions include a complete blood count with (microscopic) dif-
ferential counts, blood chemistry, including serum tryptase,
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Table 2. Classification of mast cell disorders (mastocytosis).

Variant Abbreviation Subvariant(s)

Cutaneous mastocytosis CM - Urticaria pigmentosa (UP) =
- Maculopapular CM (MPCM)
- Diffuse CM (DCM)
- Mastocytoma of skin 

Indolent systemic mastocytosis ISM - (Isolated) bone marrow 
mastocytosis (BMM)

Smoldering systemic mastocytosis SSM 

Systemic mastocytosis with an SM- - SM-AML
associated clonal hematologic   AHNMD - SM-MDS
non-mast cell lineage disease - - SM-MPN

- - SM-CMML*
- - SM-CEL**
- - SM-NHL 

Aggressive systemic mastocytosis ASM - Lymphadenopathic SM  
with eosinophilia 

Mast cell leukemia MCL - Typical MCL
- Aleukemic variant of MCL

Mast cell sarcoma MCS

Extracutaneous mastocytoma 

Myelomastocytic leukemia MML - Aleukemic variant of MML

Mast cell activation syndrome MCAS - Primary MCAS
- Secondary MCAS
- Idiopathic MCAS

Mast cell hyperplasia

*SM-CMML is the most frequent form of SM-AHNMD. **In a subset of patients with SM-CEL,
FIP1L1/PDGFRA, but no KIT D816V, is found. In each case of SM-AHNMD, both the SM variant and the
AHNMD variant of the disease has to be established by using WHO criteria. AML: acute myeloid leukemia;
MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasm; CMML: chronic myelomonocytic
leukemia; CEL: chronic eosinophilic leukemia; NHL: non-Hodgkin�s lymphoma.

Table 3. Diagnostic criteria for systemic mastocytosis
(SM). 

Major:* Multifocal dense infiltrates of MC in bone marrow or
other extracutaneous organ(s) (>15 MCs in aggregate)

Minor:* i. MC in bone marrow or other extracutaneous organ(s)
show an abnormal (spindle-shaped) morphology (>25%)

ii. KIT mutation at codon 816** in extracutaneous organ(s) 
iii. MC in bone marrow express CD2 and/or CD25 
iv. Serum total tryptase >20 ng/mL (does not count in patients 
who have AHNMD-type disease)

*When at least one major and one minor or at least three minor criteria are present, the diagnosis SM
is established. **Activating mutations  at codon 816 of KIT; in most cases, KIT D816V is found. MC: mast
cell(s); AHNMD: associated clonal hematologic non-mast cell lineage disease. 



calcium, alkaline phosphatase, coagulation parameters, total
IgE, and allergy-diagnostics. Further staging examinations
include an osteodensitometry (T Score by Dexa-Scan), bone
X-ray, X-ray of thorax, and an abdomen ultrasound.11-14,21 In
those patients who have a decreased T Score, a yearly Dexa-
Scan is recommended. In select cases, additional investiga-
tions, such as a CT scan, may be required. It is important to
note that these investigations are appropriate in adult mastocy-
tosis, whereas in children, most of these staging investigations
are usually not required. Notably, in most children with MIS,
only the peripheral blood and spleen size are examined,
whereas all other staging investigations are usually not per-
formed as significant systemic involvement is rarely seen.21

Differential diagnoses

A number of differential diagnoses have to be considered in
patients with suspected SM, especially when typical skin
lesions (MIS) are not present. In fact, mediator-related symp-
toms are also recorded in patients with allergies, atopic
patients or patients who are intolerant against certain drugs,
food, plants or metals. In addition, a number of different inter-
nal disorders, neurological or psychiatric diseases, and other
conditions, can mimic MC-mediator-induced symptoms. A
summary of relevant ‘hematologic’ differential diagnoses are
shown in Table 5.

In patients with cytopenia(s) and an elevated serum tryptase
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Table 4. Molecular somatic lesions and abnormalities found in patients with mastocytosis.

Molecular abnormality Reported in patients with Estimated frequency in patients with SM Reference#

KIT D816V all SM variants, rarely in CM >80% 37,38,42

KIT D816Y CM, ISM, SM-AHNMD <5% 10,47,48

KIT D816F CM <5% 10,47,48

KIT D816H MCL, ASM, SM-AHNMD <5% 10,47

KIT D820G ASM <5% 10,46

KIT V560G ISM <5% 10,46

KIT F522C ISM <5% 10,47

KIT E839K CM <5% 10,47,48

KIT V530I SM-AHNMD <5% 10,47

KIT K509I SM (familial type) <5% 10,47,48

Other KIT mutations CM and/or SM variants <5% 10,47,48

FIP1L1/PDGFRA SM-CEL <5% 53,54,55

AML1/ETO SM-AML with t(8;21) <5% 56

JAK2 V617F SM-PMF <5% 57

RAS mutations ASM, SM-AHNMD <5% 51

TET2 mutations SM-AHNMD, ISM, ASM <5% 49,50

DNMT3A mutations ISM, SM-AHNMD <5% 50

ASXL1 mutations SM-AHNMD <5% 50

CBL mutations SM-AHNMD <5% 50
CM: cutaneous mastocytosis; SM: systemic mastocytosis; SM-AHNMD: SM with an associated hematologic clonal non-mast cell lineage disease.

Table 5. Hematologic disorders as major differential diagnoses of SM.

Clinical findings/features Major differential diagnoses

Cytopenia + elevated tryptase* Myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML)

Thrombocytosis and/or splenomegaly + elevated rryptase* Primary myelofibrosis (PMF), essential thrombocythemia (ET), RARS-T

Leukocytosis + eosinophilia + elevated tryptase* CEL, CML, AML-M4eo, PDGFR- or FGFR-rearranged neoplasms

Leukocytosis with an increase in blast cells + elevated tryptase* Tryptase+ AML, CML blast phase (BP)

Increase in circulating metachromatic cells Chronic myeloid leukemia CP/AP
Myelomastocytic leukemia (MML)
Chronic basophilic leukemia

Lymphadenopathy and Hepato/splenomegaly Malignant lymphoma (NHL) and Hodgkin�s lymphoma**

Huge osteolysis with bone fractures + osteoporosis + elevated tryptase*** Multiple myeloma***
SM: systemic mastocytosis; RARS-T: refractory anemia with ring sideroblasts and thrombocytosis; CEL: chronic eosinophilic leukemia; CP: chronic phase; AP: accelerated phase; NHL: Non-Hodgkin�s Lymphoma.
*A serum tryptase level exceeding 20 ng/mL is usually found in patients with a myeloid neoplasm. In some patients with AML, serum tryptase levels may increase to >500 ng/mL. **Neoplastic cells in advanced SM
usually express CD30 (Ki-1), a marker that is otherwise specifically expressed in lymphoma cells in patients with Morbus Hodgkin’s and anaplastic large cell lymphoma.  ***In some patients with SM, a paraproteinemia
may be detected, and in a very few patients, an overt multiple myeloma (MM) develops (SM-MM); however, osteopathy in SM usually develops independent of paraproteinemia..  



level, a number of hematologic neoplasms have to be consid-
ered. These neoplasms include myelodysplastic syndromes
(MDS), primary myelofibrosis (PMF), and acute myeloid
leukemia (AML).66-69 In those patients with eosinophilia, the
presence of CEL has to be considered. An increase in imma-
ture metachromatic cells in the peripheral blood may be a
diagnostic challenge. In these patients, acute or chronic
basophilic leukemia has to be excluded. Chronic myeloid
leukemia (CML) typically presents with basophilia. In
advanced CML, massive basophilia, including immature
forms, may be detected. It is of importance to note that con-
trasting the morphology of mature cells, immature basophils
are mononuclear cells, whereas immature mast cells often
exhibit bi- or multi-lobed nuclei (so-called “promasto-
cytes”).41 In cases presenting with very immature metachro-
matic cells (metachromatic blasts) it is usually impossible to
differentiate between mast cells and basophils. In these
patients, immunophenotyping and electron microscopy is
required to define the type (lineage) of the affected cell.67,70,71

A classification of metachromatic cells detectable in patients
with MC disorders is shown in Table 6. One important differ-
ential diagnosis to MCL is myelomastocytic leukemia
(MML).70-72 In these patients, metachromatic blasts and pro-
mastocytes are detectable and often represent the predominant
population of cells.

Treatment options in indolent SM

In many patients with SM, no relevant symptoms occur,
even when observed over years. However, because of the
risk of unexpected severe anaphylaxis, prophylactic hista-
mine receptor antagonists are usually recommended.6,11,21

The basis of therapy in SM is a combination of an H1- and
H2 histamine receptor antagonist.6-11,21 In case of severe GI-
tract symptoms, a proton pump-inhibitor (PPI) should be
added.11,21 However, such PPI should not be used without an
H2 histamine receptor blocker in these patients. In patients
with anaphylaxis or other severe mediator-related symptoms
despite antihistamines, additional glucocorticosteroids may
be required. In addition, MC-stabilizing agents are some-
times used to treat mediator-related symptoms in these
patients. Some of the novel TKI, such as dasatinib and
midostaurin, have been described to block IgE-dependent
histamine release.73,74 It is not known whether these effects
have clinical relevance.

Osteopathy is another important clinical feature in ISM
that needs attention and often requires therapy. Especially
those patients who are treated with glucocorticosteroids have
a rather high risk of developing osteoporosis. Repeated
Dexa-Scan studies (evaluation of T score) is recommended
for all patients with SM. In those in whom the T score is
below -2, bisphosphonates should be considered.21,75 Overt
osteoporosis (T score <-2.5) is a major challenge in the man-
agement of SM. In many cases, pathological fractures are
found despite continuous treatment with bisphosphonates.
Additional treatment with low-dose interferon-alpha has
been proposed for these patients, but responses have only
been seen in a subgroup of patients.

A major clinical challenge in SM are co-existing allergic
diseases. Notably, in patients with SM, the risk for severe
life-threatening anaphylaxis is very high.76-79 Therefore, all
patients with SM are advised to avoid all known (and poten-
tial) triggers, and to carry an epi-pen self-injector.5,8,21

Certain allergies seem to correlate with severe anaphylaxis
in patients with SM. The most famous example is allergy to
bee and wasp venom.76-81 Therefore, all patients with docu-
mented allergy against hymenoptera venom should undergo
specific desensitization.82-84 Depletion of IgE has also been
discussed as a potential therapeutic maneuver in SM with
severe anaphylaxis, but the value of this approach remains
questionable. All patients with SM who suffer from a co-
existing allergy should be managed and treated in an allergy-
center if possible.

Treatment options in advanced SM

Advanced SM is a term used to denote the following cat-
egories of SM: SSM, SM-AHNMD, ASM, and MCL.11-14

These entities differ substantially from each other in terms of
course and prognosis. Therefore, it is of great importance to
establish the correct final diagnosis before establishing a
treatment plan. In most patients with SSM, no therapy is
required. However, these patients may suffer from mild ane-
mia or other signs of incipient ASM. In addition, SSM
patients may suffer from severe repeated (life-threatening)
anaphylaxis. In these cases, the high burden of MC may be
a decisive factor, and cytoreductive therapy may be required
to reduce the risk of repeated life-threatening anaphylactic
events. A number of case reports and smaller case series sug-
gest that treatment with cladribine (2CdA) is followed by a
substantial and long-lasting decrease in the MC burden (and
of serum tryptase levels) in patients with SSM, and that this
therapy lowers the risk of fatal anaphylaxis in these
patients.85-87 However, not all patients with SSM may
respond to 2CdA.85,86

In patients with SM-AHNMD, the prognosis and course is
usually determined by the AHNMD component of the dis-
ease, even if ASM is diagnosed (ASM-AHNMD).5-8,16-18,56 In
each case it is important to classify both the SM component
and the AHNMD type according to WHO criteria in order to
establish a robust treatment plan for these patients.5-8,10-14,21,56

In general, the SM component of the disease should be treat-
ed as if no AHNMD was diagnosed and the AHNMD should
be treated as if no SM was present.11-14,21 However, there are
a number of pitfalls and aspects one should consider when
treating a patient with SM-AHNMD using cytoreductive
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Table 6. Morphologically defined subsets of mast cells found
in bone marrow smears in patients with mastocytosis.*

Cell type Morphological features/criteria*

Metachromatic blast Blast cell with a few metachromatic granules

Promastocyte = Mature or immature mast cells with bi- or
atypical MC type II multi-lobed nuclei, often hypogranulated

Atypical MC type I Mast cells exhibiting 2 or 3 of the following
three morphological criteria:
i) cytoplasmic extensions (spindle shape)
ii) hypogranulated cytoplasm 
iii) oval decentralized nucleus

Mature MC= Round cell with round central nucleus
typical tissue MC and well granulated cytoplasm

MC: mast cell(s). *See Sperr et al. for details of morphologies and typical examples (images) of various
stages of mast cell development.41



agents. Likewise, in SM-AML, the leukemia must be regard-
ed as secondary AML, and the prognosis of these patients is
unfavorable and comparable to that of other patients with
secondary AML.88 In these patients, more intensive therapy
(with or without stem cell transplantation) has to be consid-
ered (Table 7). It is also important to mention that in most
patients suffering from a so-called “AML with KIT D816V”,
a concomitant SM is detectable if a thorough histological
investigation is performed (otherwise SM is just over-
looked).88,89 Another important condition is SM with associ-
ated eosinophilia (SM-eo). In these patients, a thorough
molecular investigation is required.53-55 In some of these
patients, a rearranged PDGFRA but no KIT D816V is
detectable.53-55 These patients often respond to imatinib,
whereas patients with KIT D816V+ SM with eosinophilia
show no response to imatinib because the KIT mutant con-
fers resistance.

In patients with ASM, cytoreductive therapy is almost
always required. In those who have a slowly progressing
type of ASM, interferon-alpha plus prednisolone or cladrib-
ine (2CdA) is recommended.11,21,90-92 However, only a subset
of these patients show a long-lasting response.90-92 In patients
who show or develop resistance or who are suffering from
rapidly progressing ASM, chemotherapy is required. In
young patients who are fit and have a suitable donor, allo-
geneic stem cell transplantation should be considered (Table
7). In elderly patients and those who refuse a stem cell trans-
plant, induction and repeated consolidation cycles of
chemotherapy should be applied. The regimens are the same
as those used to treat secondary (high risk) AML. One fre-
quently used protocol is the FLAG (fludarabin + ARA-C +

G-CSF) regimen. An alternative option is to use experimen-
tal drugs such as PKC412 (midostaurin), and hydroxyurea is
commonly used as a palliative drug to control MC expansion
in advanced SM.

In patients with MCL, the same strategy is followed as in
ASM. However, most cases with MCL show rapid progres-
sion. Without chemotherapy, the life expectancy in MCL is
less than one year. In those who have a suitable donor, allo-
geneic stem cell transplantation should be considered. A spe-
cial condition is MC sarcoma (MCS). Most of these patients
progress to MCL within a relatively short time period.
Radiation and chemotherapy is usually recommended.
However, despite intensive therapy, most patients die after
several weeks or months.

Conclusion

Mastocytosis is a heterogeneous disease defined by patho-
logical expansion and accumulation of clonal MC in various
organ systems. In most adult patients, the systemic form of
the disease is diagnosed. Whereas the serum tryptase level
and KIT D816V in the peripheral blood are useful screen
parameters, a bone marrow examination is always required
to establish the final diagnosis and subvariant in these
patients. Subsequent staging and correct classification of the
disease are further important steps in the evaluation of
patients. Notably, the course and prognosis as well as thera-
py options vary greatly among disease variants. The final
treatment plan has to be adapted to the individual situation in
each case, and takes the presence of comorbidities and the
presence of molecular targets into account. Diagnosis and
therapy are thus based on a multidisciplinary approach in all
patients. In complicated cases, a Center of Excellence of the
ECNM should be contacted. In the past few years, a number
of new treatment approaches have been developed for indo-
lent and advanced SM. There is hope that in the future these
new concepts can be translated into clinical practice, since
for the moment, mastocytosis remains an incurable and often
resistant disease. 
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Table 7. Cytoreductive treatment and targeted drugs in
patients with SM.

Disease variant Treatment options

Indolent systemic No cytoreductive treatment is required
mastocytosis (ISM)

Smoldering systemic Watch-and-wait in most cases. In select cases:
mastocytosis (SSM) IFN-α2b+glucocorticosteroids or 2CdA.

SM-AHNMD Treat AHNMD as if no SM was diagnosed and  
treat the SM-component of the disease as if 
no AHNMD was found. 

Examples:
1) ISM-CEL with Imatinib (low dose: 100 mg per day) to control 
FIP1L1/PDGFRA the AHNMD-type of disease (CEL)
2) ISM-AML Chemotherapy followed by allogeneic stem cell 

transplantation if possible.

Aggressive systemic  IFN-α2b+glucocorticosteroids, 2CdA, if resistant: 
mastocytosis (ASM) experimenal TKI (midostaurin/PKC412) or other 
with slow progression experimental drugs/chemotherapy or hydroxyurea.

ASM with rapid progression Polychemotherapy (CT), consider allogeneic stem cell
and patients who do not transplantation in responding patients. If CT does not 
respond to IFN and 2CdA work: experimental therapy with a TKI (PKC412),

2CdA or other cytoreductive drugs. Hydroxyurea. 

Mast cell leukemia Polychemotherapy followed by allogeneic stem cell
(MCL) transplantation (SCT) if possible. If CT and SCT 

can not be performed: 2CdA or experimental TKI,
such as PKC412. Hydroxyurea as palliative drug.

IFN-α2b: interferon-alpha-2b; SM-AHNMD: systemic mastocytosis with an associated hematologic clon-
al non-mast cell lineage disease; TKI: tyrosine kinase inhibitor.
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Management of myelofibrosis

Introduction

Myelofibrosis (MF), formerly known as
idiopathic myelofibrosis or agnogenic myeloid
metaplasia, is one of the classical
Philadelphia-negative chronic myeloprolifera-
tive neoplasms (MPNs).1 The disease can
appear de novo (primary myelofibrosis or
PMF) or follow a previously known poly-
cythemia vera (PV) or essential thrombo-
cythemia (ET) (post-PV or post-ET MF),2 but
its clinical and histological characteristics and
prognosis are essentially the same. MF is a
clonal proliferation of a pluripotent hemato -
poietic stem cell3,4 in which the abnormal cell
population releases several cytokines and
growth factors in the bone marrow. This leads
to the appearance of marrow fibrosis and stro-
ma changes, and colonizes extramedullary
organs such as the spleen and the liver.5 In its
established form, MF is characterized by mar-
row fibrosis, extramedullary hematopoiesis
with splenomegaly, and leukoerythroblastosis

in blood.5 The discovery of the V617F muta-
tion of the JAK2 gene6 represented an impor-
tant step forward in our understanding of the
pathogenesis of MF. Other mutations have
subsequently been described.7,8 However, the
genetic trigger of MF remains unknown.

MF is a heterogeneous disease, with a clinical
course that can be complicated by progressive
bone marrow failure, symptomatic
splenomegaly, constitutional symptoms, con-
sumption, and manifestations of extramedullary
hematopoiesis.9 In 15-20% of patients, there is
evolution to acute leukemia.10,11 Conventional
treatment is merely palliative. Allogeneic stem-
cell transplantation (allo-SCT) is the only cura-
tive therapy for MF but, due to its limitations, it
is not frequently performed.12,13 The discovery
of the JAK2 mutation has paved the way for
molecular targeted therapy of MF: the so-called
JAK2 inhibitors. Other drugs are currently
being investigated. The present article summa-
rizes current and future strategies for the treat-
ment of MF. 

Myeloproliferative neoplasms 

Recent years have seen an important increase in our knowledge of the molecular biology and prog-
nostic assessment of myelofibrosis (MF). Conventional therapy has a limited impact on survival and is
adjusted to the clinical manifestations in each patient. It includes a ‘wait-and-see’ approach for
asymptomatic patients, androgens, erythropoiesis-stimulating agents or immunomodulatory drugs for
anemia, cytoreductive drugs such as hydroxyurea for splenomegaly and constitutional symptoms, and
splenectomy or radiotherapy in selected patients. Allogeneic stem cell transplantation remains the
only curative therapy for MF. While reduced intensity conditioning regimens have made this procedure
available to more patients, transplant is still associated with substantial morbidity and mortality;
therefore, it is generally recommended for patients with high-risk disease. Discovery of the JAK2
mutation has paved the way for molecular targeted therapy of MF. Clinical trials with JAK2 inhibitors
are ongoing and ruxolitinib has been approved for the treatment of splenomegaly and constitutional
symptoms of MF. These agents, however, usually accentuate the anemia and do not have a meaningful
effect on the JAK2 allele burden, whereas its impact on survival still needs to be confirmed.
Combinations of the JAK2 inhibitors with other agents are being tested and newer drugs are being
investigated.

Learning goals

At the conclusion of this activity, participants should know that:
- while a ‘pre-fibrotic’ form of primary myelofibrosis is recognized in the current WHO classification,

the management of these patients should be guided by their clinical profile and evolution rather
than by histological features;

- in the absence of an effective treatment able to cover all clinical manifestations of MF, choice of
therapy should be primarily guided by the patient’s symptom type and burden. Prognostic assess-
ment is also important, especially in decision-making concerning transplantation, since this proce-
dure is usually restricted to patients with high-risk disease;

- the JAK inhibitors are mostly effective in splenomegaly and the constitutional symptoms of MF, and
their efficacy is independent of the patient’s JAK2 mutational status. However, for the time being,
there is no clear indication that these drugs may substantially modify the natural history of MF.

A B S T R A C T



Diagnosis and prognostic assessment

The diagnostic criteria of PMF were updated in 2008
and now incorporate the new molecular findings of the
disease.1 Of note, these criteria consider the possibility of
diagnosing PMF in patients without bone marrow fibrosis
and who lack the clinical-hematologic features typical of
the disease. In these cases, the presence of clusters of
highly dysplastic megakaryocytes in the bone marrow is
the main finding to support PMF diagnosis. However, the
recognition of this ‘pre-fibrotic’ form of the disease is con-
troversial14,15 as its differential diagnosis with ET is sub-
jective and involves issues of reproducibility. In a recent
collaborative study16 in which 1104 ET patients were ret-
rospectively analyzed, 16% were reclassified as having
‘pre-fibrotic’ PMF; they more frequently evolved to
myelofibrosis or leukemia and had shorter survival. It is
likely that a minority of ET patients actually have this his-
tological entity. However, their management should be
guided by the patient’s clinical profile and evolution rather
than by histological features. In turn, the diagnosis of post-
PV and post-ET MF requires demonstration of marrow
fibrosis in subjects with an antecedent PV or ET, in the
presence of several of the typical features of MF, such as
anemia, splenomegaly, constitutional symptoms, leuko-
erythroblastosis, and increased serum LDH.17

Median survival of PMF has increased over time and
currently approaches seven years.13 Main causes of death
are disease progression leading to consumption, transfor-
mation into acute leukemia, infection, bleeding, portal
hypertension or hepatic failure secondary to
hepatic/splenoportal vein thrombosis or liver myeloid
metaplasia, thromboses in other sites, heart failure, and
secondary neoplasias.13 The prognosis is heterogeneous,

with a few patients living for more than 20 years and oth-
ers dying within one or two years of diagnosis. In recent
years, important progress has been made in assessing the
prognosis of PMF. The most important unfavorable prog-
nostic factors are anemia (Hb <10 g/dL), age over 65
years, constitutional symptoms, leukocytes higher than 25
x109/L, and blood blasts 1% or over. These five factors
have been integrated into an International Prognostic
Scoring System (IPSS). This is used at disease diagnosis
and recognizes four prognostic groups: low, intermediate-
1, intermediate-2, and high risk. Median survival is
approximately 11, eight, four and two years, respective-
ly.11 The IPSS has been complemented by a dynamic IPSS
(DIPSS) that can be useful at any time during the disease
course.18 This has been further refined in a DIPSS-plus
model, also including thrombocytopenia, transfusion need
and karyotypic information.19 Table 1 summarizes current
prognostic models of MF.

Planning therapy in myelofibrosis

When planning therapy in an MF patient, two main fac-
tors must be considered: the patient’s prognostic group,
and the type and burden of symptoms. The prognostic
group is especially important for patients with high-risk
disease, whose median survival is around two years.11

Therefore, allo-SCT should be prioritized in these
patients. However, quite often, allo-SCT is not a real
option, due to the patient’s age or the lack of a suitable
donor and, consequently, investigational drugs or best pal-
liative therapy are the therapeutic alternatives in these
cases. The other extreme of the spectrum are low-risk
patients, with a median survival approaching 12 years,11

most of whom are asymptomatic. For these patients, a
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Table 1. Summary of current prognostic models for myelofibrosis.

Variable IPSS DIPSS DIPSS-Plus

Age > 65 years + + +

Constitutional symptoms + + +

Hb <10 g/dL + + +

Leukocytes >25x109/L + + +

Blood blasts >1% + + +

Platelets < 100x109/L +

RBC transfusion need +

Unfavorable karyotype:

+8, -7/7q-, -5/5q-, i17q, 12p-, 11q23 rearr. +

1 point each 1 point each (Hb: 2 points) DIPSS high: 3 points
DIPSS int-2: 2 points
DIPPS int-1: 1 point

Platelets < 100x109/L, unfavorable karyotype, 
and transfusion need: 1 point each

IPSS: International Prognostic Scoring System. Low risk: 0 points; intermediate-1 risk: 1 point; intermediate-2 risk: 2 points; high risk: 3-5 points. DIPPS: Dynamic IPSS. Low risk: 0 points; intermediate-1 risk: 1-2
points; intermediate-2 risk: 3-4 points; high risk: 5-6 points. DIPPS-plus. This is based on the DIPSS, to which the other three posible risk factors are added. Low-risk: 0 points; intermediate-1 risk: 1 point; intermedi-
ate-2 risk: 2-3 points; high risk: 4-6 points.



conservative approach seems a reasonable option, espe-
cially taking into account that, with current dynamic prog-
nostic models, this decision can be reconsidered at any-
time during the disease evolution if the clinical situation
and prognosis change.

In the majority of MF patients, symptom type and bur-
den are the main determinants of therapy choice. The pre-
dominant symptoms are those derived from anemia and
splenomegaly and constitutional symptoms (weight loss,
excessive sweats and low-grade fever).9,13 Beside these,
extramedullary hematopoiesis in sites other than the
spleen and liver, aquagenic pruritus, bone pain, and throm-
bosis can represent a problem in some patients. Since, for
the time being, no treatment modality other than allo-SCT
covers all clinical manifestations of MF, therapy choice is
basically guided by the predominant symptom in each
patient. This means that we usually administer drugs for
the anemia or therapies for the hyperproliferative manifes-
tations of MF, such as splenomegaly and the constitutional
symptoms. Again, the situation is often more complex, as
many patients share several symptoms, whereas a therapy
instituted for one symptom can worsen the other, as is the
case of the anemia, frequently triggered or accentuated by
the agents given for the splenomegaly.20 This fact fre-
quently leads to use of a combination of agents, the most
typical being a cytoreductive agent plus a drug to alleviate
anemia. Finally, an important consideration is that the pos-
sible survival benefit derived from the institution of a spe-
cific therapy must be balanced with its effect on the
patient’s quality of life.21

Based on the above premises, a tentative algorithm for
the treatment of MF is shown in Figure 1, in which
patients are allocated to different therapeutic strategies,
ranging from the more conservative ‘wait-and-see’
approach to allo-SCT.

Treatment of anemia
Once treatable causes of anemia are excluded, such as

iron, folate or vitamin B12 deficiency or immune hemoly-
sis, there are several options to treat the anemia of MF.
Androgens

Nandrolone, fluoxymesterolone, methandrostenolone
and oxymetholone were reported to improve the anemia
in 30-60% of patients.22,23 Similar results, with less tox-
icity, can be obtained with danazol, a semisynthetic
attenuated androgen that can also correct thrombocy-
topenia.24 The overall response approaches 40%, and
half of these are durable over time.24 A sufficient dose
(600 mg a day) must be administered and should be
maintained for a minimum of six months, unless toxic-
ity develops, since most responses are seen between
three and six months. After this, the dose must be pro-
gressively reduced to the minimum necessary to main-
tain the response, usually 200 mg/day. Liver function
must be monitored and periodic ultrasound imaging
surveillance performed to detect the possible appear-
ance of liver tumors. Systematic screening for prostate
cancer must also be carried out. 
Erythropoiesis stimulating agents (ESA)

Recombinant human erythropoietin (rHuEPO) or darbe-
poetin-alfa achieve an improvement in anemia for approx-
imately 40% of patients.25,26 Median duration of responses
is 12 months, and half of these are maintained in the long
term. Responses are limited to patients with inappropriate
serum erythropoietin levels (<125 mU/mL). As response
is usually seen within a few weeks of treatment initiation,
if no response is observed after three months, therapy
should be definitively stopped. Increase in spleen size has
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Figure 1. Proposed algorithm for the treatment of myelofibrosis.



occasionally been reported during ESA treatment, but this
side effect is not a problem in the majority of patients.
Immunomodulating drugs 

Thalidomide, at a starting daily dose of 100-200 mg,
was associated with high treatment withdrawal due to the
frequent toxicity, mainly constipation, fatigue, paresthesia,
sedation, hematologic toxicity, and myeloproliferative
acceleration.27 Among assessable patients, anemia
improved in 29% of cases. To minimize toxicity, lower
doses of thalidomide (50 mg daily) are currently being
given in combination with oral prednisone,28 resulting in
less treatment withdrawal and slightly higher response
rates. However, the efficacy of thalidomide in MF has
been put into question,29 suggesting that the efficacy of
low-dose thalidomide plus prednisone might be ascribed
rather to the prednisone.

Lenalidomide, a thalidomide derivative, produces 22%
response in the anemia of MF, with normalization of Hb in
some patients, as well as some response in splenomegaly.
Again, treatment discontinuation is high (30-50%) due to
side effects, mainly hematologic toxicity.30

Treatment of splenomegaly

Cytoreductive drugs
Therapy for the ‘hyperproliferative’ forms of MF has

been traditionally based on the use of cytoreductive
agents, with hydroxyurea as the drug of choice.
Hydroxyurea can reduce spleen and liver size, improve
constitutional symptoms, pruritus and bone pain, and con-
trol leukocytosis and thrombocytosis, with an overall
response rate of 40% and a median duration of response of
13.2 months.20 The dose must be adjusted to the hemato-
logic tolerability, and addition of agents to treat anemia is
often required due to worsening of the anemia in half of
the patients. Other oral cytoreductive drugs, such as busul-
fan31 or melphalan,32 have also been used. However, due to
their associated risks, mainly long-lasting cytopenias, and
their possible leukemogenic potential, they are rarely
employed. 2-chlorodeoxyadenosine, a purine nucleoside
analog for intravenous administration, has been reported
to have a role for the treatment of progressive
hepatomegaly and symptomatic thrombocytosis that
develop after splenectomy.33

Splenectomy
Splenectomy can be considered in patients with massive

and painful splenomegaly or refractory cytopenias.
However, the procedure involves substantial risk. Thus, in
a single institution series34 operative morbidity was 31%
and mortality 9%. Main complications are bleeding (espe-
cially hemoperitoneum), infections and thrombosis. In
addition, massive hepatomegaly due to compensatory
myeloid metaplasia of the liver develops in 16-24% of
patients, some of whom die from liver failure.35 Post-
splenectomy thrombocytosis increases the risk of throm-
bosis, especially in the splenoportal vein tract.36

Splenectomy can be considered for symptomatic
splenomegaly refractory to treatment, severe constitution-
al symptoms, uncontrollable hemolysis, transfusion-
dependent anemia unresponsive to therapy, and portal
hypertension secondary to increased portal flow.34 In the

Mayo Clinic series, durable responses in constitutional
symptoms, transfusion-dependent anemia, and portal
hypertension were obtained in 67%, 23% and 50%,
respectively.34 In every patient, the risks of splenectomy
should be balanced against the possible advantages. The
availability of the JAK2 inhibitors will probably lead to
even more limited use of splenectomy in MF.
Radiation therapy

Splenic radiation reduces spleen size and procures rapid
symptom relief. Doses are variable, ranging from 0.15 Gy
to 65 Gy per course, administered on a fractioned basis.37

Splenic radiation can be considered for patients not
responding to JAK2 inhibitors who are poor candidates for
surgery and for palliation of severe pain from spleen
infarction. However, its effect is transient, whereas the risk
of provoking severe and long-lasting cytopenias is high,
due to an effect on circulating progenitors.38 This latter
complication is observed in up to one-third of patients and
can be life-threatening due to severe infection or
bleeding.39 Therefore, routine use of splenic irradiation in
MF patients is not recommended. Also, it should be noted
that an increased risk of postoperative bleeding has been
observed in patients submitted to splenic radiation to
reduce spleen size before splenectomy.39

Treatment of extramedullary hematopoiesis

Low-dose radiation therapy is the therapy of choice for
symptomatic extramedullary hematopoiesis in places
other than the spleen, such as the spinal cord, the peri-
toneum or the pleura, granulocytic sarcomas of the bone
causing local pain, and pulmonary hypertension secondary
to myeloid metaplasia of the lung.40,41 Further experience
with patients receiving JAK inhibitors is needed to deter-
mine whether these drugs are also effective in this compli-
cation of MF.

Treatment of constitutional symptoms

Until the introduction of the JAK2 inhibitors, treatment
of the constitutional symptoms associated with MF was
largely unsatisfactory, although a proportion of patients
may obtain transient benefit from cytoreductive therapy20

or corticosteroids.

Allogeneic stem cell transplantation

Allo-SCT remains the only curative therapy for MF.
However, most published series of conventional condi-
tioning allo-SCT include patients transplanted one or two
decades ago. Therefore, these early reports are no longer
appropriate to use as a basis for the decision to transplant.
In 1999, Guardiola et al.42 analyzed the results of allo-SCT
in 55 MF patients. Graft failure was 9%, transplant-related
mortality 27%, and 5-year probability of survival and dis-
ease-free survival 47% and 39%, respectively. In an
update of the series, only 14% of patients transplanted
over the age of 45 years survived in the long term versus
62% of the younger patients.43 A more recent publication
of the international bone marrow transplant registry
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(IBMTR) analyzed 289 MF patients transplanted world-
wide from 1989 to 2002.44 Survival at five years was 37%,
30% and 40%, depending on the donors being identical
siblings, unrelated individuals or non-identical relatives,
whereas disease-free survival was 33%, 27% and 22%,
respectively. In a more recent study from Seattle45 in 170
patients transplanted between 1990 and 2009, engraftment
failure was 7% and transplant-related mortality 34%,
whereas overall survival and disease-free survival were
both 57% at five years, with DIPSS group and comorbid-
ity index being the main factors predictive for transplant-
related mortality and overall survival. Concerning the con-
ditioning regimen, busulfan, at doses adjusted to achieve
adequate plasma levels, is associated with lower trans-
plant-related mortality and higher survival than total body
irradiation (TBI)-based regimens.46

Based on the demonstration of a graft-versus-myelofi-
brosis effect,47 reduced intensity conditioning (RIC) allo-
SCT was started in MF. After a pioneering experience,48

many reports have followed. The larger series of RIC
allo-SCT49 included 103 patients conditioned with flu-
darabine, busulfan and anti-thymocyte globulin and trans-
planted from family (n=33) or unrelated (n=70) donors.
Graft failure was 2% and transplant-related mortality
20%, being higher in patients over 50 years of age.
Resolution of splenomegaly and marrow fibrosis was
slow, taking even more than one year in some patients. A
recent survey of the literature on allo-SCT in MF50 report-
ed a procedure-related mortality for conventional allo-
SCT of 20-42% and a 5-year survival of 31-61%; the cor-
responding figures for RIC allo-SCT being 0-37% and
50-67%, respectively. In summary, RIC allo-SCT has
lower treatment-related mortality than conventional allo-
SCT while maintaining the capacity to eradicate MF.
Concerning the use of conventional or RIC conditioning,
although the RIC modality is also being performed in
young patients, it is generally applied to patients over the
age of 40-45 years. The upper age limit for transplanta-
tion is usually established at 65 years, but a slightly high-
er limit can be considered in individual patients.

In addition to transplant-related mortality and relapse,
morbidity is also an issue. Therefore, the risks of allo-
SCT versus the patient’s expected survival must be care-
fully balanced. Whereas everybody agrees with the indi-
cation of allo-SCT in eligible patients with high-risk MF,
for the remainder, drug treatment first seems a reasonable
option, delaying transplantation until the appearance of
poor-risk features or resistance to therapy. However, the
transplantation results are better in patients in the favor-
able prognostic categories of MF.45,51 In this sense, the
long expected survival and the low risk of evolution to
acute leukemia of patients with low- and intermediate-1
risk MF would argue against submitting these patients to
the risk of transplantation. Patients with intermediate-2
risk MF, whose median survival is around four years,
would be a more difficult group. Although there is no
solid evidence to support a recommendation in these
patients, a reasonable approach could be to proceed to
allo-SCT in patients with unfavorable cytogenetic abnor-
malities and to consider it also in good candidates who
fail one line of current best available therapy. 

Controversy remains on the need for splenectomy
before transplantation. The faster hematologic recovery
and the debulking effect in patients with massive

splenomegaly would favor spleen removal. In turn, the
morbidity and mortality associated with the procedure,
and the observation that even marked splenomegaly can
resolve following transplantation,49 would argue against
splenectomy. Because of this, it seems reasonable to
restrict the procedure to patients with osteosclerosis or
massive splenomegaly, i.e. those at higher risk of graft
failure.42 Trials are ongoing to evaluate the role of the
JAK2 inhibitors to reduce spleen size and improve the
patient’s general condition before transplantation.  

New drugs

JAK2 inhibitors
The discovery of the JAK2 mutation triggered the devel-

opment of molecular targeted therapies for the MPNs,
especially for MF. However, the expectations that the
JAK2 inhibitors could reproduce the enormous success of
the tyrosine kinase inhibitors in chronic myeloid leukemia
have not been substantiated. These agents mainly inhibit
dysregulated JAK-STAT signaling, present in all MF
patients irrespective of their JAK2 mutational status.
Beside, all agents have overlapping activity against other
members of the JAK family (that includes JAK1, JAK2,
JAK3 and Tyk2) and sometimes against other tyrosine
kinases, while they are not specific for the mutated
JAK2.52 Consequently, the differences in toxicity and effi-
cacy may be ascribed to their variability in target selectiv-
ity, potency and pharmacokinetics. To date, information
on the use of JAK2 inhibitors in MF is available for five
drugs: ruxolitinib (formerly known as INCB018424),
SAR302503 (formerly known as TG101348), CYT387,
SB1518, and CEP-701, whereas other agents are at an ear-
lier stage of clinical development (Table 2). In clinical tri-
als, the JAK2 inhibitors have been administered to
patients with intermediate-2 or high-risk MF. 

Ruxolitinib, an oral JAK1/JAK2 inhibitor, was well tol-
erated in a phase I/II trial, with thrombocytopenia as the
dose-limiting toxicity.53 At the dose of 15 mg twice daily,
half of the patients had a response in splenomegaly and
constitutional symptoms. The response was usually dra-
matic but also drug- and dose-dependent, since treatment
discontinuation or dose reductions were rapidly followed
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Table 2. JAK2 inhibitors in development in myelofibrosis.

Agent Other targets Phase

Ruxolitinib JAK1 III completed

SAR302503 FLT3, Ret III

SB1518 (pacritinib) FLT3 Entering III

CYT387 JAK1, JNK1, TYK2, CDK2 II

CEP-701 FLT3, TrkA II

AZD1480 JAK1, JAK3 II

LY2784544 NA I

NS-018 Src I

BMS-911543 - I

NA: not available.



by increase in spleen size and reappearance of the consti-
tutional symptoms. A small proportion of patients became
transfusion independent and the same proportion had
accentuation of pre-existing anemia. The response was
independent of the patient’s JAK2 mutational status,
whereas no difference was seen between PMF and post-
PV/ET MF. The effect on JAK2V617F allele burden was
limited and there was no significant reduction in marrow
fibrosis. Normalization of several pro-inflammatory
cytokines was observed and was correlated with sympto-
matic improvement, a fact that may be ascribed to the anti-
JAK1 activity of the drug. Two different phase III multi-
center studies (COMFORT-I and COMFORT-II) were
subsequently carried out and their early results have been
published. COMFORT-I54 compared ruxolitinib with
placebo in 309 patients, whereas COMFORT-II55 com-
pared the drug with best-available therapy (mostly
hydroxyurea) in 219 patients. Both trials attained the pri-
mary end point of 35% or over reduction in spleen size, as
measured by imaging techniques, at 24 or 48 weeks of
treatment start, respectively. Based on these results, rux-
olitinib has been approved for the treatment of patients
with high- or intermediate-risk MF with symptomatic
splenomegaly. Historical comparison of the patients of the
phase I-II study of ruxolitinib with a matched MF popula-
tion has also shown a survival advantage for patients treat-
ed with ruxolitinib,56 whereas extended follow up of the
two phase III studies indicates a survival advantage for
patients assigned to the ruxolitinib arm.57,58 From a practi-
cal point of view, it is important to remember that sudden
withdrawal of the drug can result in a shock-like syn-
drome, due to the re-emergence of the suppressed
cytokines59 and, because of this, the drug must be tapered.
Given the palliative nature of ruxolitinib, cost considera-
tions will be important in deciding whether it should be
given to every MF patient with significant splenomegaly
or if it could be used as second-line therapy in those
patients with moderate symptoms who do not respond or
who lose the response to hydroxyurea. 

SAR302503 has preferential activity in JAK2. In a
phase I/II study with 59 patients,60 the dose-limiting toxi-
city was an increase in serum amylases, without clinical
pancreatitis. Gastrointestinal adverse events were fre-
quent. Worsening of anemia, thrombocytopenia and neu-
tropenia occurred in 35%, 24% and 10% of patients,
respectively. At six months, almost 60% achieved a 50%
or over decrease in splenomegaly. The responses were
independent of the JAK2V617F mutational status, but a
50% or over decrease in the allele burden was reported in
40% of mutated patients. Symptomatic response was
achieved in 50-75% and, as opposed to ruxolitinib,
improvement in constitutional symptoms did not correlate
with changes in pro-inflammatory cytokines. A phase III
study comparing SAR302503 with placebo is currently
ongoing.

CYT387, a JAK1/JAK2 inhibitor, produced 45% spleen
responses in a phase I/II study including 108 MF patients;
resolution of constitutional symptoms was observed in the
majority of patients.61 Interestingly, of 42 patients evalu-
able for anemia response, 50% responded, including 58%
of those who were transfusion dependent. Grade 3-4
thrombocytopenia was observed in 25% of patients, while
hyperlipasemia and headache were the most characteristic
non-hematologic side effects. The above important anemia

response, as compared with other JAK2 inhibitors, could
be of clinical interest and warrants confirmation in a larger
number of patients.

SB1518 (pacritinib), a selective JAK2 inhibitor, was
effective in reducing splenomegaly in 57% of 33 patients
included in a phase I/II study, with scarce myelosuppre-
sion and some gastrointestinal side effects.62

CEP-701 achieved clinical improvement in 6 of 22 MF
patients63 but was associated with substantial gastrointesti-
nal toxicity. No effect on JAK2V617F allele burden or
pro-inflammatory cytokines was documented.

The approval of ruxolitinib has led to its incorporation
into current treatment algorithms of MF, in which it has a
major role in the therapy for splenomegaly and constitu-
tional symptoms. Quite likely, other JAK2 inhibitors will
follow. Longer follow up is required to establish the defin-
itive role of these drugs in MF treatment. The trade offs
between clinical activity and toxicity will help choose the
right drug. Information on their possible extra-hematolog-
ic effects in the long term is also needed. 
Other new drugs and new strategies

Table 3 summarizes new drugs other than the JAK2
inhibitors that have been or are being tested in MF.
Pomalidomide is a new thalidomide derivative with higher
response rates and less toxicity than thalidomide and
lenalidomide;64 a phase III study comparing pomalido-
mide with placebo is ongoing. Everolimus is an m-TOR
inhibitor with efficacy in the splenomegaly and the consti-
tutional symptoms of MF.65 In addition, given the increas-
ing awareness of the contribution of epigenetic alterations
to the pathogenesis of MF,66 hypomethylating agents and
histone deacetylase inhibitors, such as givinostat67 and
panobinostat,68 are currently being tested. Hedgehog path-
way inhibitors have also been investigated.

Ongoing clinical trials are combining the JAK inhibitors
with other drugs, some of which are anemia agents,
including danazol, ESA, lenalidomide or pomalidomide.
Other combinations with newer drugs, such as panobinos-
tat or hedgehog inhibitors, are aimed at achieving a dis-
ease modifying effect. 

| 290 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association

Table 3. Novel drugs other than the JAK inhibitors for
myelofibrosis.

Agent Drug class Phase

Pomalidomide Immunomodulator III

Azacitidine Hypomethylating agent II

Decitabine Hypomethylating agent I-II

Givinostat Histone deacetylase inhibitor II

Panobinostat Histone deacetylase inhibitor II

Everolimus m-TOR inhibitor II

Obatoclax mesylate Bcl-2 inhibitor II

IPI926 Hedgehog inhibitor I

LDE225 Hedgehog inhibitor I

ABT-737 BCL-XL inhibitor Pre-clinical

PU-H71 HSP90 inhibitor Pre-clinical



Finally, attention has recently been paid to the possible
ability of interferon, given at the early stages of MF, to
alter the natural course of the disease.69 However, although
the pegylated formulation of interferon is better tolerated,
tolerability remains an issue, especially considering that
many patients in the early stages of MF are asymptomatic
or have a low symptom burden, whereas they have a long
life expectancy.

Conclusion 

Myelofibrosis is a heterogeneous disease in which treat-
ment decisions must be individualized as much as possi-
ble. These should be based mainly on the patient’s prog-
nostic assessment and the type and severity of the symp-
toms, and should always take into consideration that these
two elements are not stable but dynamic. For the time
being, conventional modalities still have a role in MF
treatment. However, better understanding of the pathogen-
esis of MF has provided the basis for promising therapeu-
tic advances in this disease. Hopefully, a better knowledge
of the mechanisms underlying MF will lead to the avail-
ability of newer therapies with higher potential to modify
the natural course and eventually cure MF.
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Pharmacogenetics of childhood acute lymphoblastic
leukemia: an actor looking for a role   

Introduction

Antileukemic therapy
The complex treatment of childhood acute

lymphoblastic leukemia (ALL) includes an
induction phase with 3-4 drugs to obtain clini-
cal remission, followed by multi-agent consol-
idation and delayed intensification, central
nervous system (CNS)-directed therapy and,
finally, a maintenance phase lasting 2-3 years
from the time of diagnosis. The induction and
delayed intensification phases generally con-
sist of a glucocorticosteroid, vincristine, an
anthracycline and/or asparaginase. During the
consolidation phase, other anticancer agents
are introduced, such as the alkylating agent
cyclophosphamide, and the antimetabolites
methotrexate (MTX, a folate antagonist),
thiopurines (purine analogs), and cytarabine (a
pyrimidine analog). The backbone of mainte-
nance therapy nearly always consists of MTX
and a thiopurine with or without intermittent
addition of other anticancer drugs.1

Through improved diagnostics, risk group-
ing and chemotherapy, the 5-year overall sur-
vival of childhood ALL has reached an
impressive 85-90% in the best contemporary

protocols.2-18 However, this reflects an overall
intensification of therapy, and as many as one-
third of all deaths in childhood ALL are caused
by toxicities (mostly infections) or secondary
neoplasms (SMN).19-23 This emphasizes the
need to develop more individualized treatment
approaches. Through drug dosing by body
weight or body surface area, oncologists
attempt to obtain the same treatment intensity
for their patients. This is in vain since all anti-
cancer agents vary several fold in critical phar-
macokinetic parameters such as bioavailabili-
ty, volume of distribution, peak concentration,
clearance, and area under the plasma concen-
tration-time curve.24 This variation is fully
compatible with clinicians’ experience: some
patients are cured, while others with the same
leukemia subtype relapse; some patients toler-
ate chemotherapy well, while others are bur-
dened by or even die from a variety of serious
adverse events (SAE). Clinicians seem to be
confronted with an impossible triangle: the
disease, the treatment, and the host (Figure 1). 

The leukemic motor (karyotype, gene expres-
sion profile, methylation pattern),25-28 the degree
of disease dissemination (white blood cell count
(WBC), mediastinal mass, central nervous sys-
tem or testicular leukemia),29 and leukemic
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The 5-year overall survival of childhood acute lymphoblastic leukemia (ALL) is now 85-90% in the
best contemporary protocols, but this reflects an overall intensification of therapy, and as many as
one-third of all deaths in childhood ALL are caused by toxicities or secondary neoplasms. Many sur-
vivors are burdened by life-long sequelae that emphasize the need to develop more individualized
treatment approaches. The treatment of ALL may include more than ten different anticancer agents
that are used in different doses, combinations, and routes of administration for a total period of 2-3
years. In general, the pathways (and genes) affecting the pharmacokinetics and pharmacodynamics of
these drugs are well known. As with all other drugs, the absorption, distribution, elimination and effect
of the drugs varies widely between patients. Much of this diversity is genetically determined, reflecting
the millions of genome variants between patients. Due to the complexity of the treatment, single
pharmacogenetic variants will have little influence on cure rates or risk of toxicities. Instead, extensive
panels of genetic variants need to be addressed. This review summarizes the advantages and chal-
lenges for implementing pharmacogenetic testing in the treatment strategies for childhood ALL.

Learning goals

At the conclusion of this activity, participants should be able to:
- understand and address challenges for implementation of pharmacogenetics in the treatment of

childhood AL;
- describe characteristics of genomic variants that can be expected to have a significant impact on

cure rates of childhood AL;
- describe strategies for identification of genomic variants that could potentially influence cure rates;
- describe the potential role of thiopurine methyltransferase variants for risk of relapse and risk of

secondary cancer.

A B S T R A C T



chemosensitivity (in vitro drug resistance, post-induction
minimal residual disease (MRD))30-32 have revealed signifi-
cant correlations between such leukemia characteristics and
cure rates. But the leukemia is not a self-sufficient entity. It
grows within, depends on, thrives on, and eventually may
kill its host; all this is strongly dependent on, precisely, the
host. As no two patients have leukemias with the exact same
genetic aberrations, neither are any two patients identical
with respect to the gene sequences that affect drug absorp-
tion, metabolism, excretion, cellular transport, targets and
target pathways, i.e. drug-response phenotypes, including
occurrence of toxicities.33,34

Genome variants

Each week hundreds of healthy and sick individuals
have their genome sequenced and cancer patients have
their aberrant tumor genome sequenced. But although we
are flooded by genomic data, we are still far from under-
standing the impact of genomic variations on the pheno-
type of cancer patients. Ninety percent of the genomic
variations consist of single nucleotide polymorphisms
(SNP), i.e. single base differences in the DNA sequence
occurring in at least 1% of the population or on average at
every 100-300 base sites. Public databases such as the
Single Nucleotide Polymorphism Database (dbSNP)
(http://www.ncbi.nlm.nih.gov/snp?db=snp&otool=umnb
mlib) offer information on these SNPs, including their
unique reference identifier (rsID) (e.g. rs1045642 for
MDR1 3435C>T), their genomic location, whether they
are haplotype-tagged, and whether they are synonymous
(confer no amino acid change) or non-synonymous
(changes the amino acid). In addition to these estimated 15
million SNPs, other genetic variations include insertions,
deletions, a variable number of tandem repeats (VNTR) of
2-60 bases, and copy number variation (CNV) in sizes
ranging from 1 kilobase to several megabases. In addition,
individual phenotypes may be affected by DNA methyla-
tion and histone modifications, of which at least the for-

mer is heritable and can remain stable through cell divi-
sions. Since the completion of the Human Genome Project
in 2001, several public databases have offered information
on these genomic variations and their functional impact,
e.g. hosted by the National Center for Biotechnology
Information (NCBI), the International HapMap Project,
the 1000 Genomes Project, and the Pharmacogenetics and
Pharmacogenomics Knowledge Base (PharmGKB).  

Childhood ALL: a model disease

There are multiple reasons for childhood ALL being a
model cancer for understanding both the clinical potential
and the practical challenges of pharmacogenetics35 (Tables
1 and 2). First, ALL is the most common cancer in child-
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Table 1. Advantages of using childhood ALL as a model for exploring the potential of pharmacogenetics.

Issue Comment

1. Incidence Most common cancer in childhood with an annual incidence in Europe and the US of approximately 3.5 
cases per 100,000 children 0-14.9 years of age. 

2. Subtype classification The cytogenetic diversity and, e.g. gene expression profiles of childhood ALL is well described.

3. Collaborative trials Patients are treated within large collaborative groups.

4. High chemosensitivity Childhood ALL generally have high in vivo chemosensitivity, that is easily testable.

5. Precise MRD monitoring Early treatment response can be determined precisely through quantification of minimal residual disease.

6. Toxicities Serious adverse events are common, well described and potentially avoidable.

7. Huge variation in drug disposition Huge variation in the pharmacokinetics of anticancer drugs 

8. Narrow therapeutic index The difference between the dose that causes effect and the dose that causes toxicity is small. 

9. Individualized therapy by TDM ís complex or impossible Individualized therapy by drug level measurements has had little influence on cure rates.

10. Pre-clinical testing Leukemic clones can be cultured for testing of in vitro chemosensitivity and impact of pharmacogenetic 
polymorphisms, and data then correlated to clinical phenotypes.

TDM: therapeutic drug monitoring.

Figure 1. The impossible triangle.



hood with an annual incidence in Europe and the US of
approximately 3.5 cases per 100,000 children aged 0-14.9
years.36 Second, the cytogenetic diversity and the gene
expression profiles of childhood ALL is well described
with respect to epidemiology, clinical characteristics, and
biological profiles, which allows the clinical impact of
pharmacogenetic polymorphisms to be explored within
well-defined biological subsets.25,37-39 Third, children with
ALL are in general treated within collaborative national or
multinational groups2-18 with risk adapted and body size-
based therapy, which allows large-scale exploration of
whether interindividual variations in pharmacokinetics,
treatment response, or toxicity can be explained by genetic
polymorphisms.33,40-42 Fourth, childhood ALL generally
have a high in vivo chemosensitivity which increases the
likelihood that variations in drug disposition significantly
influence cure rates. Fifth, the early response to
antileukemic therapy can be determined precisely through
quantification of bone marrow minimal residual disease
(MRD) using flowcytometry, chimeric gene transcripts, or
clonal immune gene rearrangements.32,43,44 This also
allows us to explore the impact of pharmacogenetic vari-
ants during early phases of treatment, when patients
receive a limited number of anticancer agents.45,46 Sixth,
serious adverse events (SAEs) are common. Not only will
virtually all patients experience significant bone marrow
and immunosuppression accompanied by a high risk of
potentially life-threatening infections, but a number of

other severe toxicities (e.g. osteonecrosis, pancreatitis,
thrombosis, veno-occlusive disease) will occur in a small
percentage of patients. These may be as burdensome as the
leukemia itself, and their etiology can be questioned in
genotype-phenotype association studies. Seventh,
although drug dosing by body surface area facilitates com-
parison of the efficacy and toxicity of different protocols,
it does not secure equal systemic drug exposure.47,48

Eighth, the therapeutic index is very narrow for anticancer
agents. Genetically determined variations in pharmacoki-
netics can thus affect the chances of cure or the risk of
SAEs. Ninth, individualized therapy by drug level meas-
urements has not consistently improved the cure rates,49,50

and pharmacogenetic data can be added to drug concentra-
tion measurements to predict outcome. Finally, the malig-
nant cells are readily available for in vitro chemosensitiv-
ity studies of the impact of the pharmacogenetic polymor-
phisms,30,51,52 and clinical pharmacogenetic results can
thus be explored through interference studies in leukemia
cell lines. With all these clinical, technical and logistical
advantages, and with the huge amount of cancer genome
and host genome data pouring out worldwide from the lab-
oratories of research institutions and collaborative child-
hood ALL groups, why then is pharmacogenetic informa-
tion not routinely implemented in the treatment strategy of
childhood ALL? It is not just because pediatric oncologists
are conservative or skeptical, although psychological and
cultural factors certainly may play a role. More important-
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Table 2. Challenges for pharmacogenetically based individualization of ALL treatment.

Issue Comment

1. Legitimized dose adjustment E.g. dose reductions: risk of unacceptable toxicity (e.g. toxic death) outweighs the risk of relapse 
in higher risk patients or gives life-long sequelae in lower risk patients (e.g. osteonecrosis).

2. Convincing and defendable tailored therapy PG-based dose adjustments must be defendable statistically (i.e. PG-outcome associations are supported
by independent data sets), biologically (i.e. the PG-outcome associations are ‘understood’), 
and therapeutically (i.e. effective alternatives to traditional treatment have been identified).

3. Prediction Treatment adjustments by genetic polymorphism have predictable effects on efficacy/toxicity 
in individual patients.

4. Better strategy Dose adjustments by pharmacogenetic data better/easier/cheaper than by toxicity and/or by drug 
concentration measurements.

5. No reverse effect Reducing toxicity or increasing efficacy by PG-based drug dosing must not be upset by increased risk 
of ‘reverse’ events (i.e. less efficacy or more toxicity).

6. The target population for dose adjustments Patient populations are not homogeneous, and PG-based drug dosing should be limited to the relevant 
is well defined leukemia subsets:

a) the overall risk of a specific toxicity in the total population (e.g. AVN) should be significantly 
reduced (optimally >50%);

b) interaction with leukemia subtype has been mapped.

7. Multiple genetic variants and long follow up Multiple anticancer agents are given and their individual impact on cure rates is uncertain.
Pharmacokinetics and pharmacodynamics of anticancer agents are complex and multiple genes 
are involved, and the effect of their genetic variants may be redundant or counteractive.

8. ‘Conventional’ therapy is not conventional Clinicians already face the adverse effect of known or yet unidentified genetic variants and may 
on clinical grounds adjust therapy according to e.g. toxicity that can affect cure rates.

9. Clinical testing PG-based treatment amendments must be tested in randomized trials of the specific 
and overall toxicities and relapse pattern. 

AVN: avascular necrosis; PG: pharmacogenetic. 



ly, there is an array of challenges that complicates the clin-
ical implementation of pharmacogenetic data (Table 2).

First, upward or downward dose adjustments and, to an
even greater extent, even elimination of specific drugs due
to expected severe toxicities, need to be justified by an
unacceptable balance between treatment efficacy and tox-
icity. Second, to implement pharmacogenetic data into
first-line treatment strategies, such treatment adaptations
must be defendable statistically (i.e. validated by inde-
pendent data sets), biologically (clinicians as well as
patients are likely to require that they ‘understand’ the
genotype-phenotype associations), and therapeutically
(effective treatment alternatives have been identified).
Third, treatment adjustments guided by genetic profiles
must have predictable effects on efficacy/toxicity in the
individual patient. Thus, it is not sufficient to know that
patients with a specific SNP profile are at increased risk of
a specific toxicity (e.g. severe immunosuppression), clini-
cians will need to know the relevant degree of dose adjust-
ments to compensate for the adverse genetic profile.
Fourth, already today patients may receive modified ther-
apy according to plasma concentrations of the maternal
drug (e.g. MTX concentrations or asparaginase activity),53

the intracellular levels of cytotoxic metabolites (e.g. 6-
meracptopurine, 6MP, metabolites = thioguanine
nucleotides),50 or the target effect (e.g. post-induction
MRD, or absolute neutrophil counts (ANC) during main-
tenance therapy).31,42 In such cases, we need data that
demonstrate that host genotyping will offer more effective
/ less toxic treatment guidelines compared to such tradi-
tional phenotyping. Fifth, the current childhood ALL drug
combinations and doses have evolved through decades of
empirical testing, including numerous randomized trials.
Even though retrospective host genomic data may indicate
that certain patients are at increased risk of relapse with
standard dosing, there are virtually no published data that
demonstrate that pharmacokinetic-based treatment inten-
sification will not lead to more toxic deaths. Sixth, the tar-
get population needs to be precisely defined since the ben-
efit of treatment adjustments may differ among the child-
hood ALL subsets, and very few of the published studies
have been performed within well-defined ALL subsets.38,45

In addition, most publications on genotype-phenotype
associations report odds ratios of 2.0-3.0 at most. Figure
2A and B illustrates that even if all events could be avoid-
ed in a subpopulation with an odds ratio of 3.0, this may
have little impact on the overall risk of the toxicity in
question and, furthermore, will not be beneficial for most
patients with the specific phenotype. Seventh, unless the
end point is early MRD monitoring,34,45,54,55 quantification
of efficacy requires years of follow up, and a polymor-
phism that influences the efficacy of a drug given during
the early treatment phases is likely to be modified by sub-
sequent treatment with other agents. This may, in part,
help explain the diverse results obtained in childhood ALL
pharmacogenetic studies.33,56,57 In addition, thousands of
genetic polymorphisms may affect the most commonly
used antileukemic agents, which hampers the interpreta-
tion of their individual significance, and increases the risk
of type I errors. And it certainly does not help that SNPs
are sometimes reported differently with respect to their
genomic position.33 Also, due to the low frequency of
many of the SNPs, the statistical power of most published
studies has been very low. Thus, even with a 1:1 distribu-

tion of two alleles, more than 500 patients will be needed
to show a 10% reduction in cure for one of the SNPs, if the
overall cure rate is 75%. Finally, many polymorphisms are
linked in haplotypes, which complicates interpretation of
their individual clinical impact and also the understanding
on how a specific gene variant affects phenotype. A poly-
morphism that reduces clearance of one drug, e.g. gluco-
corticosteroids, may induce increased transcription of
CYP3A enzymes, which subsequently may increase the
clearance of other anticancer agents.58 Eighth, the relation-
ship between a given polymorphism and relapse rate may
easily be misinterpreted, since some polymorphisms
increase the risk of, for example, myelo- or hepatotoxicity,
which subsequently may lead clinicians to decrease the
dose intensity for such patients and thus potentially
increase their risk of relapse.42,59,60 Ninth, since multiple
rare toxicities and relapse sites are to be questioned in tri-
als of individualized therapy, addressing only one of these
events may have little impact on the overall risk of SAEs
or on cure rates. Alternatively, randomized trials can com-
pare conventional ALL treatment with complex genetic
profiling and multiple treatment amendments to explore to
what extent this tailored therapy approach influences the
overall burden of therapy and overall cure rates, i.e. a
proof of principle strategy. 

How then can we identify the genomic variants that have
the strongest impact on the efficacy and/or toxicity of spe-
cific anticancer agents? Such variants should either: i)
markedly influence the disposition or target of drugs that
are critical for cure and widely used (e.g. glucocorticos-
teroids, asparaginase, antimetabolites); or ii) alter the activ-
ity of metabolizing enzymes or transporters that address
several important antileukemic agents; or iii) have a com-
bined effect on a complex pathway affected by widely used
antileukemic agents (thiopurine therapy or DNA repair),
where the cumulative effect of many SNPs are significantly
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Figure 2. (A) Risk of AVN in PG-defined subsets. Even if a
change in therapy completely eliminates the risk of AVN
for group B who have a 3-fold increased risk of AVN, the
overall occurrence of AVN among all patients (group A+B)
would be reduced by only 25%, and 6 of 7 group B patients
will not benefit from the intervention. (B) Risk of AVN in
PG-defined subsets. If a change in therapy eliminated the
risk for group B, the overall occurrence of AVN would be
reduced by 55%; 55% of the patients may benefit from the
intervention. AVN: avascular bone necrosis; PG: pharmaco-
genetic; OR: odds ratio.

A

B



associated with outcome even though the effect of each
individual SNP is small. The lengthy and complex multi-
drug approach to childhood ALL with an interplay of thou-
sands of genetic variants makes it likely that only very few
pharmacogenetic variants will have a significant independ-
ent influence. Instead, thousands of variants should be ques-
tioned in parallel by genome-wide association studies,34,61,62

targeted sequencing,63 or whole genome sequencing,64

although the latter is still too costly to be widely applied.
Subsequently, extensive bioinformatic data mining and
complex pathway analysis is required. 

Drug disposition 

Drug metabolizing enzymes are divided into phase I
enzymes which metabolize the functional part of the drug
leading to activation or inactivation, and phase II enzymes
which conjugate drugs with endogenous substances mak-
ing them more water-soluble and suitable for excretion.
These detoxifying pathways and drug efflux systems are
very polymorphic and often share the same anticancer
agent as a substrate, and polymorphisms in such genes are
thus likely to influence treatment response.58,65,66

Cytochrome P450 enzymes

The cytochrome P450 (CYP) phase I enzymes, and par-
ticularly the CYP3A subfamily, are involved in the activa-
tion (e.g. cyclophosphamide and epipodophyllotoxins) or
inactivation (e.g. glucocorticosteroids and vinca alkaloids)
of many anticancer agents. Furthermore, the glucocorti-
costeroids induce CYP3A enzymes, which may influence
the clearance of the glucocorticosteroids themselves, but
also of other anticancer agents such as vincristine.58,67,68

Most of the CYP genes are highly polymorphic, and
although the clinical consequences remain uncertain, sev-
eral studies have indicated that these variants may influ-
ence the risk of relapse in childhood ALL.33,69-71

Glutathione S-transferases

The phase II enzymes glutathione S-transferases (GSTs)
include GSTP1 313A>G which alters substrate affinity,
GSTP1 A114V which changes the catalytic activities, and
the GSTM1 and GSTT1 null alleles both of which, in the
case of homozygozity, lead to absence of activity. Since
the GST enzymes metabolize a number of anticancer
agents, including glucocorticosteroids, vincristine, anthra-
cyclines, methotrexate, cyclophosphamide, and
epipodophyllotoxins, polymorphisms in these genes are
likely to influence the prognosis in childhood ALL, and at
least a few, but not all, studies have shown that poor
metabolizers have a decreased risk of relapse.72-76

Drug transporters 

Many cancer cells have a multi-drug resistance (MDR)
phenotype.77 The classic form of MDR is caused by
increased activity of transmembrane protein-mediated
efflux of anticancer drugs. Most of the multidrug efflux
proteins belong to the superfamily of ATP-binding cassette
(ABC) transporters, such as P-glycoprotein (P-gp), mul-
tidrug resistance-associated protein (MRP), and breast
cancer resistance protein (BCRP). The lung resistance pro-
tein (LRP) is not an ABC transporter, but is also part of the
MDR scenario.77 The genes encoding these transporters
are highly polymorphic, and their substrates include many
anticancer agents, including vincristine, anthracyclines,
methotrexate, thiopurines, and epipodophyllotoxins.33 Yet,
these polymorphisms do not seem to have a significant
influence on relapse rate or toxicity in childhood ALL
(reviewed by Borst et al.33).

Pharmacogenetics of childhood ALL illustrated
by 6-mercaptopurine and methotrexate 

The thiopurines 6-mercaptopurine (6MP) and 6-
thioguanine (6TG) are among the most important drugs in
the treatment of ALL.78,79 The bioavailability of oral 6MP
is highly variable.79 A major fraction is broken down in
first pass metabolism to the inactive thiouric acid. The
remainder is methylated by thiopurine methyltransferase
(TPMT) or enzymatically converted into 6TG and then to
6-thioguanine nucleotides (6TGN). 6TGN are the most
important cytotoxic metabolites of thiopurines as they are
incorporated into DNA (DNA-6TGN) causing DNA-dam-
age and cell death.80 Red blood cell levels of free 6TGN
(Ery-6TGN) have been related to the risk of relapse,50,81,82

but dosing 6MP according to Ery-6TGN does not improve
cure rates50 because Ery-6TGN levels are inadequate sur-
rogates for events in the nucleated target cells, where the
end point metabolites are DNA-6TGN.83,84 Methylated
6MP metabolites enhance DNA-6TGN incorporation, due
to inhibition of purine de novo synthesis83,85-88 and is, fur-
thermore, associated with hepatotoxicity.89 This may
explain why patients with low methylated 6MP metabolite
levels in red blood cells (Ery-MeMP), e.g. in TPMT defi-
cient patients, may tolerate Ery-6TGN levels ten times
higher than TPMT wild-type patients.90 Similarly, lack of
methylated 6MP metabolites may explain why replacing
6MP with 6TG, as tested by the US CCG, the German
COALL and the British UKALL groups, failed to improve
ALL cure rates, even though children receiving 6TG had
6-fold higher Ery-6TGN levels.85,91

MTX inhibits folate-dependent processes, such as
nucleotide de novo synthesis, and this affects cell prolifer-
ation and survival.92,93 MTX is transported by Reduced
Folate Carrier (RFC1) into target cells94 and is then conju-
gated with up to seven glutamates (MTXpg).95,96 MTX
molecules with longer polyglutamate tails are retained
longer intracellularly and have higher affinities for the tar-
get enzymes.97,98

Since patients differ widely in 6MP and MTX disposi-
tion, all international study groups recommend dose
adjustments by the degree of myelotoxicity.99 However,
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since the WBC varies between healthy individuals,100,101

the on-treatment WBC is a weak surrogate for the treat-
ment intensity. 

Pharmacogenetic variants may significantly influence
the response to 6MP therapy102 with low activity TPMT
variants being studied most extensively.103 The intermedi-
ate low-activity TPMT heterozygous patients have high
intracellular 6TGN levels, reduced tolerance to 6MP,103-105

a higher cure rate,42 but also a higher risk of second can-
cers,20,106 although not all groups have confirmed this, pos-
sibly due to different 6MP dosing strategies.46 In the most
extreme situation, TPMT deficient patients (homozygous
for low-activity alleles) may develop life-threatening
myelosuppression at standard 6MP doses.90,107

Unfortunately, dose increments of 6MP in TPMT wild-
type patients to obtain higher intracellular 6TGN levels
and improved chance of cure, will not mirror the situation
in TPMT low-activity patients, since the extra 6MP is
shunted to methylated metabolites causing more liver tox-
icity.89,108 and in some patients even increased risk of
relapse.50 Interestingly, the superior cure rates for patients
with TPMT low-activity does not seem to be dependent on
the degree of myelosuppression during maintenance ther-
apy.42 Still, there are no studies to demonstrate that 6MP
dose reductions for patients heterozygous for TPMT low
activity alleles to reduce their risk of secondary cancer
will not lead to an increased risk of relapse.

A large number of studies have shown that the clinical
variation in response to MTX reflects polymorphisms in
genes involved in MTX and folate disposition (reviewed
in33,56,109). However, many of the studies have been small,
most only address one or a few of the genetic polymor-
phisms involved in the disposition of MTX, and subse-
quent larger studies or meta-analyses have not confirmed
previous results.57

The reduced folate carrier RFC1 80G>A is the most
investigated polymorphism in the RCF1 gene
(=SCL19A1). The RFC1 gene is located on chromosome
21, which probably explains the high MTX sensitivity in
children with high hyperdiploidy (which nearly always
includes trisomy 2127) and in Down syndrome.110,111 The A
allele results in higher MTX plasma concentrations in AA
homozygous patients38,112 and has, furthermore, been more
associated with gene dose-related higher cure rates in
patient cohorts treated on protocols with high cumulative
doses of MTX.38 Other alleles related to higher plasma
MTX concentrations include variants of the ABC C-family
(=MRP2).62,113

Several functional polymorphisms have been found in
the gene encoding folyl-polyglutamyl synthetase
(FPGS),114 but pharmacogenetic studies in ALL are lack-
ing, and in rheumatoid arthritis, SNPs in the FPGS gene
seem not to affect MTX efficacy or toxicity.115 In contrast,
low activity SNPs in γ-glutamyl hydrolase, such as GGH
452C>T, may increase intracellular MTXPG and MTX
cytotoxicity on leukaemic cells.116 In addition, the GGH –
401C>T genotype has been associated with decreased
MTXPG levels in patients with rheumatoid arthritis, indi-
cating increased GGH activity,117 but the clinical signifi-
cance of these SNPs has not been mapped in childhood
ALL. Numerous studies have been performed on several
other genes related to folate metabolism, including
thymidylate synthetase and its triple repeat (3R) polymor-
phism in the enhancer region of the gene,73,118-122 methyl-

ene-tetrahydrofolate reductase (an important enzyme in
the folate-homocysteine cycle)123 where two SNPs in the
gene encoding MTHFR have been extensively studied (i.e.
MTHFR 677C>T and MTHFR 1298A>C) but with limited
association with MTX effects,57 and methionine syn-
thetase and methionine synthase reductase that both play a
role in the homocysteine-methionine pathway.124,125

Finally, methylene-tetrahydrofolate dehydrogenase plays
a role in purine de novo synthesis, and has been associated
with risk of relapse, but with no association to toxicity.126

Conclusion and perspectives

The low-activity alleles of TPMT so far represent the
only example of implementation of pharmacogenetically-
based drug dosing in ALL protocols, and then only in a
few treatment centers.99,127 This shows that it has been dif-
ficult, other than TPMT polymorphisms, to establish clear
associations between polymorphisms and treatment
response. Ideally, clinical pharmacogenetic studies should
be performed in a protocol- and ALL cytogenetic subtype-
specific manner and should address both cure rates and
pattern of toxicities. The genetic screening of patients
needs to explore hundreds of SNPs to give a combined
gene-dosage effect (e.g. individual SNP risk profile) rather
than just question one or a few variants.63 Until whole
genome sequencing can be offered at sufficiently low
costs to allow its application to all patients on a protocol,
targeted SNP profiling will require extensive preparatory
work in order to identify the genes and variants most rele-
vant to include in an extensive targeted genotyping
approach. Subsequently, a customized genotyping plat-
form for childhood ALL needs to be designed to fully
explore pharmacogenetics relating to efficacy and toxicity
to allow individually tailored therapy.  
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Immunotherapy in pediatric hemato-oncology

Introduction

In the last 30 years, the success rate of treat-
ment for most hemato-oncological disease in
the pediatric field has substantially increased.
The development of risk-tailored chemothera-
peutic protocols for children has resulted in
greater success of disease treatment, and the
improvement in supportive care has translated
into less treatment-related mortality.
Nowadays, it is estimated that 76-86% of
acute lymphoblastic leukemia (ALL) and 49-
63% of acute myeloid leukemia (AML) affect-
ed patients can be cured with front-line con-
ventional treatments.1,2 Second-line treatment
for relapsing or resistant patients often
includes stem cell transplantation (SCT).
Progress in immunology, supportive care and
pre-emptive treatments also allowed a pro-
gressive increase in overall survival for trans-
plant recipients, disease relapse remaining the
most important limiting factor for higher suc-
cess rate.3

The use of SCT for patients with aggressive
diseases is based on the statement that
immunological surveillance and killing of
tumor cells from the transplanted immune-sys-
tem can exert a powerful and long-lasting anti-
tumor action as compared to conventional
chemo- and radiotherapy. Nonetheless, so far,
a desirable graft-versus-leukemia (GvL) effect

cannot be separated from an unwanted graft-
versus-host disease (GvHD).4 This explains
why stem cell transplantation can be consid-
ered a platform for further immunotherapy in
transplant recipients.5

Donor selection, conditioning regimens,
GvHD prophylaxis and stem cell processing
before infusion already play an important role
in determining the immune-reconstitution of
the procedure, and therefore also the possible
GvL effect. Nevertheless, over the last 20
years, an ever increasing number of possibili-
ties in the field of immunotherapy have been
explored.

The proof of principle for the use of
immunotherapy after stem cell transplantation
was set by Kolb in 1990.6 By infusing
unprocessed donor-derived lymphocytes
(DLI) he was able to achieve a clinical
response in up to 73% of patients with a chron-
ic myeloid leukemia (CML) relapsed after
transplantation. Unfortunately, less promising
results were obtained with patients affected
with acute leukemias, the response rate of
whom, in case of relapse, varied between 3%
and 30%.7 A first attempt to improve survival
for relapsed AML/ALL patients using DLI
was to use them in a pre-emptive setting in
order to anticipate morphological relapse.
Minimal residual disease (MRD) and
chimerism monitoring set the standard for

Pediatric hemato-oncology 

Immunotherapy has progressively acquired an important role in the treatment of children with
refractory/resistant hemato-oncological diseases. Its ultimate goal is that of increasing the immuno-
logical driven anti-cancer effect without causing further immunological complications. Recent expe-
rience has made clear some basic principles in the use of immunotherapy: it has a better success rate
when applied in the pre-emptive setting and it should be preceded by lymphodepletion. It is, therefore,
reasonable to think that the stem cell transplantation setting could be a perfect match for this kind
of therapy. The present review summarizes some of the many different strategies that are currently
under pre-clinical and clinical evaluation, mostly in the pediatric field, and hints at their possible
application in the allogeneic stem cell transplantation setting.

Learning goals

At the conclusion of this activity, participants should know that:
- immunotherapy refers to a complex group of treatments, which all aim, through different strategies,

to increase innate or adaptive immune activity against tumor cells; 
- immunotherapy can be applied in the allogeneic transplantation setting with the aim of further

boosting the graft-versus-leukemia effect, a role already played by the donor cells in the recipient
body;

- immunotherapeutic strategies are nowadays highly experimental. Therefore, it is of the utmost
importance that patients receiving some kind of immunotherapy be included in clinical studies to
allow clinical and immunological readouts to be correctly evaluated.

A B S T R A C T



continuous and frequent posttransplantation monitoring in
high-risk patients.8,9 According to this strategy, a relatively
simple immunotherapeutic tool allowed good prognostic
results to be achieved in the pre-emptive setting for ALL
and AML patients after transplantation.10-13

The drawbacks of DLI administration, however, remain
the reduced efficacy in advanced stage of disease, as well
as the risk of GvHD and severe immunological complica-
tions which can sometimes be life-threatening.14,15

Immunologists, therefore, tried to elaborate other strate-
gies to try and split the GvL from the GvHD effect of the
infused cells. Furthermore, they of course aimed at pro-
ducing newer tools that could be effective for a wider
cohort of patients, and eventually provide a possible ther-
apeutic option also for more advanced stage of disease.

This is an updated review of the different immunothera-
peutic tools that are currently being evaluated in ongoing
clinical studies (Table 1).

Peptide- and cell-based cancer vaccine

Autologous T-cell response against leukemia and other
solid tumors has been extensively documented and this
has paved the way to the possibility of using a vaccine
strategy as anti-cancer therapy.16 The availability of an
increasing number of recognized tumor associated anti-
gens (TAAs) has become the starting point for the devel-
opment of different peptide-based anti-cancer vaccines, as
the isolation of cancer-specific proteins gave hope of a
possible patient immunization. In this context, hundreds of
TAAs have been evaluated as possible efficacious pep-
tides. The first studies were concentrated on BCR-ABL
antigenic epitopes. In CML, it had already been demon-
strated through the use of DLI that the immunological
action could play a substantial role. Therefore, multiple
phase I and II studies evaluated a combination of different
peptides, associated to adjuvants and eventually to inter-

feron-gamma. Different studies were almost always able
to document an increased specific CD4 T-cell immunity,
but clinical results could only be seen at molecular level
and not for all patients treated.17-19

Extensive research into TAAs has involved AML, and
among the most targeted peptide for this disease, Wilms
Tumor Suppressing Gene-1 (WT1), has emerged to be one
of the most promising. Tumor regression could be demon-
strated in 12 of 20 patients exhibiting MDS by using a
WT1 peptide associated to an adjuvant.20 Positive findings
were also reported in a phase II study by Keilholz and col-
leagues.21

PR1 was also considered a good peptide target for vac-
cine delivery since it is a peptide derived from neutral
serin protease that is over-expressed in leukemic progeni-
tor cells as well as in CML and AML blasts. A randomized
phase II study with 66 leukemia patients demonstrated a
tendency towards a better overall survival and event-free
survival for those patients receiving PR1-based vaccine
plus adjuvant and chemotherapy as compared to
chemotherapy alone.22

The subsequent testing of a combined WT1 and PR3
vaccine made it evident for the first time that the weak
point of peptide vaccine strategy relies on the tolerance
which is achieved after subsequent inoculations. The same
problem was seen in a phase I study of 10 patients treated
with a CD168-based vaccine who progressively developed
immunological tolerance.23

To overcome the problem of a weak and fading
immunological signal, cellular vaccines and combined
adoptive T-cell transfer and vaccination have been devel-
oped. The first cellular vaccines were mostly based on
dendritic cells, which can be expanded and loaded with a
specific peptide. Dendritic cells are specialized antigen
presenting cells (APC) that play a critical role in the adap-
tive immune response. Clinical responses to APC-based
vaccines have been reported in pediatric trials for solid
tumors.24 The combination of adoptive T-cell transfer and
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Table 1. Overview of the currently available immunotherapy strategies.

Immunotherapy strategy Targets Advantages Disadvantages Further development

Vaccine CML Possible multi-targeted Short-lasting efficacy because Combined adoptive T-cell transfer 
AML therapy of development of tolerance with vaccination
Solid tumors or immunotransplantation

Natural killer (NK) cell infusion AML GvT without GvHD NK isolation and culture is NK cell line pre-production
Solid tumors technically challenging.

Restricted pool of alloreactive 
donors available

Monoclonal antibody AML Specific target Potential toxicity to be evaluated Combined bispecific targeted therapy 
NHL with the BiTe technology
CLL
ALL

Cytokine induced killer cells (CIK) AML GvT without GvHD Repeated administrations needed, Gene elaboration of CIK
Solid tumors possible tolerance induction mechanism cells through the chimeric antigen 

receptor technique

Chimeric antigen receptors (CARs) ALL No HLA restriction, Production is technically challenging, Wide variety of possible cells to be 
CLL long-lasting expansion safety profile needs further testing engineered (NK, CIK) and antibodies to
Solid tumors in the host be targeted
AML?

CML: chronic myeloid leukemia; AML: acute myeloid leukemia; NHL: non-Hodgkin’s lymphoma; CLL: chronic lymphocytic leukemia; GvT: graft-versus-tumor; GvHD: graft-versus-host disease.



vaccination on the other hand, relies on vaccinating the
patient, collecting lymphocytes before treatment, and re-
infusing them with further vaccination after lymphoreduc-
tive chemotherapy. Studies in this direction demonstrated
at least a clear immunological response to treatment for
myeloma patients with no benefit on overall survival.25

The vaccination strategy has so far been implemented
mostly in the autologous setting. There are convincing
immunological reasons to think that the early post-allo-
geneic transplant setting could be an ideal milieu in which
to develop vaccine-based strategies.26 As a matter of fact,
not only the tumor burden is limited after SCT, but also the
lymphopenic environment would allow a strong expansion
of the transferred T cells. The possibility of pursuing this
strategy was demonstrated in 1995, when tumor-specific T
cells where induced in a stem cell donor and later trans-
ferred to the recipient.27 Nowadays, such an ‘immuno-
transplantation’ model is being implemented in a pre-clin-
ical model of lymphoma at Stanford University.28

Moreover, a novel allogeneic vaccine trial that utilizes
WT1 peptide-loaded dendritic cells generated from
healthy SCT donors is being conducted at the National
Cancer Institute for children and adults with WT1-
expressing hematologic malignancies.29

Natural killer cells

Natural killer (NK) cells were first identified in 1975.30

As part of the innate immunity system, they are able to
rapidly react towards infected or transformed cells without
MHC restriction. Their cytotoxicity develops through per-
forin and granzyme B as well as through triggering apop-
tosis pathways. Through complex activating and inhibit-
ing signals, NK cells are endowed with a spontaneous
anti-tumor activity.31 A possible graft-versus-tumor (GvT)
effect through alloreactive NK cells was first illustrated in
the studies by Ruggeri and colleagues.32 In HLA haplo-
type mismatched hematopoietic transplantation, donor
versus recipient NK cell alloreactions are associated with
enhanced control of AML and ALL relapse and no risk of
graft-versus-host disease, through a complex interaction
of activation and inhibition signals, the mechanism of
which is beyond the intent of this review.33 To extend this
effect, several attempts have been made to boost the NK-
cell response in the allogeneic setting, for example
through the administration of purified or interleukin-stim-
ulated donor NK cell products. Rubniz and colleagues
proposed the isolated infusion of haplo-identical donor-
derived NK cells following a fludarabine and cyclophos-
phamyde immunosuppressive cycle, as consolidation ther-
apy for children affected with AML. The feasibility and
safety of this approach was successfully tested in 10
patients, who also demonstrated an in vivo expansion of
the infused cells.34 In the transplantation setting, however,
the simple isolation and reinfusion of NK cells from the
donor did not result in a superior outcome in a cohort of
haplo-identical transplanted patients. Therefore, different
NK-cell expansion protocols have been developed, and
these were able to increase the NK cell activity through
cytokine stimulation. Though more active, these NK cells
are very difficult to expand, are unstable, and need to be
strictly depleted from other T cells to avoid risk of
GvHD.35,36 This results in a very expensive and long

expansion procedure. To overcome these difficulties, per-
manent NK-cell lines have been developed under good
manufacturing practice (GMP) conditions and are current-
ly being tested in different protocols.37 NK-cell lines also
represent an optimal target for genetic modification to
enhance cytotoxic potential.38

Antibodies

Since the discovery of hybridoma technology by Kohler
and Milstein in 1975, the availability of monoclonal anti-
bodies (mAbs) has continued to increase. mAbs targeting
cell clusters of differentiation (CD) today represent a
potential targeted therapy for several malignancies.
MoAbs can kill cancer cells by means of direct and indi-
rect pathways. Specific antibody-receptor binding can
directly cause apoptosis through intracellular signaling.
Indirect killing can occur by complement-activation, anti-
body-dependent cellular cytotoxicity (ADCC), comple-
ment-dependant cytotoxicity (CDC) or cell-mediated
cytokine release.39 The first mAbs to receive approval
from the Food and Dug Administration (FDA) for clinical
purpose was anti-CD20 rituximab in 1997. Its mecha-
nisms of action include inhibition of B-cell proliferation,
ADCC, CDC and possible induction of apoptosis. This
drug now represents a consolidated treatment, in combina-
tion with chemotherapy, for CD20+ non-Hodgkin’s lym-
phomas (NHL). Around 30% of adults and 48% of chil-
dren with B-lymphoblastic ALL also express CD2040, the
upregulation of which has been demonstrated in resistant
blasts.41 Based on these findings, rituximab has been stud-
ied in patients with de novo Philadelphia chromosome
negative, precursor B-lineage, CD20+ ALL in combination
with hyper-CVAD regimen (fractionated cyclophos-
phamide, vincristine, doxorubicin, dexamethasone).
Among patients under 60 years of age, those who received
rituximab had a statistically significant improvement in 3-
year overall survival (75% vs. 47%; P=0.03).42

Alemtuzumab targets anti-CD52 positive cells. Its use
has been widely explored in the transplantation setting, as
part of the preparatory regimen and anti-GvHD prophy-
laxis. It mediates ADCC, and induces apoptosis of tumor
cells. Alemtuzumab is officially approved for the treat-
ment of adults with B-cell chronic lymphocytic leukemia
(CLL). This drug has also been studied in combination
with chemotherapy in adult and pediatric patients with
relapsed ALL. A phase II study was conducted within the
Children Oncology Group for the treatment of relapsed
pediatric ALL. Only one of 13 patients showed a complete
response to single-agent treatment.43 The most important
drawback in its use of alemtuzumab is the high risk of tox-
icity and infectious complications that it causes.44

Epratuzumab targets the extracellular domain of CD22,
an antigen expressed in over 95% of pediatric B-lym-
phoblastic ALL.45 Its proposed mechanisms of action
include ADCC, CD22 phosphorylation and the inhibition
of cell proliferation. Epratuzumab was first studied in
adults with indolent and aggressive B-NHL, displaying
good safety and efficacy. Epratuzumab alone and in asso-
ciation with chemotherapy for CD22+ ALL with first or
subsequent relapse was tested in a pediatric cohort of
patients. While the overall remission rate did not differ
from historical controls, the MRD negative rate was better
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for the patients receiving epratuzumab (42% vs. 25%
MRD-negative P<0.01%).46 The safety profile of the drug
was confirmed.

Blinatumomab is a bi-specific antibody that binds CD19
and CD3. Its function is to attract CD3+ cytotoxic T cells
to CD19-expressing leukemic blasts with a so-called BiTE
(bi-specific T-cell engagers). Blinatumomab was first test-
ed in adults with relapsed/refractory B-NHL and B-lym-
phoblastic ALL. A recent update of an ongoing German
multicenter trial documented a high rate of clinical and
molecular response (67%).47 Though concerns remain
about the toxicity of this drug, its promising efficacy has
led to the opening of a pediatric study for relapsed/resis-
tant ALL in Europe as well as in the USA.

In the field of AML malignancies, the availability of
antibodies has not so far been so extensive, especially after
the official withdrawal of gemtuzumab ozogamicin from
the market due to increased fatal infectious events.
However, some promising tools are being tested in the
pre-clinical and early clinical phase. A promising 3rd gen-
eration antibody with improved capability to recruit Fc
receptor-bearing effector cells has been created against
CD135, an antigen often expressed in AML blasts.48

Moreover, the same BiTE technology used with blinatu-
momab is now being applied to an anti-CD33/CD3 double
antibody, which could potentially have a high impact on
the treatment of relapsed/refractory AML.49

It is worth adding that antibodies can often improve
their efficacy by being combined either with radioisothops
or with chemotherapy/toxins. Among the combinations
that are now undergoing clinical trials, gemtuzumab
ozogamicin has been confirmed as an innovative anti-
AML treatment. Its combination of anti-CD33 and
calicheamicin demonstrated its activity in relapsed adult
and pediatric AML even as single agent therapy (30%
remission rate).50,51 However, the high toxicity profile
(myelosuppression, systemic infections, transaminitis,
veno-occlusive disease) led to its withdrawal from the
market in 2010. A recent detailed review about the use of
gemtuzumab ozogamicin in the treatment of adult AML
has, however, advocated the re-introduction of this drug in
combination with cytarabine and anthracycline for the
treatment of patients with a favorable cytogenetic profile
on the bases of five reported randomized studies that sug-
gested an overall survival benefit for this subgroup of
patients.52 Conjugated anti-CD22 antibodies have also
been developed. Inotuzumab ozogamicin (anti-CD22 plus
calicheamicin), BL22 and moxetumomab pasudotox (both
anti-CD22 combined with Pseudomonas exotoxin A) have
begun tests in clinical trials. The results seem promising,
but the number of pediatric patients treated is so far too
small to allow conclusions to be drawn.53-55 At the present
time, there are very studies involving antibodies combined
to radioactive isotopes in the pediatric population, and
these are mostly feasibility phase studies. In the adult set-
ting, radioisotope-antibody conjugates directed against
surface markers of leukemia cells (CD33, CD45) are
available for routine clinical use. These agents concentrate
in the bone marrow, generating a severe myelosuppres-
sion. Given as an adjunct to TBI, no increased side effects
were observed. 

Cytokine-induced killer cells
Cytokine-induced killer (CIK) cells are ex vivo expand-

ed T lymphocytes (CD3+) that share a natural killer (NK)
phenotype (CD56+). CIK cells display a high anti-
leukemic activity, independently of MHC restriction while
having negligible alloreactive potential. They can kill a
broad array of tumor targets, including hematologic and
solid malignancies. In this way, cell-cell interaction is
mediated via TNF-related apoptosis-inducing ligand
(TRAIL) on CIK cells and death receptors on tumor tar-
gets (Figure 1A and B) that results in an activation of the
caspase cascade enrolling the intrinsic apoptotic pathway.
But the molecule that probably plays the most important
role in CIK cell-mediated killing, as shown by blocking
experiments (Figure 1C), is the NKG2D receptor, which is
an activating NK-cell receptor. The ligands of this receptor
known so far are relatively restricted to tumor cells.
However, the NKG2D only mediates the interaction
between CIK cells and tumor targets while the final exe-
cution of apoptosis is mediated via a perforin and
granzyme release (Figure 1A).    

CIK cells can be expanded from peripheral blood, from
cord blood, and also from washout of leftover mononu-
clear cells from cord blood unit bags.56 One of their hall-
marks is that they can be easily produced under GMP con-
ditions through different cytokine protocols, some of
which only require ten days of expansion before harvest-
ing.57 In the allogeneic setting, these cells have been tested
in 3 different clinical trials. All of them included adult
patients who had relapsed from hematologic malignancies
after stem cell transplantation. All of them showed a good
safety profile, with only a few GvHD cases and no severe
toxicity. In all studies, a clinical transient response of the
disease could be observed in 30-50% of the patients treat-
ed.58-60 These trials therefore, suggest a true activity of
CIK cells in hematologic malignancies, but also underline
the absence of long-lasting efficacy, thus questioning pos-
sible resistance mechanisms developed by the target cells.
Interestingly, the rate of immunological complications
(GvHD) for patients receiving those cells is low, and this
holds true even when those cells are applied to haplo-iden-
tical settings (P Bader, personal communication, 2012). 

Moreover, Introna and colleagues demonstrated that
these cells retain a dual function, being active both as
CD8-specific effector T and NK cells. In the posttrans-
plantation setting, this would allow their use not only as
cancer specific treatment, but also in the treatment of life-
threatening viral reactivation.61

Anti-tumor cytotoxic T cells 

After the first attempt at infusing donor-derived lym-
phocytes or specific T lymphocytes in relapsing recipients,
the first real documentation of specific T-cell production
was linked to anti-viral treatment. Riddel was the first to
produce clinical grade cytotoxic T cells,62 followed by
Rooney and Heslop, who developed EBV-specific T cells
and even proved their activity against posttransplant lym-
pho-proliferative disease (PTLD).63 In the same era,
Rosenberg was attempting to expand T cells from tumor
mass and re-infusing them to patients affected with
metastatic melanoma, obtaining only an occasional
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response.64 As the experience with T-cell production grew,
a number of factors presented themselves and had to be
considered. First of all, it was made clear that anti-viral
immunity could only be delivered if both CD4 and CD8
cells were expanded, a lympho-depleted setting was nec-
essary to achieve cell expansion, central memory T cells
represented a better cell population as compared to effec-
tor T cells as they could expand better. Moreover, it
became clear that, when elaborating possible anti-tumor
specific T cells, a variety of means had to be used to take
into account the possibility of tumor escape. Last but not
least, the production system evolved so as to allow GMP
manipulation of cells. In general, it has also become clear
that targeting tumor cells with T cells was more challeng-
ing than targeting virus, first of all because of their
immunological escape capability, and because T-cell ther-
apy could only address residual tumor mass, being insuf-
ficient to treat overt relapses.65 The first technique which
was used to overcome tumor escaping was to elaborate
multitumor-specific or gene-modified T cells, the con-
struction of which could be one of the next clinical
achievements.66 Moreover, combining multitumor specific
T cells with demethylating agents or T-cell activators or
with proliferative stimuli could also be considered a fur-
ther evolution of this technique.67-69

Chimeric antigen receptors

Chimeric antigen receptors (CARs) have been devel-
oped through advanced gene-transfer technology in order
to overcome HLA restriction limitation of conventional T-
cell therapy. Through genetic reprogramming, immune
effector cells can be redirected to target antigens expressed
by leukemic cells. In most clinical applications to date, a

patient’s own T cells may be reprogrammed to express
these tumor-specific receptors, largely minimizing the
potential immunological risks. CARs are composed of an
Ag-specific binding domain (most commonly a single-
chain variable fragment derived from the fused variable
heavy- and light-chain domains of a tumor-targeted mAb)
fused to a transmembrane domain followed by one or
more cytoplasmic signaling domains. The evolution of
CARs from 1st to 3rd generation has progressively com-
bined activating to co-stimulatory signaling domain, so as
to achieve not only T-cell activation, but also T-cell expan-
sion on long-lasting antigen exposure and, therefore, T-
cell persistence.

Nowadays, Cars are designed to recognize several sur-
face antigens, and more than 30 phase I trials are ongoing
in the field of hemato-oncology and solid tumors.

An elegant review by Davila and colleagues has recent-
ly analyzed the results of the first 28 patients treated at 5
different clinical centers with CARs-based protocols.70

These studies presented several differences in terms of
treated disease, stage of disease, type of CARs used, gene
technology used, and number of infused T cells, making a
direct comparison of the obtained results inappropriate.
However, the overall consideration that can be derived
from these studies is that anti CD19 CARs have shown
some degree of clinical activity in patients affected with
CLL and lymphomas.

Tumor burden was directly related to the degree of
response shown by these patients even if a high tumor bur-
den did not prevent some degree of clinical response. The
use of lymphodepletion before CARs infusion proved to
be fundamental, whereas the number of infused T cells
was not shown to have a great impact on outcome. In all
the clinical studies, a number of acute reactions were asso-
ciated to CARs infusion but no lethal complication was
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observed, producing reassuring results on the safety of
these products. Most recently, very promising clinical
results were reported at the ASH meeting in Atlanta 2012
by Carl June and colleagues. A 7-year girl affected with
relapsed refractory ALL received autologous CART19
after chemotherapy. The cells where transduced with a
lentivirus encoding CD-19 scFv linked to 4-1BB and
CD3-z signaling domains. CART19 were documented in
the girl’s bone marrow as well as in her central nervous
system on Day +23 after infusion; the maximal expansion
of CART cells occurred on Day +11 after infusion. The
treated child achieved a complete morphological and
molecular remission of the disease and this was main-
tained at a 4-month follow up, with stable levels of CAR+

CD3 cells in peripheral blood as well as in bone marrow.
Notably, the girl displayed a severe cytokine release syn-
drome (CRS) which required admission to the intensive
care unit and respiratory support, and which was success-
fully treated with IL-6 inhibitor and steroid. 

Another 9 adult patients affected with relapsed refracto-
ry CLL were treated with the same CAR cells (3 of them
have already been reported in the review by Davila and
colleagues70) and 4 of them achieved a complete remission
at a median follow up of 5.6 months. All responding
patients developed a mild to moderate CRS, which tempo-
rally always correlated with the peak of T-cell expansion
in peripheral blood.71 While the pioneering centers for the
development of CARs try to set up common standard cri-
teria and evaluation tools to be able to perform compara-
ble clinical evaluations, other pre-clinical studies are
reaching out to new possible CARs targets. In AML, for
example, Marin et al. developed a 3rd generation CAR
complexing a CD33-specific CAR with CD28 and OX-40
co-stimulatory signaling. The study was able to show that
cytokine-induced killer cells inherited increased prolifera-
tive, migratory, and lytic functions at a variety of leukemic
cell lines.72 A further application of this technique
involved the targeting of CD123 and this is being devel-
oped by the same group.73

Conclusion

The range of immunotherapeutic strategies under devel-
opment to address relapsed or resistant leukemia is steadi-
ly increasing, and the ultimate goal of achieving clinical
success for high-risk patients may be closer. As far as pub-
lished reports show, these techniques have an adequate
safety profile as referred to the high-risk patients in which
they need to be used. It is possible that different tech-
niques will emerge and will prove to be more advanta-
geous for different diseases at different time points, and it
is not to be excluded that some of the described techniques
will be fused and combined to achieve better results. In
such an ample repertoire of possible new therapies, it is of
the utmost importance that all the patients treated in pre-
defined protocols are included in results analysis accord-
ing to pre-set end points. 
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Novel drugs for childhood hematologic malignancies
and the challenges of clinical trials

Introduction

Children with acute lymphoblastic leukemia
(ALL) treated with contemporary protocols
enjoy 5-year event-free survival rates of
between 80% and 90%.1-4 Despite these
remarkable successes, relapsed childhood ALL
and AML remain a significant burden for soci-
ety and a clinical challenge for the treating
physician; more children suffer from relapsed
childhood ALL than from childhood osteosar-
coma or rhabdomyosarcoma, and the majority
of these children will die of their disease despite
advances in the application of conventional
chemotherapeutic agents and hematopoietic
stem cell transplantation (HSCT).5 Thus, effec-
tive new therapies for relapsed childhood ALL
and AML are needed. In recent years, a number
of novel agents have been developed which
show promising activity in pre-clinical studies
of pediatric malignancies as well as in early-
phase trials in adult lymphoid malignancies,
and which therefore hold great promise to
improve outcome in children with relapsed or
newly diagnosed high-risk ALL.

Novel agents relevant to childhood
ALL

A comprehensive review of all novel agents
relevant to childhood ALL and AML is beyond

the scope of this review, which will therefore
be limited to those novel agents which are
presently under investigation or in develop-
ment for childhood ALL and AML.

Cytotoxic agents

Clofarabine
Clofarabine is a nucleoside analog that com-

bines the most favorable properties of fludara-
bine and cladribine. It demonstrated signifi-
cant activity in multiply relapsed pediatric
ALL patients in a phase I trial;6 a subsequent
phase II trial of single-agent clofarabine in
relapsed and refractory pediatric ALL demon-
strated a response rate of 30%.7 Subsequent
development of clofarabine has focused on
combination therapy; while clofarabine in
combination with cytarabine (AAML0523)
did not show significant activity in relapsed
childhood ALL,8 clofarabine in combination
with cyclophosphamide and etoposide demon-
strated activity in this setting in both ALL and
AML,9-11 with an overall response rate of 44%
in a phase II trial of relapsed/refractory child-
hood ALL. Further evaluation of this regimen
is underway in a very high-risk subset of
newly diagnosed childhood ALL (AALL1131)
by the Children’s Oncology Group (COG) and
is planned in high-risk first relapse childhood
ALL in the International Study for Treatment

Pediatric hemato-oncology  

Despite the increasing success of front-line therapies for children with newly diagnosed acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML), the majority of children with these dis-
eases who relapse will ultimately die of their disease. New therapies for relapsed childhood ALL and
AML are desperately needed. A number of new agents currently in development for hematologic
malignancies, including cytotoxic agents, immunotoxins, other antibody-based immunological agents,
and signal transduction agents, are relevant to childhood ALL and AML and are reviewed here.
However, investigators face a number of challenges in developing novel agents for childhood ALL,
including: 1) declining numbers of subjects for relapse trials, due to the increasing success of front-
line therapies for childhood ALL; 2) a plethora of novel agents; 3) an increasing number of agents
which target a molecular lesion present only in a subset of patients; 4) variations in clinical trial
design; and 5) the reluctance of some pharmaceutical companies to evaluate novel agents in the
relapsed childhood ALL population. Potential approaches and solutions to these challenges are dis-
cussed.

Learning goals

At the conclusion of this activity, participants should:
- be familiar with novel drugs being developed for the treatment of childhood ALL and AML;
- be familiar with challenges facing the conduct of clinical trials of novel agents in childhood ALL and

AML.
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of Childhood Relapsed ALL 2010 conducted by the
Resistant Disease Committee of the International BFM
Study Group.
Nelarabine

Nelarabine is a nucleoside analog with a high level of
activity in T-ALL due to its conversion to 9-beta-D-arabi-
nosylguanine (araG) that is resistant to cleavage by purine
nucleoside phosphorylase (PNP). A phase I trial of nelara-
bine in patients with recurrent T-ALL demonstrated a
remarkable response rate of 54% in T-ALL;12 a pediatric
phase II trial demonstrated response rates of 55% in first
marrow relapse and 27% in second or subsequent relapse,
together with grade 3 or greater adverse neurological
events in 18% of patients.13 Nelarabine is presently being
evaluated in combination with etoposide and cyclophos-
phamide in a phase I trial of relapsed pediatric T-ALL and
T-lymphoblastic lymphoma (T2008-002) conducted by
the Therapeutic Advances in Childhood Leukemia &
Lymphoma (TACL) consortium in collaboration with the
Innovative Therapies for Children with Cancer (ITCC)
consortium, and in newly diagnosed T-ALL in a phase III
COG trial (AALL0434).
Bendamustine

Bendamustine is an alkylating agent with activity in
adults with rituximab-refractory non-Hodgkin’s lym-
phoma (NHL) and chronic lymphoblastic leukemia. A
pediatric phase I trial of bendamustine in pediatric patients
with relapsed or refractory acute leukemia demonstrated
safety but suggested that bendamustine has minimal activ-
ity in heavily pre-treated children with relapsed and
refractory ALL, but not in AML.14

Novel formulations of conventional agents

Liposomal vincristine (Marqibo)
Vincristine sulfate liposomes injection (VSLI, Marqibo)

is a nanoparticle formulation of vincristine (VCR) that
facilitates dose-intensive treatment by minimizing the
neurotoxicity associated with the administration of the tra-
ditional formulation of vincristine. A phase II trial of VSLI
in patients with Philadelphia (Ph)-negative ALL in second
relapse or who progressed after two prior lines of treat-
ment showed a response rate of 36%,15 leading to an
accelerated approval of VSLI in this setting by the FDA.
An ongoing pediatric phase I trial of VSLI at the Pediatric
Oncology Branch of the National Cancer Institute (NCI)
has demonstrated a complete response in relapsed/refrac-
tory pediatric ALL.16

Tyrosine kinase inhibitors

Dasatinib, nilotinib and ponatinib
The addition of imatinib, a 1st generation tyrosine kinase

inhibitor (TKI) directed against the BCR-ABL fusion pro-
tein, to conventional cytotoxic chemotherapy has trans-
formed the treatment of Ph-positive ALL in children, more
than doubling 3-year event-free survival (EFS) rates from
approximately 35% in the pre-TKI era to 80% with the
addition of continuous exposure to imatinib.17 Newer 2nd

generation TKIs such as nilotinib and dasatinib produce

more rapid and complete cytogenetic and molecular
responses than imatinib in CML,18,19 but these favorable
properties have yet to be demonstrated to translate into
improved outcomes in Ph-positive ALL. The COG and
EsPhALL groups are presently conducting a phase II trial
of dasatinib combined with standard chemotherapy in
children with newly diagnosed Ph-positive ALL
(CA180372, COG AALL1122). Ponatinib, a 3rd generation
TKI with activity in vitro against all tested resistant BCR-
ABL mutants including the previously resistant T315I
mutation, has significant clinical activity in patients with
CML and Ph-positive ALL who fail other TKIs.20

Monoclonal antibodies

Epratuzumab
Epratuzumab is a humanized monoclonal antibody target-

ing CD22 that appears to modulate B-cell activation and
signaling, and has demonstrated activity against adult non-
Hodgkin’s lymphoma. Epratuzumab was evaluated by
COG in a phase I/II trial (ADVL04P2) in combination with
multi-agent chemotherapy for the reinduction of relapsed
childhood ALL.21 Although the trial did not meet its primary
end point of a statistically significant increase in CR2 rate at
the end of the first block of chemotherapy plus epratuzumab
as compared to historical control of chemotherapy alone,
among those who attained a CR, subjects receiving
epratuzumab were significantly more likely to become min-
imal residual disease (MRD) negative as compared to those
who did not.22 Epratuzumab is being further evaluated in
standard-risk first relapse childhood ALL in the
International Study for Treatment of Childhood Relapsed
ALL 2010 conducted by the Resistant Disease Committee
of the International BFM Study Group.

Immunoconjugates

Gemtuzumab ozogamicin
Gemtuzumab ozogamicin (GO) is a humanized mono-

clonal antibody directed against the CD33 surface antigen
(present on approximately 90% of cases of childhood
AML) which is conjugated to calicheamicin, a potent anti-
tumor antibiotic that cleaves DNA. In a phase II trial of
relapsed or refractory pediatric CD33+ AML, GO pro-
duced a 28% overall remission rate.23 GO has shown activ-
ity and tolerability in combination with standard
chemotherapy in a COG trial (AAML00P2) for relapsed
pediatric AML,24 and has been randomly evaluated in
newly diagnosed pediatric AML in combination with stan-
dard chemotherapy by COG25 and NOPHO.26 The equiv-
ocal results of several randomized trials of GO in adult
AML led to its withdrawal from the market by the FDA in
2010 (reviewed in27). While the results of the COG
AAML0531 trial are not yet available, the NOPHO-2004
trial showed no survival benefit for GO given to children
after consolidation.
Moxetumomab

Moxetumomab (HA22, CAT-8015) is a 2nd generation
recombinant anti-CD22 immunotoxin composed of the
variable domain of an anti-CD22 monoclonal antibody
fused to a 38 Kda truncated form of Pseudomonas exotox-
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in A. Studies of moxetumomab in adults have demonstrat-
ed significant activity against hairy cell leukemia.28 In an
ongoing pediatric phase I trial of moxetumomab in North
America, among 19 heavily pre-treated childhood ALL
patients, 4 achieved CRs and one had a partial response,
for an objective response rate of 26%; the most significant
recurring toxicity has been capillary leak syndrome, lead-
ing to dexamethasone premedication.29

Blinatumomab
Blinatumomab is the first of a new class of immunocon-

jugates characterized as bispecific T-cell engager (BiTEs)
which engage and activate CD3+ T cells in close proximity
to the target cell.30 Blinatumomab is a single-chain bispe-
cific antibody construct with specificity for CD19 and
CD3 which has demonstrated significant activity in both
adult and pediatric ALL,31,32 with an 80% MRD response
rate in a phase II trial of adult B-lineage ALL patients with
persistent or relapsed MRD, and a relapse-free survival of
61% after a median follow up of 33 months.33 A pediatric
phase I trial of blinatumomab in patients with frank
relapse of ALL (MT103-205) is underway through the
Resistant Disease Committee of the International BFM
Study Group and COG, in collaboration with Amgen.
Inotuzumab ozogamicin

Inotuzumab ozogamicin is a CD22 monoclonal anti-
body conjugated to calicheamicin. In a phase II study of
inotuzumab in adults with refractory/relapsed ALL, the
overall response rate was 57%; the most frequent adverse
event was severe but reversible liver function abnormali-
ties in 31% of patients.34 A pediatric phase I trial of ino-
tuzumab in relapsed/refractory childhood ALL is in devel-
opment by the Therapeutic Advances in Childhood
Leukemia & Lymphoma (TACL) and Innovative
Therapies for Children with Cancer (ITCC) consortia, in
collaboration with Pfizer. (Permission obtained by the
author from Pfizer to disclose this study in development).
SAR3419

SAR3419 is a humanized CD19 monoclonal antibody
conjugated to maytansin, a potent tubulin inhibitor.35 In
adults with recurrent/refractory NHL, SAR3419 demon-
strated a response rate of 55% when administered at the
maximum tolerated dose.36 An adult phase I trial of
SAR3419 in relapsed/refractory adult ALL is ongoing at
the MD Anderson Cancer Center. In pre-clinical testing of
SAR3419 by the NCI’s Pediatric Preclinical Testing
Program, significant activity was seen in multiple CD19+

ALL xenografts, including MLL+ ALLs.37 A pediatric
phase I trial of SAR3419 in relapsed/refractory childhood
ALL is under development by the Therapeutic Advances
in Childhood Leukemia & Lymphoma (TACL) and
Innovative Therapies for Children with Cancer (ITCC)
consortia, in collaboration with Sanofi. (Permission
obtained by the author from Sanofi to disclose this study
in development).

Proteosome inhibitors

Bortezomib
Bortezomib is a 1st generation proteosome inhibitor with

little single-agent activity against acute leukemias, but

with additive or synergistic in vitro effects against acute
leukemias when combined with commonly used
chemotherapeutic agents.38 This observation led to a phase
I/II trial of bortezomib phase I/II trial combined with
multi-agent chemotherapy for the reinduction of relapsed
childhood ALL (T2005-003) by the TACL consortium; the
overall response rate was 73% and 80% in B-precursor
ALL.39,40 A phase II trial of bortezomib in combination
with multi-agent chemotherapy for the reinduction of
early first relapse of childhood ALL is being conducted by
COG, and a pilot trial of bortezomib in combination with
multi-agent chemotherapy for the reinduction of relapsed
childhood ALL is being conducted by ITCC.

COG conducted a phase II pilot study of bortezomib in
combination with two different multi-agent chemotherapy
regimens (one containing an anthracycline and one with-
out) for recurrent or refractory AML (AAML07P1); both
regimens were tolerated and active in this setting.41 The
addition of bortezomib to standard chemotherapy is cur-
rently being evaluated in a randomized trial of newly diag-
nosed pediatric AML patients without high allelic ratio
FLT3/ITD+ (AAML1031) by COG.

mTOR inhibitors

Sirolimus, temsirolimus and everolimus
The mammalian target of rapamycin (mTOR) is a ser-

ine/threonine kinase that functions as a key regulator of
cell growth and cell-cycle progression via multiple signal-
ing pathways, including PI3K/AKT, ras and BCR/ABL.
Pre-clinical studies have demonstrated that mTOR
inhibitors are active, both as single agents and in combina-
tion therapy, in a variety of hematologic malignancies.42

Although a phase I/II trial of sirolimus (rapamycin) added
to standard graft-versus-host disease prophylaxis in chil-
dren undergoing HSCT for ALL demonstrated safety and
promising activity,43 a subsequent randomized phase III
trial demonstrated no decrease in relapse.44 Phase I studies
to evaluate the safety of adding temsirolimus or
everolimus to multi-agent chemotherapy for the reinduc-
tion of relapsed childhood ALL are underway by COG
(ADVL1114) and Dana-Farber Cancer Institute, respec-
tively.

FLT3 inhibitors

The presence of FLT3 mutations as well as the allelic
ratio of FLT3/ITD (ITD-AR, mutant-wild type ratio) have
been shown to have prognostic significance in pediatric
AML.45 Infant leukemias with MLL gene rearrangements
have high-level expression of constitutively activated
FLT3.46 Inhibition of FLT3 is an attractive strategy to
improve outcome of both poor-prognosis FLT3/ITD-posi-
tive pediatric AML and MLL-rearranged infant ALL.
Midostaurin (PKC412)

The staurosporine derivative midostaurin (N-benzoyl
staurosporine; PKC412), is an inhibitor of multiple protein
kinases including FLT3. Midostaurin is cytotoxic to acute
lymphoblastic leukemia cell lines with MLL transloca-
tions or activated FLT3 receptors.47 The safety and effica-
cy of midostaurin is currently being evaluated in an inter-
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national phase I/II trial of pediatric patients with recurrent
MLL+ or FLT3+ acute leukemias (NCT00866281) con-
ducted by Novartis.
Lestaurtinib
In vitro inhibition of FLT3 in AML48 and in MLL-

rearranged infant leukemias46 by lestaurtinib (CEP-701), a
highly selective FLT3 inhibitor, suppresses FLT3-driven
cell survival, leading to leukemic cell death. The safety
and efficacy of adding lestaurtinib to standard multi-agent
chemotherapy is currently being evaluated in a random-
ized trial of newly diagnosed infant ALL patients with
MLL rearrangements (AALL0631) conducted by COG.
Sorafenib

Sorafenib is a multi-target tyrosine kinase inhibitor that
targets FLT3, c-KIT, PDGF, VEGF, and other signaling
pathways. Sorefenib combined with multi-agent cytotoxic
chemotherapy in young adults with AML resulted in inhi-
bition of FLT3 signaling and a significant increase in the
proportion of FLT3/ITD+ AML patients attaining remis-
sion.49 The addition of sorefenib to standard multi-agent
chemotherapy is currently being evaluated in a random-
ized trial of newly diagnosed pediatric AML patients with
high allelic ratio FLT3/ITD+ (AAML1031) conducted by
COG.
Quizartinib (AC220)

AC220 is a 2nd generation FLT3 inhibitor with increased
potency and selectivity compared to other currently avail-
able FLT3 inhibitors; using the PIA assay, AC220 is the
first compound to completely suppress FLT3 phosphoryla-
tion ex vivo at doses that are easily achievable and sustain-
able in the clinic.50 The safety and efficacy of AC220 is
currently being evaluated in a phase I trial of pediatric
patients with recurrent MLL+ or FLT3+ acute leukemias
(T2009-004) conducted by the TACL consortium.

JAK inhibitors

Ruxolitinib
Recurring activating mutations in genes encoding the

Janus kinase (JAK) family of signal transduction enzymes
have been identified in myeloproliferative disorders51,52

and in a subset of high-risk pediatric ALLs.53 The efficacy
of JAK inhibitors in myeloproliferative disorders with
JAK mutations54 led to the development of an ongoing
pediatric phase I trial of the JAK inhibitor ruxolitinib
(ADVL1011) in COG.

Epigenetic modification

Decitabine and vorinostat
Epigenetic alterations are common in both AML and

ALL.55,56 The use of epigenetic modifiers such as
demethylating agents and/or histone deacetylase (HDAC)
inhibitors may increase response to conventional
chemotherapeutic agents. The combination of the histone
deacetylase inhibitor vorinostat with idarubicin and
cytarabine was safe and active in a phase II study of newly
diagnosed adult AML.57 TACL is conducting a phase I trial

of the demethylating agent decitabine and vorinistat in
combination with multi-agent chemotherapy for the rein-
duction of relapsed childhood ALL (T2009-003).
Panobinostat

Panobinostat, a novel HDAC inhibitor with increased
potency compared to vorinostat and other HDAC
inhibitors,58 is currently being evaluated in a pediatric phase
I trial for relapsed ALL, AML, Hodkgin’s lymphoma and
non-Hodgkin’s lymphoma conducted by TACL.

Stem cell mobilization

Plerixafor
The resistance of leukemic stem cells (LSCs) to conven-

tional chemotherapeutic agents may play an important role
in treatment failure. Resistance of LSCs to treatment may
be mediated in part by the stromal environment, including
interactions between stem cell-derived growth factor
(CXCL-12/SDF-1α) and its receptor, CXCR4.59 Plerixifor
(AMD3100) a bicyclam inhibitor of CXCL12-CXCXR4
binding and signaling, is approved by the FDA for mobi-
lization of normal hematopoetic stem cells for autologous
transplantation in hematologic malignancies. The admin-
istration of plerixafor prior to conventional chemotherapy
in order to mobilize LSCs from the protective stromal
environment and thus restore chemosensitivity demon-
strated safety and efficacy in a murine model of AML.60

Plerixafor in combination with cytotoxic chemotherapy is
presently being investigated in a pediatric phase I trial for
relapsed acute leukemias (POE 10-03) conducted by the
Pediatric Oncology Experimental Therapeutics
Investigators’ Consortium (POETIC).

What is the proper efficacy end point in the
evaluation of novel agents for childhood ALL?

The rate of attainment of a complete remission (CR) as
measured by morphological bone marrow response is the
traditional benchmark for evaluation of efficacy, in the
context of a phase II trial, in the evaluation of novel anti-
leukemic agents. Although most investigators would agree
that EFS is the ideal end point for efficacy in the evalua-
tion of a new therapy for hematologic malignancies, the
heterogeneity of post-remission therapies such as allo-
geneic HSCT makes unbiased evaluation of EFS difficult
to attain in phase II trials evaluating novel agents during
reinduction. However, concern about the validity of CR
rate and its correlation with outcome was raised with the
publication of the UK’s ALLR3 trial for children with first
relapse of ALL. The R3 trial randomized idarubicin and
mitoxantrone during induction therapy; mitoxantrone con-
ferred a significant benefit in both progression-free and
overall survival, despite conveying no advantage in end-
induction morphological CR rates or levels of MRD
response.61 This puzzling discrepancy remains unex-
plained, and raises the concern that novel agents which do
not improve early response may nonetheless convey ther-
apeutic advantage in relapsed childhood ALL. Thus, stud-
ies that utilize CR rate as the primary end point may fail to
identify effective agents. However, the limited number of
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Table 1. A summary of agents and clinical trials/development status in pediatrics.

Agent Class Mechanism of action Target Clinical trials/ development status in pediatrics

Clofarabine Cytotoxic Nucleoside analog Non-specific Ind: phase II reinduction trial (with cyclophosphamide and etoposide) in relapsed ALL (completed)
COG: phase I/II reinduction trial (with cytarabine) in relapsed AML and ALL (completed)
ITCC: phase I/II reinduction trial (with cytarabine and liposomal daunorubicin) in 
relapsed AML (completed)
COG: phase III post-induction combination trial in very high-risk newly diagnosed ALL (active)
IntReALL: phase II randomized reinduction trial (with cyclophosphamide and etoposide) in HR 
1st relapse ALL (planned)

Nelarabine Cytotoxic Nucleoside analog T cells COG: phase II single-agent reinduction in relapsed T-ALL/LL (completed)
COG: phase III post-induction randomized trial in higher risk newly diagnosed T-ALL (active)
TACL: phase I reinduction trial (with cyclophosphamide and etoposide) in 1st relapse T-ALL/T-
LL (active)

Bendamustine Cytotoxic Alkylating agent Non-specific Ind: phase I single agent reinduction trial in relapsed pediatric ALL and AML (completed)

Liposomal Cytotoxic Mitotic inhibitor Microtubules POB: phase I single agent reinduction trial in relapsed pediatric malignancies (active)
vincristine TACL: phase I multi-agent reinduction trial in relapsed ALL (planned)
(Marqibo)

Dasatinib Signal Tyrosine kinase bcr-abl COG: phase I single agent reinduction trial in relapsed pediatric malignancies (completed)
transduction inhibitor Ind: phase II single agent reinduction trial in relapsed pediatric Ph+ malignancies (active)
inhibitor Ind/ EsPhALL/COG: phase II multi-agent trial in newly diagnosed Ph+ ALL (active)

Nilotinib Signal Tyrosine kinase bcr-abl Ind/ITCC/COG: Pharmacokinetic single agent reinduction trial in relapsed pediatric
transduction inhibitor Ph+ malignancies (active)
inhibitor

Ponatinib Signal Tyrosine kinase bcr-abl Ind: phase I single agent reinduction trial in relapsed pediatric Ph+ malignancies (planned)
transduction inhibitor 
inhibitor

Epratuzumab Immunotherapy Monoclonal CD22 COG: pilot/phase II multi-agent reinduction trial in relapsed ALL (completed)
antibody IntReALL: phase III multi-agent post-reinduction trial in SR 1st relapse ALL (planned)

Gemtuzumab Immunotherapy Immunotoxin CD34 COG: phase I combination reinduction trial in relapsed AML (completed)
ozogamicin (calicheamicin) NOPHO: randomized post-induction multi-agent trial in higher risk newly diagnosed T-ALL (active)

COG: phase III post-induction multi-agent trial in newly diagnosed AML (completed)

Moxetumomab Immunotherapy Immunotoxin CD22 Ind: phase I single agent trial in relapsed pediatric CD22+ malignancies (active)
(HA22, (Pseudomonas Ind: phase I combination trial in relapsed pediatric CD22+ malignancies (planned)
CAT8015) exotoxin A)

Blinatumomab Immunotherapy Bispecific T-cell CD19 Ind/IBFM-SG/COG: phase I/II single agent reinduction trial in relapsed pediatric ALL (active)
(MT103 engager (BiTE) COG: phase III multi-agent post-induction trial in 1st relapse ALL (planned)

Inotuzumab Immunotherapy Immunotoxin CD22 TACL/ITCC: phase I trial in pediatric ALL/NHL (planned)
ozogamicin (calicheamicin)

SAR3419 Immunotherapy Immunotoxin CD19 TACL/ITCC: phase I single agent reinduction trial in relapsed pediatric ALL/NHL (planned)
(calicheamicin)

Bortezomib Proteosome 26S TACL: phase I/II combination reinduction trial in relapsed pediatric ALL (completed)
(PS-341) inhibition proteasome COG: phase II combination reinduction trial in relapsed pediatric AML (completed)

COG: phase II combination reinduction trial in relapsed pediatric ALL/NHL (active)
ITCC: pilot combination reinduction trial in relapsed pediatric ALL (active)
COG: phase III multi-agent reinduction trial in newly diagnosed pediatric AML (active)
COG: phase III multi-agent trial in newly diagnosed pediatric T-ALL (planned)

Sirolimus mTOR inhibition FKBP12 COG: phase III post-transplantation trial in pediatric ALL (completed)
(rapamycin)

Temsirolimus mTOR inhibition FKBP-12 COG: phase I multi-agent reinduction trial in relapsed pediatric ALL/NHL (active)
(CCI-779) TACL: phase I multi-agent reinduction trial in relapsed pediatric ALL/NHL (planned)

Everolimus mTOR inhibition FKBP12 DFCI: phase I combination reinduction trial in relapsed pediatric ALL/NHL (active)
(RAD001)

Midostaurin Signal Receptor tyrosine FLT3 ITCC: phase I single-agent trial in relapsed pediatric ALL and AML (active)
(PKC412) transduction kinase inhibition

inhibitor

Lestaurtinib Signal Receptor tyrosine FLT3 COG: pilot combination reinduction trial in relapsed pediatric AML (completed)
(CEP-701) transduction kinase inhibition COG: phase III multi-agent trial in newly diagnosed infant ALL (active)

inhibitor

Continued on next page



relapsed/refractory pediatric acute leukemia patients avail-
able for participation in clinical trials of novel agents,
together with the plethora of novel agents awaiting evalu-
ation, means that utilizing only evaluations which rely on
survival as the primary efficacy end point would severely
restrict our ability to interrogate many promising new
drugs.

Single agent versus combination?

The traditional development path for new agents in solid
tumors is through the sequential conduct of single-agent
phase I and phase II trials to establish safety and efficacy,
respectively. Drugs with promising single agent activity
are then often evaluated in combination with standard
therapies in sequential phase I, II and III trials. This devel-
opment strategy, while rational, can often be ineffective in
childhood leukemia for a number of reasons. Due to the
aggressive nature of some recurrent acute leukemias,
patients treated with a single agent in a phase I leukemia
trial may rapidly progress at sub-therapeutic dose levels or
when receiving an ineffective agent, thus becoming
inevaluable and bringing the phase I trial to a halt. The
mechanisms of action of some agents, such as proteosome
inhibitors and mTOR inhibitors, suggest that they are like-
ly to have significant efficacy only when administered in
combination with traditional chemotherapeutic agents,
thus rendering single-agent evaluations less relevant. And
finally, the ability of many traditional regimens to attain
remissions even in multiply relapsed patients with ALL
means that parents and treating physicians may be reluc-
tant to consider participation in new agent trials, with their
inherent uncertainties of toxicity and efficacy, when con-
ventional therapies are readily available. Thus, COG and

TACL have chosen to develop novel agents in relapsed
ALL and AML within the context of standard chemother-
apy reinduction platforms whenever possible, so as to
accelerate the pace of drug development by providing par-
ents and treating physicians with the ‘safety net’ of stan-
dard therapy, and also by evaluating the toxicities of a
novel agent in the context of standard combination thera-
py. Although evaluation of the toxicities of a novel agent
can be challenging when it is administered in combination
with conventional agents which are also toxic, methodolo-
gies to accomplish such evaluations have been developed
and applied to the study of novel agents in both the relapse
and newly diagnosed setting in COG.62

A summary of agents and clinical trials/development
status in pediatrics is available in Table 1.

How can we possibly evaluate all of these
novel agents in childhood leukemias?

The pediatric oncology community faces significant
challenges if it is to seize the opportunity to quickly and
efficiently incorporate novel agents into the treatment of
childhood leukemias. For example, the identification of
druggable molecular targets that occur in only a small pro-
portion of patients (i.e, JAK mutations) make it difficult to
attain adequate accrual for evaluation by any single co-
operative group. However, a number of positive steps have
been taken in the past few years which should provide
hope to those engaged in this endeavor, including:
- improving communication and coordination, rather than

competition, among the various groups which design
and conduct clinical trials of novel agents in pediatric
hematologic malignancies through increased exchanges
of ideas and results at group meetings and at annual pro-
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Table 1. Continued from previous page.

Agent Class Mechanism of action Target Clinical trials/ development status in pediatrics

Sorafenib Signal Receptor tyrosine FLT3, RAF, VEGFR COG: phase III multi-agent reinduction trial in newly diagnosed pediatric AML (active)
transduction kinase inhibition
inhibitor

Quizartinib Signal Receptor tyrosine FLT3, c-Kit TACL: phase I combination reinduction trial in relapsed pediatric ALL and AML (active)
(AC220) transduction kinase inhibition

inhibitor

Ruxolinitinib Signal Janus kinase inhibition JAK1, JAK2 COG: phase I single-agent trial in relapsed malignancies (active)
(INCB018424) transduction 

inhibitor

Decitabine/ Epigenetic Demethylation/ Non-specific TACL: phase I combination reinduction trial in relapsed pediatric ALL (active)
vorinostat modifiers histone deacetylase 

(HDAC) inhibition

Panobinostat Epigenetic Histone deacetylase Non-specific TACL: phase I single-agent trial in relapsed pediatric ALL, AML, HD, NHL (active)
(LBH589) modifier (HDAC) inhibition

Plerixafor Stem cell Disruption of CXCL12/ CXCR4 POETIC: phase I combination reinduction trial in relapsed pediatric ALL and  AML (active)
mobilization CXCR4 interaction

COG: Children’s Oncology Group (North America, Australasia, Europe); DFCI: Dana-Farber Cancer Institute (United States); EsPhALL: European intergroup study on post-induction treatment of Philadelphia positive ALL
(Europe); IBFM SG: International BFM Study Group (International); IntReALL: International Study for treatment of childhood relapsed ALL (Europe); ITCC: Innovative Therapies for Children with Cancer Consortium (Europe);
POB: Pediatric Oncology Branch, National Cancer Institute (United States); POETIC: Pediatric Oncology Experimental Therapeutics Investigators' Consortium (North America); TACL: Therapeutic Advances in Childhood
Leukemia and Lymphoma (North America, Australia); NOPHO: Nordic Society of Pediatric Hematology and Oncology (Scandinavia, Iceland).



fessional society meetings;
- increasing collaboration between European and North

American groups in the conduct of clinical trials involv-
ing novel agents for uncommon subsets of childhood
hematologic malignancies, ie, IBFM and COG for bli-
natumomab and dasatinib, TACL and ITCC for nelara-
bine, inotuzumab and SAR3419;

- the recent selection of the UK ALL-R3 chemotherapy
platform for future drug development in ALL by COG,
thereby facilitating the rapid integration of novel agents
developed by COG into the European as well as North
American communities;

- increasing collaboration between academic investiga-
tors and pharmaceutical companies to meet the regula-
tory requirements of the EMEA and FDA in order to
obtain approval of the most promising novel agents;

- the recognition that each research community has
unique strengths: the North American community in the
integration and evaluation of novel agents in multi-
agent chemotherapy regimens, and the European com-
munity in the conduct of randomized clinical trials with
controlled post-remission interventions, thus allowing
for meaningful evaluation of important endpoints such
as EFS. For example, the initial phase I/II assessment of
epratuzumab in relapsed ALL by COG is being followed
by a randomized evaluation of epratuzumab in the
International Study for Treatment of Childhood
Relapsed ALL (IntReALL) 2010 conducted by the
Resistant Disease Committee of the International BFM
Study Group.
These and other important steps to align investigative

efforts will maximize the ability of the pediatric cancer
community to efficiently evaluate promising new agents
for hematologic malignancies, thus contributing to contin-
ued improvements in both survival and quality of life for
our patients.
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Molecular control of hemoglobin switching

Thalassemias and sickle cell disease

Diseases affecting red blood cells are by far
the most common hereditary disorders in the
human population. The symptoms vary from
relatively mild, for instance deficiency for the
metabolic enzyme glucose-6-phosphate dehy-
drogenase (G6PD) or erythrocyte structural
proteins such as ankyrin (ANK1), α- or β-
spectrin (SPTA and SPTB), to lethal when left
untreated. The latter is the case in severe forms
of the thalassemias, a group of diseases caused
by insufficient α- or β-globin production.
Hemoglobin, a tetramer composed of 2 α-like
and 2 β-like globin proteins, is responsible for
the gas transport functions of the erythrocytes,
and comprises more than 90% of the soluble
protein in these cells. Each erythrocyte con-
tains approximately 250¥106 hemoglobin mol-
ecules, and balanced production of the α-like
and β-like globins in terminally differentiating
erythroid progenitors is important to achieve a
1:1 ratio. Excess α-like or β-like chains are
unable to form functional hemoglobin
tetramers and will damage the erythroid cells.
Insufficient production of α-globin leads to α-
thalassemia. Severely compromised α-globin
production results in prenatal lethality, a con-
dition known as hemoglobin Barts hydrops

foetalis. The symptoms of β-thalassemia,
when β-globin expression is compromised,
develop during the first year after birth.
Humans have two specialized fetal �-like glo-
bin genes, HBG1 and HBG2, which encode the
Ag- and Gg-globins, respectively (Figure  1).
These fetal genes are gradually silenced while
expression of the adult �- and �-globin genes is
activated (Figure 2). Malfunction of the HBB
gene resulting in β-thalassemia becomes man-
ifested during the first year of life following
the switch from fetal-to-adult globin expres-
sion. There is no fetal α-like gene, and in
severe α-thalassemia cases dysfunctional γ-
globin tetramers are formed (hemoglobin
Barts) at fetal stages. The presence of γ-globin
protects the developing fetus from the effects
of pathological β-globin variants. The most
common mutation substitutes glutamic acid
for valine (Glu6Val or E6V) in the 6th codon of
β-globin and is the cause of sickle cell disease
(SCD). The substitution of a glutamic acid by
a valine residue (HbS) affects the biophysical
properties of the hemoglobin tetramers. The
change from a charged (E) to a non-polar (V)
side chain enables polymerization of hemoglo-
bin molecules under low oxygen conditions.
This deforms the erythrocytes into the charac-
teristic sickled shape. This has profound
effects on the physiological properties of the

Red cell disease

The human beta (b)-globin locus contains five b-like globin genes, arranged in the order of their
developmental expression pattern 5’-ε (embryonic) - Gg - Ag (fetal) - δ - b (adult). The transition from
fetal to adult b-like globin expression, known as hemoglobin switching, has attracted most attention.
In patients with b-thalassemia or sickle cell disease, persistent expression of the endogenous g-globin
genes ameliorates the clinical manifestation of the disorders. Clinicians, epidemiologists and molecular
biologists have studied hemoglobin switching for decades, applying novel tools and knowledge devel-
oped by the scientific community. In the 1990s, the field had exhausted the then available technolo-
gies without achieving a fundamental understanding of the molecular control of hemoglobin switch-
ing. This changed with the advent of the ‘-omics’ era, sparked by the completion of the human genome
sequence. Genome-wide association studies, comprehensive gene expression profiling, protein inter-
action screens and knockdown of genes using short interfering RNAs have propelled the field forward
in the first decade of the 21st century. While we are still some way off understanding all the details
of hemoglobin switching, there are a number of leads for the development of safe, affordable, off-the-
shelf pharmacological compounds targeting the g-globin suppression pathway.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe developmental regulation of the human globin genes and hemoglobin switching;
- understand the challenges to achieve reactivation of g-globin expression as a means to ameliorate

the symptoms of b-thalassemia and sickle cell disease patients;
- discuss recent progress in knowledge of the molecular control of hemoglobin switching.
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cells. Abnormal adhesion to blood vessel walls and
microvascular occlusion result in local hypoxia aiding fur-
ther sickling that leads to lasting organ damage. The lifes-
pan of sickle erythrocytes is reduced from approximately
120 days to 16-20 days, placing the erythroid system
under constant stress. Even with the best medical care, the
life expectancy of SCD patients is still reduced by 2-3
decades. Hemoglobinopathies are a worldwide burden on
the human population, with over 300,000 new patients
born every year. The majority of these (83%) are SCD
patients.2

Potential cures for hemoglobinopathies

Current standard medical care for thalassemia and SCD
patients is aimed at alleviating the symptoms as much as
possible. Progress has been impressive and has improved
the quality of life for many patients, allowing them, to a
large extent, to participate in society like any other indi-
vidual. Carefully timed transfusion regimens, chelation
therapy to remove excess iron from vital organs such as
the heart and the liver, and early detection of potential
adverse events have greatly contributed to the manage-
ment of these diseases. However, this level of care is not
available to the large majority of patients who live in parts
of the world lacking such a sophisticated health care sys-

tem. Furthermore, the sheer number of patients would be
an unbearable burden on any health care system. For
example, Nigeria, with a population of 90 million, has an
estimated 1-1.5 million SCD patients. Alternative treat-
ments are, therefore, urgently needed. A limited number of
patients have been cured by bone marrow transplantation.
Clearly, this costly procedure is not available to the large
majority of patients, since it requires a compatible donor
and life-long follow up after transplantation. 

Gene therapy

An attractive alternative would be to correct the defec-
tive gene in the patients’ cells through the intermediary
action of induced pluripotent stem cells (iPS cells). Proof
of principle for this approach has already been obtained in
a mouse model for SCD.3 A more straightforward
approach is gene addition, in which a missing or corrected
globin gene is added to the hematopoietic stem cells of the
patients. In the past 25 years, formidable obstacles have
been overcome to make gene therapy of hemoglo-
binopathies a realistic option. Globins must be expressed
at very high levels in the erythroid cells, and this requires
the addition of carefully selected elements of the LCR to
the gene therapy vectors. The globin gene itself was also
fine-tuned for use in this specific context. For instance,
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Figure 1. The human hemoglobin loci. The α-like globin genes (HBA1 and HBA2) are flanked by ubiquitously expressed
genes (NPRL3 and LUC7L). The major regulatory element (α-MRE) is located upstream of the embryonic ζ-gene (HBZ).
The b-like globin genes are flanked by putative odorant receptor genes (green). The Locus Control Region (LCR), compris-
ing 5 DNaseI hypersensitive sites required for high-level expression of the b-like globin genes, is located upstream of the
embryonic ε-globin gene (HBE). The developmentally regulated expression patterns and the composition of fetal (HbF, α2g2
(HBA2HBG2)) and adult (HbA, α2b2 (HBA2HBB2)) hemoglobin are indicated.



splicing is a requirement for efficient expression and the
introns of the globin gene were minimized to meet these
demands. While this work was going on, it became clear
that gene therapy vectors based on lentiviruses were supe-
rior to those based on the classically used γ-retroviruses.
Unlike γ-retroviruses, lentiviruses are able to transduce
non-dividing cells such as hematopoietic stem cells with
high efficiency. The synthesis of all these efforts is the first
demonstration of globin gene therapy in mice in 2000,4
and the first report on a patient treated with a globin gene
therapy vector in 2010.5 While cautious optimism is justi-
fied, there are still a number of issues to be solved.
Achieving globin expression at therapeutic levels is still
challenging, and will require further optimization of the
gene therapy vectors. An immediate concern is integration
of the gene therapy construct in the genome of the
patient’s cells, which may interfere with the expression of
neighboring genes. In a gene therapy trial for X-SCID, the
γ-retroviral vector had integrated in proximity to the pro-
moter of the LMO2 proto-oncogene, leading to aberrant
expression of LMO2 and uncontrolled exponential clonal
proliferation of mature T cells.6 The patient who received
globin gene therapy displayed outgrowth of a hematopoi-
etic clone in which the lentiviral gene therapy vector had
integrated close to the HMGA2 gene leading to deregulat-
ed expression of this gene.5 Although no adverse effects of
this integration have been reported to date, it raises long-
term safety issues. Targeted integration to ‘safe harbors’,
which are apparently genetically empty areas of the
genome, might be a step towards solving this problem.7 It
is encouraging that targeted site-specific integration of a
globin transgene has recently been demonstrated.8 This
was achieved using zinc finger nucleases engineered to
generate a double strand break at a specific location in the
genome.9 In conclusion, significant progress has been
made in the development of cellular therapies involving
gene correction or addition, and clinical trials of globin
gene therapy have started. It is unlikely that such cellular
therapies will become available to the large majority of
patients within a reasonable time frame.

Reactivation of fetal globin expression

Almost all β-thalassemia and SCD patients will have
normal fetal �-globin genes, which were expressed before
birth but switched off during the first year after birth. This
gradual change from γ- to β-globin expression is referred
to as hemoglobin switching, and ‘reversing the switch’ is
thought to ameliorate the symptoms of β-thalassemia and
in particular SCD patients. Higher levels of γ-globin cor-
relate positively with reduced pathology and clinical
events in SCD patients. SCD patients with γ-globin levels
higher than 20% of total β-like chains are often virtually
event free and require little hospital care. The reason is
that γ-globin acts as a chain breaker, stopping sickle
hemoglobin from forming long polymers under low oxy-
gen conditions. For β-thalassemia patients, reactivation of
γ-globin would have to be more quantitative, since it
needs to compensate for the absence of β-globin chains. In
both cases, γ-globin is a well-known disease modifier and
understanding hemoglobin switching at the molecular
level has, therefore, been the subject of intense research
efforts since the 1970s. 

Hereditary persistence of fetal hemoglobin
(HPFH)

Sustained expression of HbF in otherwise healthy indi-
viduals is termed hereditary persistence of fetal hemoglo-
bin (HPFH). Initially, mutations in the �-globin locus were
found that correlated with increased γ-globin levels. In
most cases, this involved deletions of sequences 3’ to the
�-globin genes, suggesting removal of repressor elements.
Such a function was specifically allocated to the intergenic
region between the A�- and �-globin genes.10,11 In some
cases, very large deletions were found which are thought
to bring novel enhancer elements in close proximity to the
�-globin genes.12 Of particular interest are point mutations
and small deletions that affect γ-globin levels in adults,
since these potentially provide mechanistic insight into the
hemoglobin switching mechanism. These are confined to
the �-globin promoters and alter expression of the linked
gene only, suggesting a direct effect on promoter accessi-
bility in adult erythroid cells. The most common variant is
a single nucleotide polymorphism (SNP) C>T at position
-158 in the G� promoter, known as the XmnI polymor-
phism.13 This is a common sequence variant in all popula-
tion groups, found at a frequency of 0.32-0.35.14 Presence
of the T allele is associated with increased HbF levels.
Quantitatively, a rare variant in the A� promoter, the -117
G to A mutation, has the most dramatic effect.
Heterozygotes display 10-20% HbF, containing only Aγ
chains.15 The HPFH condition was mimicked in mice car-
rying a human �-globin locus transgene in which the -117
G to A mutation was introduced.16 This provided unam-
biguous evidence that the HPFH phenotype was caused by
the point mutation in the A� promoter. This raised the
hypothesis that the -117 G to A mutation would alter direct
binding of a regulatory protein to the A� promoter, either
allowing binding of an activator or preventing binding of
a repressor, or both. Unfortunately, systematic testing of
this hypothesis through the combination of in vitro DNA
binding assays, introduction of novel point mutations in
the -117 area, and functional analysis of these engineered
promoters in the transgenic mouse assay consistently
failed to identify the factor(s) involved.17 Similarly, very
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Figure 2. Expression of hemoglobins during human devel-
opment. The developmental expression patterns of the
human hemoglobins are shown. (Modified from Kitchen
and Brett.1)



interesting models were developed for the -202 C>G or
C>T HPFH mutations. This area is capable of forming an
intra-molecular triplex termed H-DNA, and the HPFH
mutations were shown to destabilize this structure. A ‘cold
shock’ domain protein YBX1 binds specifically to the 
-202 region, and binding affinity is reduced by the HPFH
mutations.18 However, an impact on globin regulation was
not found in Ybx1 knockout mice,19 possibly due to func-
tional redundancy with the closely related MSY4 factor.
Thus, while the HPFH phenotype could be reproduced in
transgenic mice carrying the human β-globin locus and
biochemical assays revealed potential molecular mecha-
nisms, unambiguous identification of proteins directly
involved in globin switching remained elusive.

The dawn of the “-omics” era

Not all variation in γ-globin expression is due to muta-
tions in the β-globin locus. In rare HPFH families, the
phenotype is not linked to the �-globin cluster or chromo-
some 11. An early example is provided by a large Indian
kindred. Linkage analysis showed that the genetic deter-
minant for HPFH segregated independently from the �-
globin cluster,20 suggesting involvement of a trans-acting
factor. Via a painstaking mapping exercise the genomic
location of this factor was mapped to chr6q23, 21 and could
eventually be pinpointed to variants in the region between
the HBS1L and MYB genes. 22 Recent work has shown that
this intergenic region contains distal enhancers required
for MYB gene activation.23 The completion of the human
genome sequence in 200124,25 enabled the development of
genome-wide association analysis in population studies
(GWAS). Application of GWAS led to the identification of
BCL11A on chromosome 2p15 as a potential modifier of
γ-globin levels.26,27 Functional studies in primary human
erythroid progenitors28 and mice29 demonstrated that
BCL11A is a transcriptional repressor protein essential for
the timing of the transition of fetal-to-adult globin expres-
sion. These discoveries have sparked an enormous interest
in BCL11A as a target for γ-globin reactivation. This inter-
est was further boosted by the observation that inactiva-
tion of BCL11A in the adult erythroid system corrects
hematologic and pathological defects in a mouse model of
SCD through induction of γ-globin expression.30 Thus,
within the time frame of a few years, BCL11A has been
firmly established as the first realistic molecular target for
reactivation of γ-globin expression in adults. It should be
realized that tinkering with MYB is likely to adversely
affect hematopoiesis and erythroid differentiation.31

Unfortunately, both MYB32 and BCL11A33 potentially
have been implicated in human malignancy, and mice
transplanted with Bcl11a-deficient cells died from T-cell
leukemia derived from the host.34 Erythroid-specific abla-
tion of BCL11A in mice did not result in any oncogenic
events,30,35 indicating that erythroid-specific inactivation
of BCL11A in humans might be safe. To achieve this will
be challenging; transcription factors such as BCL11A are
viewed as highly unattractive drug targets per se, even
without the confounding requirement for cell type-specific
targeting. However, transcription factors perform their
functions as part of multi-protein complexes, and
BCL11A is known to interact with several other nuclear
factors.28 Identification of an essential partner in erythroid

cells may provide a handle on developing pharmacologi-
cal compounds blocking these protein-protein interac-
tions. Cell type-specific delivery might be achieved
through erythroid-specific receptors.36 Clearly, develop-
ment of such novel therapeutic approaches will be the
topic of intense research efforts in the coming years.

Variants in the HBB, BCL11A and HBS1L-MYB loci
together account for approximately 50% of the variation in
γ-globin expression.37 The remaining variation could be
accounted for by loci with relatively small impact, and by
rare variants with significant quantitative effects on γ-glo-
bin expression that are typically missed by GWAS popu-
lation studies. An example of the latter is provided by the
identification of the KLF1 gene as a γ-globin modifier
through the study of a Maltese family in whom HPFH was
found in 10 of 27 members.38 A genome-wide SNP scan
followed by linkage analysis identified a candidate region
on chromosome 19p13.12–13. Sequencing revealed a non-
sense mutation in the KLF1 gene, p.K288X, which ablated
the DNA-binding domain of this key erythroid transcrip-
tional regulator.39 Only family members with HPFH were
heterozygous carriers of this mutation, suggesting that
haploinsufficiency for KLF1 was the cause of the HPFH
phenotype. The KLF1 p.K288X carriers displayed high
HbF levels, although with considerable variation (mean
8.4%; range 3.3-19.5%). Part of this variability could be
explained by SNP haplotypes at the BCL11A locus.
Importantly, BCL11A expression was reduced in the
KLF1 p.K288X carriers and KLF1 was shown to be a
direct activator of BCL11A expression.38,40 Knockout
studies in mice had previously established that KLF1 is
essential to activation of β-globin expression.41,42

Remarkably, expression of embryonic and fetal �-like glo-
bin genes was fully activated in the absence of KLF1.43,44

Collectively, this has led to the proposal of the ‘double
whammy’ model38 (Figure  3). Firstly, KLF1 acts on the
HBB locus as a preferential activator of the �-globin
gene.43 Secondly, it activates expression of BCL11A,
which in turn represses the �-globin genes.28,38,40 This dual
activity ensures that, in most adults, HbF levels are less
than 1% of total Hb. Notably, MYB is thought to be an
activator of KLF1 expression in human adult erythroid
progenitors45 and, therefore, the rough contours of a γ-glo-
bin suppression network are appearing. 

Mutations in KLF1 were first described to cause the rare
‘inhibitor of Lutheran antigens’ (In(Lu)) blood group phe-
notype,46 and more recently a steady stream of novel muta-
tions found across different populations has been
reported.47-52 Similar to the observations in the Maltese
families, HbF levels associated with KLF1mutations were
found to be highly variable.53 This may be explained by
the KLF1 expression level derived from the remaining
intact KLF1 allele, but also suggests interplay with other
modifier loci such as BCL11A.38 Remarkably, all the muta-
tions reported to date affect the DNA binding domain of
KLF1. In many cases, a premature stop codon completely
ablates the DNA binding domain, as was the case in the
Maltese family. In other cases, amino acid substitutions
are found in critical residues of the three zinc fingers com-
prising the DNA binding domain. These either interfere
with the three dimensional structure of the zinc finger
domains, or directly affect specificity of DNA target site
recognition.53,54 The latter mutations result in most cases in
partially functional proteins. This is illustrated by the
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remarkable discovery of two compound heterozygotes for
the p.S270X nonsense and p.K332Q missense mutations
in a Sardinian family51 who displayed 22.1% and 30.9%
HbF, respectively. HbF levels in the parents were unre-
markable. The same study noticed that zinc protopor-
phyrin levels were increased in these 2 individuals, consis-
tent with the notion that KLF1 regulates several enzymes
in the heme synthesis pathway.55 In separate studies,
delayed hemoglobin switching49 and increased HbA250

were reported in heterozygous carriers of KLF1mutations.
This is clinically important since increased HbA2 (>3.9%)
is a distinguishing feature of β-thalassemia carriers.
Borderline cases require an extensive laboratory workup
to exclude β-thalassemia carrier status; screening for
KLF1 mutations in such cases will aid the identification of
couples at risk. One mutation with a dominant phenotype
has been reported. The p.E325K missense mutation causes
congenital dyserythropoietic anemia.52 It changes a nega-
tively charged (E-glutamic acid) into a positively charged
amino acid (K-lysine) of an absolutely conserved residue
in the second zinc finger which is directly involved in
DNA sequence recognition.54 The p.E325K KLF1 mutant
has a dominant-negative effect on the transcriptional acti-
vation properties of wild-type KLF1. This affected globin
expression but also expression of other KLF1 target genes,
such as the water channel AQP1 and the adhesion mole-
cule CD44. Remarkably, HbF levels were 37.3% in one
patient, who also expressed detectable levels of embryonic
hemoglobin (Hb Portland, ζ2g2). There are remarkable par-
allels with the phenotype of the mouse Nan mutant, which
carries a missense mutation in the corresponding residue
in mouse KLF1,56,57 even though the Nan mutation
p.E339D does not introduce a positively charged amino
acid but leaves the negative charge intact (D-aspartic
acid). 

Clearly, it will be of great interest to investigate the
impact of KLF1 missense mutations on erythroid gene

expression and terminal differentiation at the molecular
level. Unlike BCL11A, expression of KLF1 is largely,
although not exclusively,58,59 restricted to erythroid cells
and no association of KLF1 mutations with malignancy
has been reported. In principle, attenuating KLF1 activity
would, therefore, provide a safe approach to raise HbF
levels in individuals with β-type hemoglobinopathies. Our
recent analysis of compound KLF1::BCL11A mouse
mutants showed that erythroid-specific ablation of
BCL11A, alone or in combination with KLF1 haploinsuf-
ficiency, only mildly affected steady-state erythro-
poiesis.35 Furthermore, expression of γ-globin from a sin-
gle-copy human �-globin locus was markedly increased in
adult mice, lending further support to the role of the
KLF1-BCL11A axis in globin switching. An important
observation from the mouse studies is that in the complete
absence of BCL11A, even in combination with KLF1 hap-
loinsufficiency, the �-globin genes are not expressed to the
full extent.30,35 I propose that the tight repression of the �-
globin genes in mice provides a window of opportunity for
identification of additional factors involved in the silenc-
ing mechanism at the adult stage. Enforcement of repres-
sion of the embryonic/fetal program in adult erythro-
poiesis may be executed by, for instance, the transcription
factors MYB22 and SOX6,60 the chromatin-bound
FOP/CHTOP protein61 and NuRD complex, 62,63 the orphan
nuclear receptors TR2/TR464 and the protein arginine
methyl transferase PRMT5, 65 and is likely to include addi-
tional epigenetic mechanisms such as polycomb group
(PcG) complex recruitment and DNA methylation. Future
work should, therefore, be aimed at further clarifying the
multi-layered repressive network of the embryonic/fetal
program in the adult erythroid environment. The first steps
to clarify the molecular differences between the develop-
mental stages of erythroid cells have been taken in
mouse66 and human,67 and have revealed many differen-
tially expressed genes. These data have not yet been
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Figure 3. Model for regulation of hemoglobin switching by KLF1 and BCL11A. (A) KLF1 preferentially activates the adult
HBB gene. It also activates the BCL11A gene, and the BCL11A protein silences the fetal HBG1/HBG2 (HBG) genes. (B)
KLF1 activity is reduced in member of the Maltese family carrying the KLF1 K288X mutation. This decreases expression
of BCL11A and the diminished amount of BCL11A protein alleviates repression of the HBG1/HBG2 genes. The combined
reduction of KLF1 and BCL11A activity shifts the balance towards expression of the HBG1/HBG2 genes.



explored in the context of globin switching. Another
recent development is the potential role of micro-RNAs,
more specifically micro-RNA-15a and 16-1 which are
believed to exert their function via MYB.68 There are,
therefore, many leads that need to be followed up.

Therapeutic reactivation of fetal hemoglobin

The ultimate goal of all these efforts is to develop safe
pharmacological compounds targeting the γ-globin sup-
pression pathway specifically. Currently, hydroxyurea,69

5-azacytidine70 and short-chain fatty acids (butyrates)71 go
some way in increasing HbF levels, but none of these
agents are specific and long-term safety is a concern. Of
these, only hydroxyurea has FDA approval for treatment
of SCD patients and it is used with considerable success.69

Its beneficial effects are only partly due to increased HbF
levels; it also reduces cell deformability and improves
hydration status of sickle erythrocytes.72 The majority of
patients increase HbF production upon HU treatment;73

however, HbF baseline and response magnitude among
the patients is highly variable. In the 1990s, a screen of
pharmacological compounds was conducted by OSI
Pharmaceuticals, in which approximately 186,000 defined
chemicals and fungal extracts were evaluated.74 Eleven
distinct classes of compounds were identified, many of
which activated the stress response suggesting this was
part of the mechanism of γ-globin induction. An activated
stress response also appears to have a part in the distinc-
tion of responders and non-responders to hydroxyurea
treatment.75 Many other compounds with γ-globin induc-
ing properties have been reported in the literature.
Resveratrol76 (a compound found in red wine), anthracy-

clines,77 statins78 and thalidomide derivatives79 are just a
few examples. Drugs already in use for treatment of other
conditions, such as statins and thalidomide, are particular-
ly attractive since these could in principle be adapted rel-
atively quickly for therapy for β-thalassemia and SCD.
Unfortunately, HbF levels are not routinely determined in
patients receiving long-term medication, and hence HbF
induction as a side effect is essentially a chance discovery.
Collectively, it can be concluded that random screening of
compounds has as yet not yielded any alternative to
hydroxyurea. It, therefore, appears that better screening
systems integrated with approaches designed to directly
target the γ-globin suppression pathway should be devel-
oped.

Challenges for the future

Recent progress has been fuelled by the application of 
“-omics” technologies, but seemingly incremental
improvements in other laboratory techniques have been
equally important. Culture of primary erythroid cells, ini-
tially pioneered by Eitan Fibach,80 were adapted to com-
pletely defined synthetic media by the late Hartmut
Beug81,82 (Figure 4). Using a buffy coat from as little as 15
mL of peripheral blood, we can now expand erythroid pro-
genitors from healthy individuals38 and patients61 and use
these cells for functional experiments. There is no need to
select CD34-positive cells, since the majority of the in
vitro erythroid expansion potential resides in CD34-nega-
tive cells.83 The development of recombinant lentiviruses
enabled efficient transduction of these cells, allowing
shRNA-mediated knockdown and expression of exoge-
nous proteins.38,61 Lentiviral shRNA libraries targeting
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Figure 4. Culture of primary human erythroid progenitors. Erythroid progenitors can be expanded from human peripheral
blood mononuclear cells in synthetic medium containing erythropoietin (EPO, ligand for the erythropoietin receptor
(EPOR)), stem cell factor (SCF, ligand for KIT) and dexamethasone (Dex, ligand for the glucocorticoid receptor (GR)) as
survival and growth factors. After approximately seven days under these conditions (ESD) the cultures are composed pre-
dominantly of proerythroblasts. Transfer to medium containing EPO but lacking SCF and Dex (E conditions) forces the
proerythroblasts into terminal differentiation, leading to hemoglobinization (brown staining) and enucleation.



every protein-encoding gene in the human genome are
available84 and these can be used to identify γ-globin sup-
pressors28,38,61 (Figure 5). But there is a catch: in vitro cul-
tures mimic stress conditions, and human erythroid pro-
genitors respond to this by increasing γ-globin expression.
HbF levels of approximately 5% are observed with most
cells cultured from healthy donors. A further increase in
HbF is easily achieved by applying additional stress to the
cells, for instance lentiviral transduction. Typically, HbF
levels may reach 30%. It is, therefore, highly recommend-
ed to rescue knockdown experiments by expression of
shRNA-resistant versions of the genes of interest.61 In
adult mouse erythroid progenitors containing a complete
human �-globin locus, transgene silencing of the �-globin
genes is much tighter.35 This will, therefore, likely provide
a much more stringent system for screening purposes.
Building reporter loci in which expression of fluorescent
proteins is dependent on activation of the �-globin genes,
and creation of immortalized erythroid progenitor lines81

from mice carrying such reporter loci, will provide much
improved tools for high-throughput screening of γ-globin
activating molecules. Such systems are currently being
developed.85,86

It will remain important to investigate HbF variation in
the human population. Currently, no mutations affecting
the MYB or BCL11A proteins have been reported, but it
would be very interesting to know what the consequences
of haploinsufficiency for these factors are. In addition, we
have only begun to identify the players in the γ-globin
suppression pathway. A locus on chr8q has been associat-
ed with HbF in the context of the XmnI-G� polymor-
phism,87 but no causative link to a specific gene on chr8q
has been made. We have also largely ignored the potential
stromal contribution to hemoglobin switching, even

though hemoglobin switching is paralleled by the transi-
tion of the site of erythropoiesis from the fetal liver to the
bone marrow. More likely than not, the erythroid progeni-
tors will be exposed to very different microenvironments
in these two tissues. Identification of extracellular factors
that promote the transition from fetal to adult erythro-
poiesis could be a major step forward in globin switching
research. A recent paper implicating reduction of hedge-
hog signaling with developmental progression of
hematopoiesis throughout human ontogeny might provide
an example of such a factor.88 Any factor identified as
potentially involved in hemoglobin switching will have to
be rigorously tested using conditional knockouts and well-
established mouse models for human globin switch-
ing19,29,30,34,35,40,62,63 before they are taken forward as targets
for γ-globin reactivation in adults.
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Alpha-thalassemia syndromes: from clinical 
and molecular diagnosis to bedside management 

Introduction

Hemoglobin (Hb) is a tetramer of two α-like
and two b-like globin chains which are cova-
lently linked to heme, the oxygen-binding
molecule.1,2 In normal adult erythropoiesis,
approximately 95% of the Hb produced is Hb
A (α2b2), followed by approximately 2%-3%
Hb A2 (α2δ2) and less than 1% fetal Hb (Hb
F, α2g2).1 The α globin gene cluster is located
on the subtelomeric region of the short arm of
chromosome 16 (16p 13.3) and consists of
four functional genes, from 5’ to 3’: HBZ
(OMIM 142310), HBA2 (OMIM 141850),
HBA1 (OMIM 141800), and HBQ1 (OMIM
142240).3 These genes produce ζ, α and q glo-
bin chains, respectively, and are under the con-
trol of the upstream regulatory sequences, a
multispecies conserved, non-coding regulato-
ry sequence (MCS-R 1 and 2) (see Figure 1
and review in Higgs4). The b globin gene clus-
ter is located on chromosome 11 p15.4 and
composed of five functional genes, from 5’ to
3’: HBE1 (OMIM 142100), HBG2 (OMIM

142250), HBG1 (OMIM 142200), HBD
(OMIM 142000), and HBB (OMIM 141900).1

These genes encode ε, Gg, Ag, δ, and b globin
chains, respectively. Similar to the α-globin
gene cluster, a stage-specific temporal expres-
sion of these b-like globin chains is under the
control of an upstream regulatory region,
known as the b globin locus control region
(LCR).5 During erythroid development, from
embryonic to fetal and adult hematopoiesis, a
precise co-ordinated expression of both globin
clusters is required to generate a balanced and
adequate amount of stage-specific hemoglo-
bins required for the red blood cell function.
This process is highly critical since 200 billion
red blood cells are produced daily to support
continuous oxygen flow and supply.1

A great deal has been learnt about the nor-
mal regulation of globin gene expression from
the analysis of naturally occurring mutations
of the globin clusters, which cause α and b
thalassemia.6 Over the last 40 years, more than
120 mutations that cause α thalassemia and
over 270 mutations that cause b thalassemia

Red cell disease 

A B S T R A C T

Heterozygotes for α0-and α+-thalassemias are usually asymptomatic or have microcytic-
hypochromic red blood cells. Interactions of α0-and α+-thalassemias result in a non-fatal form of
alpha-thalassemia syndrome; hemoglobin H (Hb H) disease. Patients with this condition present with
a diverse clinical severity, from mild to moderate severity, included in the broader syndrome of non-
transfusion dependent thalassemia (NTDT). In general, patients with non-deletional (--/αTα) Hb H are
usually more severe than deletional Hb H (--/-α) types. Moreover, certain non-deletional Hb H
patients have the most severe phenotype, referred to as Hb H hydrops fetalis. In these rare cases,
intrauterine and neonatal complications develop with hydropic features. These patients require reg-
ular blood transfusion for survival similar to patients with beta(b)-thalassemia major. Other mecha-
nisms beside imbalanced globin synthesis might influence the Hb H disease pathophysiology result-
ing in heterogeneous clinical phenotypes. Hb Bart’s hydrops fetalis characterized by a complete loss
of all α globin loci (--/--) usually leads to death in utero or soon after birth. Due to advanced peri-
natal and neonatal care, the number of surviving Hb Bart’s hydrops is increasing, raising concerns
regarding the long-term outcome, in particular cognitive and neurological development. Although
stem cell transplantation offers a curative measure for these severe α-thalassemia syndromes, its
application has been limited by donor availability. Management guidelines for α-thalassemia syn-
dromes are proposed here.

Learning goals
At the conclusion of this activity, participants should be able to:
- provide an understanding of the molecular basis underlying α-thalassemia and how interactions

of α-thalassemia genes give rise to syndromes with different clinical phenotypes;
- acquire the ability to clinically diagnose and interpret relevant hematology laboratory and

molecular studies in order to correctly identify the different types of α-thalassemia syndromes;
- provide an appropriate management plan, from supportive care, blood transfusion, iron chela-

tion, up to stem cell transplantation, for patients with α-thalassemia syndromes, with special
emphasis on Hb H disease.



have been characterized.1 Thalassemia most frequently
results from deletions or point mutations which affect the
normal structures of the α and b globin genes.2 These
mutations fall into three main groups. First, there are dele-
tions of the structural genes that are a particularly common
cause of α thalassemia and, in a few cases, of b tha-
lassemia. Second, point mutations of the structural genes
and their critical elements, which in contrast are extremely
common in b thalassemia (>220 different mutations) and
less common in α thalassemia. Third, rare deletions
involving the regulatory elements (MCS-R 1 and 2 and b-
LCR, see below).2 Studies of such natural mutations that
can inactivate or severely down-regulate gene expression
provide important insights into all aspects of gene struc-
ture regulation, including transcription and mRNA pro-
cessing. The importance of promoter and enhancer ele-
ments, the role of upstream and downstream untranslated
region (UTR) in mRNA transcription, stabilizing nascent
mRNA and the translation process were also derived from
studies of thalassemia. These mutations thus generate ‘nat-
ural models’ which help our understanding of globin gene
expression.2

Molecular basis of α-thalassemia

There are two copies of the α globin gene per haploid
genome, annotated αα/αα. The α2 gene lies upstream of

the α1 gene and is expressed 2-3 fold more than the α1
gene. Alpha-thalassemia syndromes are remarkable for
their variable molecular basis and phenotypic diversity
depending on the degree of α globin deficit according to
the number of the affected α globin genes.2-4, 7-9

In α0 thalassemia (a condition in which α globin expres-
sion from one chromosome is completely abolished), both
of the linked α globin genes are lost (--/αα) due to dele-
tions that involve part or the entire α globin gene cluster
(Figure 1). Heterozygotes for α0 thalassemia are clinically
normal but have a mild hypochromic, microcytic anemia
(mean cell volume, MCV, <78 fL; mean corpuscular
hemoglobin, MCH, <27 pg).10,11 Other molecular mecha-
nisms that can result in a similar degree of the α-globin
deficit akin to that of α0-thalassemia include: 1) upstream
deletions that remove the major regulatory elements of the
α globin cluster;12-14 2) an interstitial deletion (>18 kb, ZF
deletion) that removes only the α1 gene but causes de
novomethylation and downregulation of the remaining α2
gene;15 and 3) large deletions that extend beyond the α
globin gene cluster, identified in patients with dysmor-
phism and alpha-thalassemia mental retardation syndrome
(ATR-16)16 (shown in Figure 1 and comprehensively
reviewed by Higgs4). 

In the less severe condition (α+-thalassemia), the α glo-
bin expression from one chromosome is reduced but not
abolished. There are two types of α+-thalassemia; dele-
tional α+ and non-deletional α+-thalassemia.4 The high
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Figure 1. Summary of all reported deletional and non-deletional mutations causing a significant reduction of the α-globin
gene expression and α0- and α+-thalassemia phenotypes. A schematic diagram of the subtelomeric region (black oval) of
chromosome 16 (16p13.3) showing the human α-globin cluster (5’- ζ-α2-α1-3’) flanked by ubiquitously expressed genes
(as denoted with gene annotations above and below the line by Higgs4). Two major molecular mechanisms of α-tha-
lassemia; deletional and non-deletional mutations are demonstrated (see text). Below the line, several gray boxes showed
the critical regions removed by different deletions that involved (1). A multispecies conserved non-coding regulatory
sequence (MCS-R2) essential for α-globin expression, (2). Single or both linked α-globin genes and (3). A region 3’ to the
α1 gene that caused epigenetic dysregulation in ZF deletion.  ATR-16 is the large deletion that extended beyond the α-
globin cluster and removed all critical regions. Above the line, two types of non-deletional mutations are shown; the rSNP;
regulatory single nucleotide polymorphism or Melanesian mutation and the conventional nucleotide mutations involving
coding sequences of either α2 or α1 genes. Black arrows show erythroid specific hypersensitive sites along the α-globin
cluster. 



homology of two α globin loci and local chromosomal
constraints make the α globin cluster vulnerable to homol-
ogous recombination.17 The majority of α+-thalassemias
results from deletions removing either the α2 gene, leav-
ing the α1 gene intact (-α4.2 or 4.2 kb-deletion) or part of
both α2 and α1 genes, generating a new hybrid α globin
gene (-α3.7 or 3.7 kb-deletion) (Figure 1).4,18 Both types of
deletions have been found worldwide with a few others,
such as 3.5 kb-deletion, found at a lower incidence.9

Less commonly, α+ thalassemia results from mutations
in one or a few nucleotides in critical regions of the α
genes usually, but not always, affecting the highly
expressed α2 gene (αTα) rather than the α1 gene (ααT).
This is called ‘non-deletional α thalassemia’ and more
than 70 different non-deletional mutations have been
reported so far (as regularly up-dated at the globin gene
server. Available from: http://globin.cse.psu.edu/).9

Recently, De Gobbi and Viprakasit et al. have described
a regulatory single nucleotide polymorphism (rSNP)
located in the region in between the ζ and the α2 gene that
creates a new GATA binding site as an underlying cause of
α-thalassemia in Melanesian population.14 This rSNP
demonstrated a novel mechanism for downregulation of
the downstream α globin genes, creation of a GATA site
competes with the α-globin promoters in the interaction
with the MSC-Rs and has a ‘stealing effect’      on the asso-
ciated erythroid specific and basal transcription machin-
ery.4,14 Heterozygotes for this rSNP have the phenotypes
similar to non-deletional α+-thalassemia. In addition,
homozygotes and compound heterozygotes of this rSNP
and α0-or α+-thalassemia can cause clinical Hb H disease
(V Viprakasit, unpublished data, 2008).

Molecular genotype-phenotype correlation in
α-thalassemia syndromes 

Hemoglobin (Hb) Bart’s hydrops fetalis, characterized
by a complete loss of four α-globin genes (--/--), is the
most severe form of α-thalassemia syndromes.8,19,20 The
complete deficit of the α-globin chains is caused by dele-
tional loss (homozygote or compound heterozygotes for
the different molecular genotypes of α0 thalassemia. A
complete absence of α globin that is critically required for
fetal erythropoiesis to produce Hb F (α2g2) causes
intrauterine death of the affected fetus or death soon after
birth. The free g-globin chains in the fetus combine to
form tetrameric hemoglobin known as Hb Bart’s (g4) com-
prising 100% of total hemoglobin in affected patients. In
general, such fetuses survive until the third trimester of
pregnancy because they continue to produce small
amounts of the embryonic Hbs Portland I (ζ2g2) and
Portland II (ζ2b2). However, at this stage they often have
multiple congenital abnormalities and die of heart failure
as a result of anemia.20,21 Moreover, hydropic changes of
the fetus can also result in several maternal complications
including preeclampsia and hemorrhage.9 In the past, the
majority of Hb Bart’s hydrops perished in utero. However,
there are increasing reports of cases of Hb Bart’s hydrops,
which, with or without intrauterine intervention, had sur-
vived until delivery.22 These patients require immediate
care and effective neonatal resuscitation including blood
transfusion during the neonatal period. 

A loss of three out of four copies of the α-globin genes

(--/-α) due to compound heterozygosity for α0- and dele-
tional α+-thalassemia is the most common molecular
mechanisms underlying Hb H disease.2,18,20,23 The excess
b-globin chains form tetrameric hemoglobin (b4) called
Hb H. This classical form of deletional Hb H disease
affects millions of people worldwide due to a high fre-
quency of α-thalassemia alleles.2,24 However, this condi-
tion is quite benign and may require the occasional blood
transfusion during hemolytic episodes.18,25,26 This α-tha-
lassemia syndrome is the most common cause of non-
transfusion dependent thalassemia (NTDT) around the
world.27 Interaction of rare mechanisms of α0-thalassemia
described above with α+-thalassemia can also result in
clinical Hb H disease.13,28 Less commonly, non-deletional
Hb H disease (--/αTα or --/ααT) results from interactions
of α0- and non-deletional α+-thalassemia. The common
non-deletional mutations include; Hb Constant Spring
(αCSα, termination codon, TAA-CAA),29 the most preva-
lent non-deletional α thalassemia identified to date in sev-
eral countries, Hb Paksé (αPSα, another termination codon
mutation, TAA-TAT),30 an initiation codon mutation (ATG
to A-G),31,32 Hb Quong Sze (αQSα, codon 125, CTG-
CCG)33 and different types of polyadenylation site of the
α 2 gene mutation including the αTSaudiα (AATAAA to
AATAAG).34 Patients with non-deletional Hb H disease
have a more severe phenotype than deletional Hb H as
demonstrated by the greater degree of anemia and jaun-
dice, earlier presentation, greater degree of
hepatosplenomegaly, greater need for blood transfusion,
and splenectomy25,26,35-43 In addition, non-deletional Hb H
patients have higher levels of Hb H inclusion bodies and
many of the patients with Hb H disease who have transfu-
sion dependent thalassemia (TDT) or are thalassemia
major (TM)-like fall into the non-deletional group.18 The
deficit in α globin expression in these patients appears to
be greater than in deletional Hb H disease (--/-α).
Sometimes, non-deletional mutations have additional
deleterious effects on terminal erythroid differentiation
and red cell metabolism.44,45 These effects might include
globin instability as in Hb Constant Spring (CS), Hb Paksé
(PS), Hb Quong Sze and Hb Adana, αAdanaα,
codon59,GGC-GAC, which results in a more severe phe-
notype. Other non-deletional mutations, such as those
involving the initiation codon or splice site mutation, only
reduce α-globin mRNA expression without generating
unstable variants, and might not be as severe as the former
ones.46 These findings suggest that a precise molecular
characterization will be required to provide appropriate
counseling and a management plan for future patients.
Nevertheless, there is considerable clinical diversity in
both deletional (--/-α) and non-deletional (--/αTα) Hb H
disease which remains unexplained.18,47 Until recently,
mutations in erythroid specific transcription factor ery-
throid krüpple-like factor, EKLF or KLF-1, have been
identified in several pedigrees of patients with Hb H dis-
ease with unexpectedly severe phenotype.48 It is plausible
that these trans acting mutations might play a role as
major genetic modifiers in patients with α-thalassemia
syndromes. Homozygotes for many types of non-deletion-
al α+ thalassemia (αTα/αTα) usually have a mild
hypochromic, microcytic anemia with no detectable Hb H
on electrophoresis whilst others may have small amounts
of Hb H.49-52 However, homozygotes for a mutation affect-
ing the polyA addition site of the α2 gene, first described
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in patients from Saudi Arabia, αTSaudiα consistently have
Hb H disease of variable severity and 8.0%-26.6% Hb H
detectable on electrophoresis.53 In one pedigree from
Turkey, homozygosity for the αTsaudiα chromosome led to
fetal loss raising questions for the reason for phenotypic
discrepancies.54 Similar unexplained findings were also
observed in patients with homozygous Hb CS.55

The most severe viable form of α-thalassemia syn-
dromes is Hb H hydrops, a transfusion-dependent Hb H
disease that is caused by specific non-deletional α-tha-
lassemia mutations.34,56-59 The α globin expression is
severely reduced but not absent in these rare infants with
non-deletional Hb H disease (--/αTα), a result being the
profound anemia in utero (3.4-9.7 g/dL) and hydropic fea-
tures, with 31-65% Hb Bart’s. This clinical syndrome has
been seen in patients with rare non-deletional mutations
such as; αCd 59Gly-Asp α, α∆Cd 30α,12 αCd 66 Leu-Pro α and αCd 35Ser-

Proα.57 In multiple affected pedigrees, this interaction
resulted in fetal lethality in late gestation or in death in the
early neonatal period,59 whereas the few survivors had a
severe transfusion-dependent type of Hb H disease. This
suggests that additional environmental and genetic factors
may modify the outcome of this clinical syndrome. For
example the interaction of Hb Pak Num Po (PNP), a rare
α1 gene mutation, with α0-thalassemia (--/) results in
transfusion-dependent phenotype60 while interactions with
either deletional (-α4.2/) or non-deletional α+-thalassemias
(αPSα/) causes a non transfusion-dependent  phenotype
with variable severity.61 Molecular genotyping of non-
deletional α-thalassemia is of clinical importance and
should be performed in all severe Hb H patients. Clinical
heterogeneity of α-thalassemia syndromes from silent Hb
H disease to Hb H hydrops and the associated genetic
determinants are summarized in Figure 2. 
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Figure 2. Heterogeneous clinical presentation and severity of patients with α-thalassemia syndromes from Hb H hydrops
to silent Hb H disease. The table shows three levels of partially known genetic basis underlying the clinical heterogeneity
of Hb H disease. Primary defects are based on the types of α-globin mutations (deletional and non-deletional α-tha-
lassemias) and their interaction. The secondary level of genetic control is the co-inheritance of b-thalassemia62-64 or b-
hemoglobinopathy such as Hb E.65,66 The presence of b-thalassemia generally causes more balanced globin synthesis
resulting in a milder phenotype with possible absence of Hb H (silent Hb H), while inheritance of unstable b-globin vari-
ants in particular Hb E or homozygous Hb E causing AE Bart’s and EF Bart’s disease results in a more severe phenotype
than simple deletional Hb H disease.67 The tertiary level involves other genetic modifiers outside the globin gene clusters.
At present, only KLF-1 was found to deteriorate the clinical course of patients with deletional and non-deletional Hb H
disease.48 Other genetic modifiers that might affect other complications such as bone disease (vitamin D receptor gene),
iron overload (Hfe and others), jaundice and gall stone formation (UGT1A1 and others) are not shown and were reviewed
previously.18 NTDT: non-transfusion dependent thalassemia; TDT: transfusion-dependent thalassemia. 



Diagnosis of α-thalassemia syndromes
Heterozygotes for single α gene deletions (-α/αα) are

clinically and hematologically normal and cannot be diag-
nosed correctly without molecular and DNA studies while
α0-thalassemia traits can be diagnosed using aforemen-
tioned MCV and MCH cut offs, but not RBC and RDW
values (Figure 3A). Patients with Hb H disease have
hypochromic microcytic anemia with reticulocytosis sim-
ilar to patients with b-thalassemia syndromes.  Peripheral
blood smear shows numerous target cells, aniso-poikilo-
cytosis with polychromasia mimicking alterations found
in b-thalassemia disease (Figure 3B).18 Of note, patients
with Hb H-Hb CS usually have numerous basophilic stip-
pling positive red blood cells.35 The key diagnostic marker
is the presence of Hb H (from <2% to >25% of total Hb)

in the peripheral blood that is visualized by using a special
staining (brilliant cresyl blue) or by hemoglobin elec-
trophoresis or chromatography.8 It should be noted that
due to the unstable nature of Hb H tetramer, the identifica-
tion of this Hb species can be jeopardized by the quality
and age of the blood samples; old blood or inappropriately
stored samples could provide false negative results.
Quantitation of Hb H might be problematic on some
hemoglobin analysis platforms, such as high performance
liquid chromatography (HPLC), since the instrument is
not pre-set to detect and quantify Hb H species.18 A new
generation of capillary electrophoresis (CE) is better suit-
ed for measuring the amount and detection of Hb H in
hemolysate.68 Ultimately, a molecular diagnosis using
DNA testing such as GAP-polymerase chain reaction
(GAP-PCR) for common deletional α-thalassemias is
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Figure 3A. Red blood cell indexes comparing between α0-thalassemia traits (- -/αα), deletional α+-thalassemia (-α/αα)
traits and normal age-matched controls. Red blood cell indexes composed of mean corpuscular volume (MCV), mean
cell hemoglobin (MCH), red blood cell count (RBC), and red cell distribution width (RDW), n=350. Adapted from
Viprakasit.10



highly recommended69 in cases that are not easily diag-
nosed by complete blood count (CBC) and hemoglobin
analysis. Detailed molecular techniques to identify α-glo-
bin gene defects have recently been reviewed.9 Moreover,
precise molecular characterization of either deletional or
non-deletion Hb H disease including the type of the non-
deletional mutations can be useful to roughly predict the
clinical severity and provide some guidance for clinical
management (Figure 4). Patients with non-deletional
mutations should be closely followed up every 2-3 months
in view of worsening clinical severity with age, while the
clinical course in deletional Hb H patients is more stable
and a regular follow up on a 4-6 monthly basis may be
adequate.

Clinical management of α-thalassemia 
syndromes

Hb Bart’s hydrops fetalis8,19

Only a few surviving Hb Bart’s hydrops cases have been
documented in the literature. It has been suggested that
due to marked anemia in early gestation, Hb Bart’s
hydrops patients could suffer from other physical compli-
cations including limb anomalies, abnormal urogenital
and most seriously, neurological development.21,70

Moreover, all rescued Hb Bart’s hydrops would be
dependent on life-long transfusion. At Siriraj Hospital,
Bangkok, Thailand, 5 surviving patients with Hb Bart’s
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Figure 3B. (A) Peripheral blood smear shows marked hypochromic microcytosis with anisopoikilocytosis and numerous
targets and fragmented red blood cells. (B) A supravital staining shows numerous HbH inclusion bodies with a golf-ball
appearance in a patient with deletional Hb H (- -SEA/-α3.7). The presence of Hb H inclusion bodies can be rare in a patient
who also co-inherited Hb E (AE Bart’s disease; - -SEA/-α3.7/βE/βA), as shown in (C). (D) Hemoglobin analysis by cellulose
acetate electrophoresis from a patient with deletional Hb H (1; - -SEA/-α4.2) and non-deletional Hb H (2; - -SEA/αCSα) with
the presence of Hb Bart’s and Hb H. Using this analysis, the presence of a slow moving hemoglobin at the end of the
strip suggests coinheritance of non-deletional mutation such as Hb Constant Spring or Hb Pakse’.30 (E) Capillary elec-
trophoresis (CE) of a cord blood sample from a patient with Hb H disease (- -SEA/-α3.7) at birth. The patient developed
severe anemia and neonatal jaundice requiring blood transfusion. Hb Bart’s is approximately 15%

A

B C

D
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hydrops are under regular transfusion. They had a wide
range of associated anomalies, in particular of the limbs.
However, none had delayed mental and/or neurological
development (Vπ Viprakasit, unpublished data, 2013).
These possible risks and associated complications must be
well known and carefully weighted by physicians and
patients’ parents when deciding about rescuing affected
fetus by intrauterine blood transfusion. Although success-
ful stem cell transplantation in Hb Bart’s hydrops has been
reported from several centers using different sources of
stem cells from matched and mismatched related bone
marrow and cord blood to unrelated donors,71-74 it is
important to follow these ‘cured’ Hb Bart’s hydrops
patients on a long-term follow up, particularly with regard
to their neurological development and cognitive function. 
Hb H hydrops/transfusion dependent Hb H disease

Similar to surviving Hb Bart’s hydrops patients, patients
with Hb H hydrops or severe Hb H disease such as Hb
PNP60,61 or Hb Adana59 become transfusion-dependent
later in life. In contrast to other types of Hb H disease (see
below), patients with this severe form of α-thalassemia
seldom respond to splenectomy, and surgery should not be
provided unless patients show clinical signs of hyper-
splenism. Regular transfusion with iron chelation therapy
similar to protocols used in patients with b-thalassemia
major seems a more appropriate treatment for Hb H

hydrops. Recently, stem cell transplantation was per-
formed to provide cure in a patient within this category
owing to the fact that the transplantation-related morbidity
and mortality is rather low, especially when an HLA-
matched sibling donor is available.61

Hb H disease 
In general, patients with Hb H disease have a rather mild

anemia. The majority of these patients should receive sup-
plementary folic acid (up to 5 mg/day), multivitamins
including vitamin D, antioxidant (vitamin E 10 U/kg/day)
and nutritional supplement (calcium and zinc) to support
their increased bone marrow activity and increased oxida-
tive stress.18, 75, 76 However, clinical presentation in patients
with Hb H disease can be heterogeneous and some might
suffer more from clinical anemia, especially patients with
non-deletional Hb H disease. 

Patients under six years of age with clinical anemia
(Figure 4) should receive regular blood transfusion with
appropriate iron chelation therapy similar to those for
patients with transfusion-dependent thalassemia (TDT).77

Splenectomy after six years of age has been proven to be
effective in patients with Hb H disease who have moder-
ately severe phenotype,78 but it is associated with
increased risk of thrombosis and vasculopathy in later life.
Splenectomy could restore transfusion independence in
Hb H disease patients in the long term apart from

Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1) | 335 |

Stockholm, Sweden, June 13-16, 2013

Figure 4. Management guideline in a new patient with Hb H disease. Diagnosis of Hb H disease requires a comprehensive
hematology, hemoglobin and DNA analyses. [+] = with ≥3 and [-] = with <3 out of 5 criteria. 



instances related to acute hemoglobin reduction during a
hemolytic episode. Therefore, in a resource limited setting
for a long-term safe blood transfusion support, splenecto-
my remains a standard of care for selected patients with
Hb H disease.77 This procedure should be performed after
appropriate vaccination (pneumococcal and meningococ-
cal vaccines) followed by antibiotic prophylaxis (peni-
cillin V chemoprophylaxis; 250 mg/day twice a day for
body weight over 20 kg for at least 3-5 years), anti-platelet
drug using aspirin (80 mg/day) and regular vaccination
booster every five years.77

During hemolytic crisis, the hemoglobin level in Hb H
patients may drop significantly.  Several factors, including
infections and pyrexia (during or after), oxidative chal-
lenge, hypersplenism, or pregnancy may contribute to the
hemolytic crisis.79,80 Increased body temperature is the
major mechanism generating Hb H inclusion bodies that
can induce oxidative damage to the red blood cells and
cause further extravascular hemolysis.81,82 Moreover, if the
acute hemolytic crisis is more profound with evidence of
severe jaundice, hemoglobinemia and hemoglobinuria, it
may result in renal damage and acute renal insufficiency.83

This serious complication requires immediate interven-
tion. In addition, patients with homozygous non-deletional
mutations (especially Hb CS) also develop hemolytic cri-
sis after infection as well.52 An empirical antibiotic should
be started immediately until the causative pathogens are
identified. In the tropics, dengue hemorrhagic fever is
probably one of the most lethal inter-current infections
that cause hemolytic crisis in patients with Hb H disease.83

Contrary to clinical dengue hemorrhagic fever or dengue
shock syndrome in a normal child, Hb H patients have no
evidence of hemoconcentration. They would, instead,
develop hemolytic crisis that is usually misdiagnosed as
gram-negative septicemia.83 In addition, fragmented red
blood cell vesicles from hemolysis can cause an erroneous
count of the platelets when an automated cell counter is
used, resulting in a delayed detection of thrombocytope-
nia.83 More significantly, patients with evidence of poor
tissue oxygenation or hypoxia must receive supportive
pre-storage filtered blood transfusion at the amount of 5-
12 ml/kg/dose that should be repeated if the hemolysis
continues. Adequate intravenous hydration with urine
alkalinization is recommended to prevent possible kidney
damage from the precipitation of hemoglobin passing
through the renal glomerular and tubule structures. Details
of management of acute hemolysis in Hb H disease have
been described previously.18

Iron overload may develop in Hb H disease.25,43

However, due to milder anemia, less transfusion than in
other NTDT genotypes and a lower level of ineffective
erythropoiesis, iron overload in Hb H disease develops at
a much slower rate.43 Therefore, it is rare to find patients
with significant iron overload before 15 years of age,
except patients who have received regular or frequent
blood transfusion supports (Figure 4). As in other non-
transfusion-dependent thalassemias, single measurements
of serum ferritin can underestimate the total body iron
store in Hb H disease. Therefore, direct monitoring using
magnetic resonance imaging (MRI)-evaluation is the
approach of choice.84 The use of liver biopsy to assess iron
overload in Hb H patients is not recommended due to pro-
cedure-related complications and a possible bias of sam-
pling error unless an open biopsy can be acquired during

splenectomy. Once iron overload is detected, it should be
treated and monitored using the same recommendation as
for other types of NTDT patients.85

Prevention and control for severe α-tha-
lassemia syndromes

Due to fetal lethality at mid-gestation and predisposition
of the mothers to several obstetric complications including
hypertension and antenatal hemorrhage,86 a prevention
and control program for Hb Bart’s hydrops fetalis is now
operative in Asian countries such as China and Thailand.87-
90 Through the program, carriers for α0-thalassemia are
detected at antenatal care level using a screening by
osmotic fragility (OF) or MCV and MCH values.64 A cor-
rect genotype of α0-thalassemia will be further confirmed
by DNA analysis. However, identification of α0-tha-
lassemia can be complicated by co-inheritance of b-tha-
lassemia traits. Therefore, it is highly recommended to
perform a combination of hemoglobin analysis and a com-
mon set of α-thalassemia genotype by DNA study as con-
firmation tests in individuals who come from a region with
high prevalence of both α and β thalassemia. This
approach can prevent a possible error by missing correct α
and b globin genotypes in these individuals and success-
fully identify couples at risk for producing infants affected
with Hb Bart’s hydrops.64 Prenatal diagnosis of Hb Bart’s
hydrops can be achieved by DNA analysis of chorionic
villous samples or cord blood hemoglobin analysis by cor-
docenthesis.88,91 For couples who would like to avoid pre-
natal diagnosis and a termination of pregnancy with
affected fetus, an assisted in vitro reproduction with
embryo selection after pre-implantation genetic diagnosis
(PGD) for Hb Bart’s hydrops is now available with modest
success rates (< 30%) due to allelic drop-out and low preg-
nancy rate.92 However, this technology still has to be
improved and confirmation by prenatal diagnosis of this
assisted pregnancy is still recommended. 

As Hb H disease is generally mild and does not require
life-long blood transfusion, a prenatal diagnosis for both
common deletional and non-deletional types might not be
ethical and is not recommended. However, concerning the
rare non-deletional α-thalassemias mentioned above, a
prenatal diagnosis for couples at risk of Hb H hydrops or
transfusion dependent Hb H should be offered, in particu-
lar to those families with previously affected offspring.
Nevertheless, it remains a challenge to provide such a
service to a new couple since the molecular characteriza-
tion of these rare non-deletional mutations is not routinely
performed nor is it widely available. In addition, heterozy-
gotes for these non-deletional mutations have normal or
borderline MCV and MCH and simply might not be diag-
nosed without DNA studies.18

Summary

A definitive diagnosis of the disease-causing mutations
in α-thalassemia syndromes is important for disease man-
agement and genetic counseling. Patients with severe α-
thalassemia syndromes such as Hb H hydrops should be
treated with regular blood transfusion with appropriate
iron chelation therapy. Stem cell transplantation as cura-
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tive therapy should be offered if a matched donor is avail-
able. The majority of patients with Hb H disease can do
well using only supportive care with ‘on demand’ blood
transfusion. Splenectomy should be reserved to more
severely affected patients; in particular, to those with non-
deletional Hb H disease. Couples at risk of having an
affected child with severe form of α-thalassemia syn-
dromes, such as Hb Bart’s hydrops fetalis and Hb H
hydrops/transfusion dependent Hb H, should be offered
genetic counseling and an informed choice on reproduc-
tive options, including prenatal diagnosis, which involves
fetal sampling to determine the fetal genotype. In addition,
assisted reproductive technology that combines pre-
implantation genetic diagnosis (PGD) with in vitro fertil-
ization (IVF) may help parents who have thalassemia or
who are carriers of a severe defective α globin gene to
give birth to healthy babies by embryo selection. 
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How to optimize the treatment of sickle cell disease 
in children?

Introduction

Approximately 300,000 children with sick-
le cell disease (SCD; homozygous SS, com-
pound heterozygous SC and S/β-thalassemic
patients) are born in the world every year.1

Although most live in Sub-Saharan Africa,
India, and the Middle East, SCD is now
prevalent in the United States and Western
Europe as a result of migration of people from
areas in which the mutation has a high preva-
lence.2 More and more hospital-based pedia-
tricians in the United States and in Western
Europe have become familiar with SCD, and
pediatric mortality is now below 2% in most
series.3,4 However, adults are still affected by
a high morbidity and mortality.5 The chal-
lenge in well-resourced countries is to mini-
mize SCD-related morbidities in adulthood
and to develop international collaborations to
make such progress available in other coun-
tries. Here, we will develop the issues which
we consider are key factors for optimization
of the treatment of SCD. 

Improving general knowledge about
the disease

All physicians, even in Europe, may be
called on to manage a patient with SCD. The
exact prevalence of SCD in Europe is not
known. Such data require population census
screening or calculations based on accurate
birth and mortality rates. Mortality rates are
not well known, and prevalence is estimated
using reliable birth data from countries that
have implemented systematic neonatal screen-
ing of the disease. Neonatal screening is gen-
eralized and universal in England6 and the
Netherlands,7 and generalized but targeted to
populations at risk in France.8 In Belgium, it is
universal but limited to the cities of Brussels
and Liege.9 In Spain, it is universal but limited
to Extremadura and Madrid, while other
Spanish regions have pilot programs ongo-
ing.10 It is experimental in some cities in
Germany11 and Italy.12 The numbers of babies
affected with abnormal hemoglobin in these
different screening programs is indicated in
Table 1. Except for neonatal data, we have
only approximations of the size of the popula-

Red cell disease

Important progress in the understanding of the pathophysiology and in the management of sickle cell
disease in children has dramatically improved the prognosis in well resourced countries, so that mortality
in children in most series in now below 2%. However, we still need to organize a better network of care
so that patients can receive adequate management outside well-staffed centers of excellence. Most
important clinical targets are prevention of infections, tailored management of pain, prevention of brain
disease, appropriate use of transfusion, and use of hydroxyurea. Education on therapeutic options is a key
factor. Mortality in young adults remains a challenge. Improving care during the transition from the pedi-
atric to the adult period is mandatory. Screening early for complications in children will also contribute to
reducing the extremely high morbidity in adults. Application of hematopoietic stem cell transplantation
remains a challenge scientifically, ethically, and economically. Finally, participation in interactive interna-
tional networks will surely contribute to decrease the morbidity and mortality of sickle cell disease.

Learning goals

At the conclusion of this activity, participants should know that:
- in addition to systematic preventive measures such as daily penicillin and immunization, manage-

ment of fever in a child with sickle cell disease must consider the risk of overwhelming infection
with Streptococcus pneumoniae and the use of tailored antibiotic therapy;

- children with sickle cell disease can develop acute anemia requiring immunologically matched
transfusion within 2 h;

- prevention of brain disease should include annual systematic transcranial Doppler screening in
homozygous SS and in S/b0 children aged 2-16 years;

- patients with sickle cell disease must be enrolled in health care networks allowing them to find
appropriate care at units with trained personnel close to their home that work in close collaboration
with expert centers. All network centers must share information, protocols, and educational tools. 

A B S T R A C T
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tions of patients affected with SCD. An estimated 12,500
patients are affected with SCD in the UK, and 10,000 in
France. The patients are concentrated in big cities to which
migrants have moved to seek employment. 

Most of Europe’s biggest cities have developed hospi-
tal-based comprehensive care centers of expertise for
patients with SCD. However, these centers are not acces-
sible to all patients. Analysis of the causes of death in SCD
patients in the UK indicated that the care of over one-third
of the patients could had been improved.13 Sixty-five per-
cent of 110 healthcare professionals in emergency depart-
ments thought they had insufficient training to provide
optimal care for patients with SCD.14 These observations
demonstrate that we must improve access to adequate care
for all patients, being mindful that a majority of patients
have low incomes and are frequently without independent
transport. In my own series of patients, one third of moth-
ers are isolated at home with 1-5 children and obviously
will not be able to go to a center of expertise in case of
emergency. All health care providers must receive SCD-
specific training. They must know the main risks faced by
SCD patients, which were until recently responsible for a
high mortality: pneumococcal sepsis, acute splenic
sequestration, strokes in young children,15 and acute chest
syndromes in older ones.16 All centers must be able to pro-
vide simple blood transfusion with matched blood for
acute stroke or acute chest syndrome, antibiotics for infec-
tion, and tailored analgesia for painful crisis. Designated
centers of expertise must be able to perform exchange red
cell transfusion and provide access to specialist care in
sickle-related complications, in neurology, orthopedics,
cardiology, ophthalmology, ENT, respiratory problems,
surgery, and anesthesia. Networks including community
general practitioners, proximity centers, and centers of
expertise must share information, educative tools, and pro-
tocols. 

Early implementation of preventive measures

Neonatal screening or early diagnosis
Observational studies have established that neonatal

screening leads to major decreases in pediatric morbidity
and mortality,17,18 mainly as the result of early interven-
tion in penicillin prophylaxis and parent education.
British studies on the cost-effectiveness of neonatal

screening suggest that in populations with greater than
16 sickle traits/1000 and 0.5 SCA/1000, universal
screening is more effective than targeted screening.19 In
regions with lower immigration rates from northern and
sub-Saharan Africa, the cost-effectiveness of universal
neonatal screening of SCD may be higher. In these pop-
ulations, screening could be targeted to women in early
pregnancy or, when possible, adolescents, as suggested
by a study showing that results were retained by young
people for a mean period of 15 years between screening
and pregnancy.20

Prevention of infections
Fulminant infections by encapsulated bacteria enabled

by functional asplenia were, until recent years, the major
cause of death in SCD children under five years of age.21

A randomized, placebo-controlled study published in
1986 showed that prophylaxis with penicillin twice a day
in SCD children under the age of three years at study
inclusion was associated with an 84% reduction in the
incidence of infection.22 Penicillin is, therefore, recom-
mended twice daily starting at two months of age; further
research is needed to determine the age at which peni-
cillin prophylaxis can be stopped safely.23

Given the risk of poor adherence to daily prophylaxis
and the development of penicillin resistant Streptococcus
pneumoniae strains, the combination of pneumococcal
immunization and prophylactic penicillin is recommend-
ed.24 Penicillin prophylaxis and 23-valent pneumococcal
polysaccharide vaccine have dramatically reduced those
risks in the 1990s, but strains resistant to penicillin have
emerged. Furthermore, 23-valent pneumococcal polysac-
charide vaccine is less effective in children under the age
of two years, and the immune response declines within
three years after administration. The introduction in 2000
of a 7-valent conjugate vaccine (7vPnC) induced a further
reduction in invasive pneumococcal diseases in SCD
reported as 90% and 68%, repectively,25,26 but was accom-
panied by emergence of non-7vPnC serotypes-related
infections.27 A recently licensed 13-valent pneumococcal
conjugate vaccine added serotypes 1, 3, 5, 6A, 7F and
19A to those in 7vPnC. It was shown to be immunogenic
and safe in children previously immunized with the 23-
valent pneumococcal polysaccharide vaccine.28 Despite
all these preventive measures, the risk of overwhelming
infection related to S. pneumoniae must always be con-

Table 1. The numbers of babies affected with abnormal hemoglobin in different screening programs in Europe.

City, country N. of babies affected N. of  SS/ N. of  SC/ N. of  Sthal/ N. of  with S trait; Ref.
with SCD/ screened babies screened  babies screened babies with C trait/
screened babies screened babies

Brussels, Belgium 1/1954 1/11,986 1/29,965 1/65:1/508 9

Liege, Belgium 1/1714 1/5998 1/11,995 1/65:1/387 9

Madrid, Spain 1/6914 10

England 1/2000 (hemoglobin E disease included) 6

London, England 1/549 (hemoglobin E disease included) 6

France 1/2065 8

Ferrara, Italy 0 1/135:1/541 12
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sidered in a febrile SCD infant and must lead to obtaining
blood cultures and initiating targeted antibiotic therapy.  
Prevention of strokes 

Until recent years, 11% of patients with SCD were
observed to have a clinical stroke by the age of twenty
years.29 Silent infarcts were evidenced in 37.1% of
patients with SCD (95%CI: 26.3-50.7%) by the age of 14
years,4 and these silent infarcts were associated with pos-
sible impairment of cognitive function. Adams and his
associates demonstrated in 1992 that it was possible to
identify children at risk of developing an overt stroke
using transcranial Doppler ultrasonography screening;
40% of the children with increased blood flow velocity in
the internal carotid or middle cerebral artery will have an
overt stroke within three years.30 Six years later, Adams et
al. demonstrated that a first stroke could be prevented by
monthly transfusions to children with abnormal TCD
findings, as evidenced in a randomized study by a 92%
difference in the risk of stroke between the transfused and
non-transfused arms.31 These well designed studies pro-
vide the basis for the recommendations that transcranial
Doppler ultrasonography be performed annually in SCD
children aged 2-16 years and that regular blood transfu-
sions should be strongly considered in those with abnor-
mal transcranial Doppler ultrasonography findings.32 The
possibility of preventing a first stroke in children with
SCD using hydroxyurea is undergoing current investiga-
tion through the TWitCH trial, which compares outcomes
of children with pathological TCD allocated to hydrox-
yurea or to chronic transfusions. The optimal manage-
ment of silent cerebral infarcts is also currently being
explored. The ongoing SIT trial has allocated transfusion
or observation in children with silent infarcts; the results
are not expected until after June 2013.33 

Screening of sickle-related complications starting during
childhood

SCD patients have a dramatically increased number of
complications as they get older. A 4-decade observational
study of 1056 patients, initiated in 1956, showed that 232
patients died and that by the fifth decade nearly one-half
of the survivors had documented irreversible organ dam-
age.34 A recent series in Europe showed prevalences in
adult SCD patients of pulmonary hypertension, renal fail-
ure, retinopathy, avascular necrosis, and iron overload of
32%, 8%, 24%, 16% and 17%, respectively.35 Median age
at death was 42 years for male and 48 years for female SS
patients in the United States in 1994,36 and remained low
(45 years) in 2012.37 The range for the mean age at death
is notably wide in this last series: 24 to 86 years, which
may be explained by a combination of access to care, by
genetically determined variations of the phenotypes, and
environmental factors. Main causes for death are pul-
monary (pulmonary hypertension and acute chest syn-
dromes), cerebrovascular events, and renal failure. It is
likely that many adult complications could have been pre-
vented or minimized in childhood. Early screening of
renal impairment (microalbuminuria), regular pulmonary
function testing, liver and gallbladder ultrasound, hip X-
ray, electrocardiogram (ECG) and echocardiography, and

ophthalmologic evaluation are recommended.38 Although
there has been no evidence that angiotensin-converting
enzyme inhibitors reduce hyperfiltration in SCD patients,
these agents have been shown to reduce proteinuria.39

Based on parallel responses in proteinuria and hyperfiltra-
tion in other diseases, early and systematic screening may
be justified. Concerning pulmonary protection, preven-
tion and prompt treatment of bacterial pulmonary infec-
tions, and screening for and management of asthma are
likely to prevent further worsening of pulmonary func-
tion. Careful surveillance of asthma status must be con-
ducted if patients are to be treated with b-blocking drugs.
Consequences of finding elevated tricuspid regurgitation
velocity (TRV) in young children are debatable; both the
determination of accurate TRV diagnostic criteria and
clinical trials to evaluate strategies aiming to prevent or
delay the development of pulmonary hypertension are
warranted.40 Lastly, protection of cerebral function
remains a challenge (see above). Chronic transfusion pro-
tects from most secondary and primary strokes but not
from worsening of neuroimaging findings.41,42 It appears
that it is mandatory to intervene therapeutically before a
threshold of vascular damage ensues beyond which vas-
cular function can no longer be improved.
Improving education and transition programs from child-
centered care to adult-oriented care

Education may disrupt the vicious cycle of pain/fear of
having pain. Adolescence is a crucial period during which
disease control should be optimized since new complica-
tions may occur. However, adolescent patients may feel
overwhelmed by the burden of daily care and want to
escape from what is perceived as unfair limits imposed by
their family and doctors. Furthermore, SCD adolescents
are vulnerable to pubertal delay and/or severe jaundice.
Adolescents with SCD may experience academic difficul-
ties related in part to frequent absences from school and,
in some patients, to cerebral vasculopathy of variable
severity. Many adolescents have been forbidden by their
doctors to engage in sports. The adolescent may also be
concerned about becoming infertile from hydroxyurea
therapy. Parental overprotection may cause additional
distress. These factors in combination all contribute to
depression, low self-esteem, and even post-traumatic
stress disorder.43 Furthermore, there are major differences
between pediatric and adult wards, with most pediatric
units offering games, schooling, other activities, and even
holiday camps; activities that are lacking from adult facil-
ities. Importantly, urgent treatment of pain and accelerat-
ed admission pathways are more often available in pedi-
atric than in adult units receiving SCD patients.
Transition must be a gradual process, starting early (12-
13 years). There should be a hospital transition policy in
place. At age 15-16 years a detailed review of the patient
should be conducted to include knowledge and under-
standing about management of SCD, concerns about the
adult healthcare setting, and readiness to transfer. The
adolescent and his or her parents should also meet the
adult sickle cell team.44
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Intensifying treatment in some patients

A decisional tree to intensify treatment is proposed in
Figure 1.
Hydroxyurea

Hydroxyurea has been used in children with SCD affect-
ed by severe forms of the disease for more than 20 years.
A Belgian controlled trial in children with severe SCD
showed that hydroxyurea decreased the number of hospi-
tal admissions and the number of days spent in hospital.45

There are now many reports about the use of hydroxyurea
in SCD children afflicted with severe forms of the
disease.46 Globally, hydroxyurea is now recommended for
the treatment of children with SCD to prevent recurrence
of acute pain crises and acute chest syndrome. Many
physicians also use chronic severe anemia as an indication
for hydroxyurea therapy in children with SCD. In the
United States, the Food and Drug Administration has
approved hydroxyurea for use only in adult SCD patients,
while children must be enrolled in hydroxyurea study pro-
tocols. European regulatory authorities have approved a
coated, breakable 1000 mg tablet for adults and children
and 100 mg tablets for children. Starting doses are gener-
ally approximately 15 gm/kg/day and may be escalated by
5 mg/kg/day until there is either evidence of clinical ben-
efit or the maximum tolerated dose is reached. Clinical

effects required to assess the efficacy of the drug may not
be observed in some patients until after a delay of 6-9
months. Short- and mid-term tolerance of hydroxyurea in
children is good, the main side effect being transient
myelosuppression that usually resolves after decreasing
the dosage or temporarily interrupting the drug therapy.47

Many issues remain on the use of hydroxyurea therapy
in SCD children. The most challenging is whether hydrox-
yurea therapy is not only indicated in severe patients to
prevent progression of organ damage, but also in asymp-
tomatic children to prevent the onset of such complica-
tions. A major challenge will be to establish the risk/bene-
fit ratio of the use of the drug in infants, which is not yet
known. The BABY HUG study was a multicenter, ran-
domized controlled trial designed to assess whether
hydroxyurea given in infants could prevent organ dysfunc-
tion, choosing as primary end points splenic and kidney
function.48 Infants aged 9-18 months were allocated to
receive hydroxyurea 20 mg/kg/d, or placebo for two years.
One hundred and sixty-seven of the 193 children complet-
ed the study. Children receiving hydroxyurea experienced
a marked reduction in painful events, toxicity was limited
to mild to moderate neutropenia, but no significant differ-
ences were seen between the groups for the primary
splenic and renal end points. The short 2-year duration of
the study or a poor choice of end points may explain the
lack of protection against progressive splenic and renal

Figure 1. Unbroken arrow: evidence-
based or consensus treatment. Broken
arrow: currently under investigation.
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impairments observed. Differently designed studies are
needed. All hydroxyurea studies must keep in mind a pos-
sible toxic effect of the drug on spermatic function, which
has been shown after six months of treatment in SCD
adults.49 Uncertainty regarding long-term consequences
on fertility are especially important for boys treated with
hydroxyurea early and for several years. Storage of frozen
sperm can be offered to mature boys and adults, though it
is rarely accepted.

Chronic transfusion
Most frequent indications for chronic transfusion in

children are cerebral vasculopathy and failure of hydrox-
yurea treatment for preventing recurrent painful crises
and/or acute chest syndromes, the latter possibility becom-
ing more frequent as children get older. Chronic transfu-
sion may also be used in children under the age of five
years with recurrent splenic sequestrations to delay the
time until splenectomy. Chronic transfusion may be per-
formed through simple or exchange transfusion. The
advantages of the latter include the avoidance of an exces-
sive increase in hematocrit and to reduce the amount of
transfused iron. Exchange transfusion can be performed
manually or using a cell separator (erythrocytapheresis). 

Considering brain protection, transfusion programs
have been found to decrease by 90% the risk of a first
stroke31 and from 70% to 13% the risk of overt recurrent
strokes, although transient neurological events can still
occurr.50 However, these programs raise several questions.
First, there is a risk that some countries may have difficul-
ty collecting enough immunologically matched blood,
given the blood group disparities between usual blood
donors and Afro-Caribbean recipients.51,52 Second, chronic
transfusion does not always protect against worsening of
macro-and micro-vessel abnormalities,41,42 even when
HbS percentage is permanently kept below 30%. We need
to better study the longitudinal outcomes of specific cere-
bral vessels lesions observed in childhood. In addition,
chronic transfusion induces significant toxicities, the most
important of which is iron overload.53 Iron toxicity seems
to spare the heart, compared with what is observed in tha-
lassaemia, but induces significant hepatic toxicity.54

Recently, a once-daily oral chelator, deferasirox, was
demonstrated to have acceptable tolerability and similar
efficacy to deferoxamine in reducing iron burden in chil-
dren with SCD.55 Paucity of venous access leads in many
cases to the use of subcutaneous central venous access
devices. Transfusion-transmitted infections, although rare
in industrialized countries with established blood transfu-
sion services, still require awareness and surveillance. 

The risk of shortage of blood supplies, the toxicities of
transfusion, and the burdensome nature of chronic transfu-
sion define a need for alternatives to blood transfusions. In
particular, attempts have been made to switch from chron-
ic transfusion to hydroxyurea in children who have had a
stroke. The SWiTCH study was a non-inferiority trial ran-
domizing an alternative treatment (hydroxyurea/phleboto-
my) to standard treatment (transfusion/chelation) in 134
children who have had a stroke and been transfused for 18
months or more, with transfusional iron overload.56 The
study was closed by the National Heart, Lung and Blood
Institute (NHLBI)-appointed Data and Safety Monitoring
Board because the interim analysis indicated that the

reduction in liver iron content was not superior on the
hydroxyurea/phlebotomy arm and because seven strokes
had been observed in the 67 subjects in this arm compared
to none in the 66 subjects on transfusion/chelation.
Without superiority in iron elimination, the increased
stroke risk in the hydroxyurea arm (10% vs. 0% in the
transfusion arm) was no longer justifiable. Transfusion
remains, therefore, the best option to prevent recurrences
in SCD children who have had a stroke, unless the patient
can benefit from hematopoietic stem cell transplantation.

Hematopoietic stem cell transplantation 
Transplantation of hematopoietic stem cells (HSCT)

from HLA-identical siblings is the only curative therapy
for SCD. Many issues still have to be considered. First,
there is a debate about the indications of HSCT. Currently,
HSTC, using as stem cell sources either bone marrow or
cord blood originating from an HLA identical sibling, can
be curative for children and adolescents affected with a
severe form of the disease. In a series of 87 patients trans-
planted between 1988 and 2004, the overall and event-free
survival rates were 93.1% and 86.1%, respectively.57 Cord
blood transplantation is associated with less acute graft-
versus-host disease but delayed neutrophil engraftment
compared to bone marrow transplantation. Sibling cord
blood banking should be encouraged to avoid discomfort
and risks of bone marrow harvest.58 Some specialists pro-
pose to widen the indications to almost all SCD patients
having a donor, given the current burden of morbidity and
mortality in adults. Many parents, however, would opt for
HSCT in their child independent of the objective severity
of their child’s disease, because HSCT offers a cure.59

However, both the immediate risk of death and the long-
term uncertainties about fertility lead other specialists to
restrict the indications to patients with severe disease.60

Concerning fertility in females, ovarian tissue can be cry-
opreserved, but it is currently unclear how useful this
approach is for allowing future pregnancies.61

Cryopreservation of sperm is, of course, possible only for
mature males. Non-myeloablative peripheral blood stem
cell transplants have been used in adults to reduce the tox-
icity of the procedure.62 In a series published by Hsieh et
al., 9 patients out of 10 engrafted, but with a high incidence
of mixed chimerism, and no successful discontinuation of
immunosuppression with sirolimus. A major issue relates
to not all patients having an HLA-identical sibling, and the
despair experienced when parents and patients learn the
procedure is not possible. Important difficulties in finding
suitable unrelated donors in the registers relate to the ethnic
variability and shortage of donations from minority groups.
A recent publication on non-myeloablative bone marrow
transplants from haploidentical donors in 14 adult patients
reported a graft failure in 43%.63 Reports of unrelated stem
cell transplants in sickle cell disease have not provided
encouraging results.64,65 Prospective protocols including
well selected patients, homogeneous conditioning regimen,
and high cell doses are needed to better define the role of
unrelated cord blood transplant.66 Gene therapy will per-
haps be an answer in selected patients in the near future.67

HSCT and gene therapy are expensive and not affordable
by patients living in countries with low resources. Strong
co-operation between more and less developed countries
has to be promoted.
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Understanding the pathophysiology of SCD
allows new therapeutic targets to be found

SCD pathophysiology cannot be explained solely by
polymerization of desoxyhemoglobin S. Endothelial dys-
function related to inflammation, nitric oxide (NO) dys-
regulation, cell adhesion, oxidative injury, and disordered
coagulation have emerged as key determinants of the
onset of complications.68,69 Many novel therapeutic agents
are undergoing investigations, one of the major problems
in assessing their efficacy being the choice of appropriate
end points.

Developing international networks

From its independent origins, at least three times in
Africa and once in India, the sickle cell gene has spread
across continents and skin colors through forced slave
trading and modern economic migrations. International
organizations such as UNESCO, WHO, and the UN have
recognized SCD as a global public health issue. Still, to
date, we have no sound epidemiological data to estimate
the actual health burden of SCD, not only in Europe or the
United Sates, but also in the most affected poorer coun-
tries. Here, improved nutrition and better control of infec-
tious diseases have lowered childhood mortality rates,
only to unmask the prevalence of genetic diseases includ-
ing SCD. We know almost nothing about the natural his-
tory of SCD in its natural environment and comparative
cohort studies are badly needed. We have no idea on how
safe hydroxyurea treatment is in places where infectious
diseases, including malaria, are prevalent. To answer these
questions, and to share expertise, international collabora-
tion is crucial. This can only be accomplished through co-
ordinated efforts to establish not only North-South but
also South-South and triangular equitable and sustainable
collaborations. The recent advent of several regional and
international networks is a remarkable and promising step
toward this goal. For example, the Central African SCD
network (REDAC) and the Caribbean network of
researchers on sickle cell disease and thalassemias
(CAREST) co-ordinate efforts to improve SCD manage-
ment and develop collaborative research projects in eleven
countries of central Africa and eleven countries of the
Caribbean, respectively. The mission of the global sickle
cell disease network (GSCDN) is to further research and
clinical care globally by facilitating joint research and
clinical programs, training, and education. Initiatives of
this kind should contribute to a better understanding of the
different factors that modify disease phenotypes, and con-
stitute a driving force to not only improve management of
patients, both in the developing countries and well-
resourced countries.
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Gastrointestinal graft-versus-host disease: 
from biomarkers to pathophysiology  

Acute graft-versus-host disease (GVHD) of
the gastrointestinal tract (GI) affects up to 60%
of patients receiving allogeneic hematopoietic
cell transplantation (HCT).1,2 It causes nausea,
vomiting, anorexia, secretory diarrhea and, in
severe cases, abdominal pain and/or hemor-
rhage.3 Acute GVHD is often clinically indis-
tinguishable from other causes of GI dysfunc-
tion such as conditioning regimen toxicity,
infection or medications. Endoscopic biopsy is
often used to confirm the diagnosis,4 but histo-
logical severity on biopsy does not consistent-
ly correlate with clinical outcome.4-6 Clinical
stage II or greater (more than 1 L of diarrhea
per day) is associated with reduced survival,1,2

but daily stool volume can vary considerably.
Lower GI GVHD responds poorly to treatment
compared to other target organs, 2 and treat-
ment with high-dose systemic steroid therapy
carries significant risks, especially infectious
complications in profoundly immunosup-
pressed patients.7,8

The standard treatment of acute GVHD is
higher dose systemic steroids, which has not
changed in 40 years. One reason for this lack
of progress is the lack of validated biomarkers
for acute GVHD. We have recently identified
and validated laboratory regenerating islet-
derived 3-alpha (REG3α), a C-type lectin
secreted by Paneth cells,9,10 as a non-invasive,
reliable blood biomarker specific for GVHD
of the GI tract with diagnostic and prognostic
utility.11

The research effort that identified REG3α
used a proteomics approach that analyzed
pooled plasma samples from 10 patients with
biopsy-proven GI GVHD and 10 patients
without GVHD taken at similar times after
HCT.12,13 We identified and quantified 562 pro-
teins, of which 74 were increased at least 2-
fold in patients with GVHD. Of the 5 proteins
preferentially expressed in the GI tract, only
one had commercially available antibodies
suitable for quantification of plasma concen-
trations by ELISA. This process identified
REG3α as the lead candidate for a biomarker
of GI GVHD.

We validated REG3α as a biomarker by
measuring plasma concentration in samples
from 850 allogeneic HCT recipients from the
University of Michigan, USA. Plasma REG3α
concentrations were 3 times higher in patients
at the onset of GI GVHD than in all other
patients, including those with non-GVHD
enteritis. Serum REG3α concentrations were
also higher in GI GVHD in an independent
validation set of 143 HCT patients from
Regensburg, Germany, and Kyushu, Japan,
although the absolute values were lower. This
difference may be due to a center effect that
depends on several factors, including varia-
tions in transplant conditioning regimens and
supportive care. For example, all patients in
Regensburg and Kyushu received oral antibi-
otics as GVHD prophylaxis, whereas
Michigan patients did not, and thus increased

Stem cell transplantation  

A B S T R A C T

Acute graft-versus-host disease (GVHD) of the gastrointestinal tract (GI) affects up to 60% of
patients receiving allogeneic hematopoietic cell transplantation (HCT). It causes nausea, vomiting,
anorexia, secretory diarrhea and, in severe cases, abdominal pain and/or hemorrhage. Acute GVHD is
often clinically indistinguishable from other causes of GI dysfunction such as conditioning regimen
toxicity, infection or medications. Endoscopic biopsy is often used to confirm the diagnosis, but histo-
logical severity on biopsy does not consistently correlate with clinical outcome. Clinical stage II or
greater (more than 1 L of diarrhea per day) is associated with reduced survival, but daily stool volume
can vary considerably. Lower GI GVHD responds poorly to treatment compared to other target organs,
and treatment with high-dose systemic steroid therapy carries significant risks, especially infectious
complications in profoundly immunosuppressed patients.

Learning goals

At the conclusion of this activity, participants should:
- know the three parameters that define risk for death at the onset of gastrointestinal graft-versus-

host disease;
- know the functional importance of Paneth cells in the gastrointestinal tract;
- know the relationship between Reg3α and the gastrointestinal microbiome.



GI flora might account for greater REG3α secretion.
We next analyzed REG3α concentrations according to

diagnosis and type of GI symptom in all 1000 patients. In
patients with diarrhea caused by GVHD, REG3α concen-
trations at the onset of GVHD were 5 times higher than in
patients with diarrhea from other causes. REG3α concen-
trations at the onset of symptoms continued to distinguish
between GVHD and non-GVHD etiologies in patients
with both small and large volumes of diarrhea.

The clinical utility of any biomarker increases if it pro-
vides prognostic information regarding the future status of
a disease and/or patient, e.g. the likelihood of response to
treatment. We, therefore, evaluated the prognostic signifi-
cance of REG3α plasma levels in more than 160 patients
taken at the time of diagnosis of lower GI GVHD. Four
weeks is a common time point at which to evaluate
response.14 REG3α concentrations were 3-fold lower at
the time of GVHD diagnosis in patients who did not
respond versus those in patients who experienced a com-
plete or partial response to therapy (635±132 ng/mL vs.
240±61 ng/mL; P<0.001). Patients responding to therapy
still exhibited REG3α concentrations more than 3 times
that of non-GVHD controls (77±22 ng/mL; P<0.001).
Because the response to treatment at four weeks strongly
correlates with non-relapse mortality (NRM), we hypoth-
esized that the REG3α concentration at GVHD diagnosis
would also correlate with NRM. We, therefore, divided the
patients into two equal groups based upon the median
REG3α concentration. NRM was twice as high in patients
with high REG3α concentrations, and this difference
remained significant after adjusting for known risk factors
of donor type, degree of HLA match, conditioning intensi-
ty, age, and baseline disease severity: 59% (95%CI: 4%-
69%) vs. 34% (95%CI: 2%-46%); P<0.001).

Data regarding the clinical stage, histological grade,
REG3α concentration, and level of GVHD at onset were
available in 140 patients. The plasma concentration of
REG3α (above vs. below the median), the clinical severity
of GVHD (stage 1 vs. stage 2-4), and the histological
severity (stage 1-3 vs. stage 4) at the time of GVHD diag-
nosis independently predicted both lack of response to
GVHD therapy and 1-year NRM after adjustment for the
aforementioned risk factors. When lack of response to
therapy and NRM were modeled simultaneously on all
four parameters, all the three parameters remained statisti-
cally significant. The inclusion of all three characteristics
that remained statistically significant on simultaneous
modeling demonstrated that patients with increasing num-
bers of risk factors present at onset had increasing risk for
NRM.

Paneth cells are major producers of REG3α. Given the
importance of these biomarkers, we evaluated 118 patients
who had duodenal biopsies obtained at the time of GVHD-
related diarrhea, and 15 patients who had minimal or no
GI symptoms but had small duodenal biopsies available.
We quantitated the number of Paneth cells per high pow-
ered field (HPF) and found a very strong statistical corre-
lation between the number of Paneth cells per HPF and the
clinical severity of GI GVHD at the time of biopsy
(P<0.0001) (Figure 1). Contrary to our hypothesis, how-
ever, the number of Paneth cells decreased as the severity
of GVHD increased. Likewise, small intestine pathologi-
cal grade also correlated with clinical GVHD severity
(data not shown). We next determined whether Paneth cell

number or pathological grade correlated better with clini-
cal GVHD severity. Proportional odds logistical regres-
sion analysis demonstrated that Paneth cell numbers
retained a strong correlation with GVHD severity after
accounting for pathological grade (P=0.008), but patho-
logical grade did not correlate with GVHD severity after
Paneth cell numbers were accounted for (P=0.27). Thus
Paneth cell number in the duodenum correlates better with
clinical GI GVHD severity than histological grade.

Patients with a complete response (CR) to therapy also
had significantly more Paneth cells than patients with a
partial response (PR); patients with no response (NR) had
the fewest Paneth cells corresponding to a highly signifi-
cant difference among the three treatment responses
(P<0.0001) (Figure 2). The number of Paneth cells also
strongly correlated with maximum GI GVHD severity
(data not shown).

We found that patients whose duodenal biopsies con-
tained a mean of 4 or fewer Paneth cells at the onset of
GVHD were more than twice as likely to die from GVHD-
related causes as compared to patients with 5 or more
Paneth cells (55% vs. 23%; P<0.0001). This large differ-
ence in GVHD-related mortality translated into a signifi-
cant difference in overall survival at six months from the
onset of GI GVHD (16% vs. 42%, P=0.01).

The current GI GVHD pathological grading system has
major limitations. First, the correlation between severity
of colonic changes and clinical GVHD severity is poor
and so many pathologists do not report pathological grade
in order to avoid confusion by clinicians. Second, the
grading system has not been standardized. Third, there is
no definition as to how to resolve the variable severity
within biopsy sections from the same patient. These find-
ings demonstrate that a straightforward quantification of
Paneth cell number can help establish the diagnosis of GI
GVHD and has prognostic importance.  

Recent research supports the correlation between Paneth
cells and GI GVHD, and our observations provide insights
into physiological mechanisms and suggest Paneth cells
secrete α-defensins and REG3α, which are antimicrobial
peptides. These peptides function to regulate the microbio-
ta of the intestine through selective activity against non-
commensal bacteria, while generally sparing commensal
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Figure 1. Paneth cell count by clinical GI GVHD onset stage.



bacteria. A loss of intestinal microbiota diversity, charac-
terized by expansion of Lactobacillus species and contrac-
ture of the commensal bacteria flora, has been observed in
both mice and patients who developed GVHD.15 In a sep-
arate study, mice with GVHD exhibited decreased num-
bers of Paneth cells, similar to our observations in clinical
GVHD.16 Other immune-mediated inflammatory condi-
tions, such as inflammatory bowel disease and reduced
Paneth cell numbers characterize and correlate with
changes in the intestinal microbiota.17,18 Interestingly,
plasma concentration of REG3α and Paneth cell numbers
do not correlate with each other (data not shown), suggest-
ing that these two parameters measure different biological
processes, and that Paneth cells may not be the primary
drivers of the increased appearance of REG3α in the plas-
ma. Paneth cells are not normally present in the distant
colon, although they are found in the proximal colon close
to the ileal-cecal junction. This focus on changes in the
small intestine has precedent in other diseases, where
small intestinal pathology can account for the diarrhea
observed in viral gastroenteritis,19 celiac disease,20 and
some cases of bacterial overgrowth.21 Nonetheless,
although Paneth cell quantification eliminates much of the
subjectivity and variability within the current GI GVHD
pathological grading system, incorporation of this meas-
ure into GI GVHD management will require acquisition of
duodenal biopsies. The additional expense and risk associ-
ated with either upper GI endoscopy or colonoscopy that
includes the terminal ileum may be offset by improved
risk stratification early in the GI GVHD course, a time
when interventions are most likely to be effective. 

The surprising inverse relationship between Paneth cell
number and REG3α concentrations led to a further exam-
ination of the role of Paneth cells and REG3α in a well-
defined animal model of acute GVHD. B6D2F1 mice
received 12 Gy total body irradiation on Day 1 and on Day
0 were injected intravenously (iv) with 5 million BM cells
and 2.5 million B6 spleen cells. Syngeneic B6 BMT recip-
ients served as non-GVHD controls. Mice were killed on
Day +14 and samples of the ileum were scored for GVHD,
as for human samples. GVHD scores were 2.3±0.4 in the
allogeneic BMT group and 1.0±0.1 in the syngeneic group

(P<0.001). As shown in Figure 2, Paneth cells were read-
ily identified by immuno-histochemical (IHC) staining of
lysozyme. On Day +14, GVHD caused an 80% decrease
in Paneth cell numbers. Similarly, GVHD caused more
than an over 95% decrease in REG3α protein. Thus, the
number of Paneth cells decreased dramatically in both
clinical and experimental GVHD. Yet, despite this
decrease, the levels in the plasma increased. 

One possible explanation for this paradox could be that
the correlation of mucosal denudation with high REG3α
concentrations suggests that microscopic breaches in the
mucosal epithelial barrier caused by severe GVHD permit
REG3α to traverse into the systemic circulation. The tight
proximity of Paneth cells with ISCs concentrates their
secretory contents in that vicinity, so that mucosal barrier
disruption caused by stem cell dropout may preferentially
allow Paneth cell secretions, including REG3α, to enter
into the bloodstream. REG3α is a large molecule that is
concentrated in the mucus covering the apical surface of
the cells so that when the cell dies, highly concentrated
REG3α translocates into the circulation system (Figure 3;
REG3a is represented by the red circle). Plasma levels of
REG3α may, therefore, serve as a surrogate marker for the
cumulative area of these breaches to GI mucosal barrier
integrity, a parameter impossible to measure by individual
tissue biopsies and current endoscopic technology. Such
an estimate of total damage to the mucosal barrier may
also help explain the prognostic value of REG3α with
respect to therapy responsiveness and NRM.

The importance of REG3α as an anti-microbial peptide
refocuses our attention on the potential role of the micro-
biota in the pathogenesis of GI GVHD. The importance of
the GI microbial flora to systematic GVHD was noted
almost forty years ago when germ-free mice developed
significantly less GVHD.22,23 Clinical trials confirmed
these findings and led to the use of oral non-absorbable
antibiotics as part of GVHD prophylaxis.24,25 As men-
tioned above, the crypts are the primary sites of GVHD
damage in the GI tract, and intestinal stem cells (ISCs)
appear to be the principal cellular targets because their
damage amplifies systemic GVHD, and their protection
through wnt signals reduces alloreactive cascade of
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Figure 2. GVHD damage to GI mucosal immunity. Figure 3. REG3α translocation into the bloodstream during GVHD.



GVHD.26 ISCs reside in the crypts juxtaposed to Paneth
cells, and Paneth cells are key to ISC function in vitro,27,28

giving rise to their description as “guardians of ISCs”.29

Paneth cells secrete antimicrobial peptides such as alpha
defensins and regenerative3 alpha (REG3α) that sterilize
the mucus covering the luminal surface of enterocytes,
creating a protective barrier.30
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Introduction

Acute myeloid leukemia (AML) is a genet-
ically heterogeneous clonal disorder charac-
terized by the accumulation of somatically
acquired genetic changes in hematopoietic
progenitor cells that disturb normal mecha-
nisms of self-renewal, proliferation, and dif-
ferentiation. In recent years, gene mutations
and deregulated expression of genes have
been identified that gave new insights into the
molecular pathogenesis and the enormous
clinical heterogeneity of the disease.1 With
progress in genomics technology, in particular
the next-generation sequencing (NGS) tech-
niques, a systematic characterization of AML
genomes has become possible, and we can
expect that virtually all acquired gene muta-
tions will be known in the near future.
Looking at the function of genes, it has
become clear that involved genes not only
play a role in proliferation and differentiation,
but also in a variety of other cellular processes
such as epigenetic regulation, DNA repair,
RNA splicing, or the splicesome complex.2-9

The novel NGS techniques also allow us to
unravel the complex clonal architecture that is
found in many, if not most cases, of AML.

Beyond the disease-founding mutation, vari-
ous subclonal mutations may be present at the
time of diagnosis that are either eradicated by
therapy, or undergo selection and clonal
expansion. Moreover, new mutations may be
acquired leading to clonal evolution of the
disease.10-12 Both clonal expansion and evolu-
tion may eventually contribute to chemother-
apy resistance at the time of relapse.

From a clinical point of view, genetic mark-
ers have acquired great value. First, the cur-
rent WHO classification of AML reflects the
fact that an increasing proportion of AML can
be classified on the basis of their underlying
genetic defects that define clinicopathological
entities.13 Second, both cytogenetic and
molecular genetic lesions have been shown to
be one of the most informative prognostic fac-
tors and may be used for risk-adapted thera-
peutic approaches.1,14,15 Table 1 shows the
standardized reporting system for risk classi-
fication that was established by an interna-
tional group of experts on behalf of the
European LeukemiaNet.14 Finally, novel ther-
apies are being developed that target some of
these gene mutations or their deregulated
downstream signaling pathway. One promi-
nent example is the clinical development of
FLT3 inhibitors for AML with activating
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Markers to predict relapse of acute myeloid leukemia

Stem cell transplantation 

With the introduction of novel genomic technologies, a large number of genetic alterations have
been identified in acute myeloid leukemia (AML) in the last decade. These genetic lesions, that in part
define clinicopathological entities, have been shown to be one of the most informative prognostic fac-
tors and may be used for risk-adapted therapeutic approaches. Beyond the diagnosis of genetic risk
factors at diagnosis, monitoring of minimal residual disease using quantitative polymerase chain reac-
tion (RQ-PCR) has become a powerful tool to identify patients who are at high risk of relapse.
Molecular markers that predict higher rates of relapse include FLT3 internal tandem duplications,
mutations of RUNX1, ASXL1, and TP53 genes, or deregulated expression of the EVI1 gene. Some of
these molecular markers may have predictive value in that they identify patients for whom allogeneic
hematopoietic stem cell transplantation (HSCT) may be a good treatment option in first-line therapy.
In addition, novel therapies are now being evaluated that target some of these mutations or their
deregulated downstream signaling pathway. One prominent example is the development of FLT3
inhibitors for patients with FLT3-mutated AML. This review will discuss the role of selected genetic
markers in refining the decision making process for risk-adapted treatment approaches.

Learning goals

At the conclusion of this activity, participants should:
- have an overview on genetic markers that are known to predict relapse in patients with acute

myeloid leukemia;
- appreciate the role of minimal residual disease assessment by quantitative RQ-PCR for predicting

relapse;
- discuss allogeneic hematopoietic stem cell transplantation as a treatment option for patients with

poor prognostic genetic markers.



FLT3 mutations.16 Nonetheless, there is a time gap
between the rapid development in unraveling the molecu-
lar pathogenesis and the successful clinical development
of such molecularly targeted therapies.

The backbone of conventional chemotherapy in AML
has more or less remained unchanged over the last 20
years.14 Risk-adapted therapeutic approaches have been
limited to the question as to whether a patient should be
recommended to proceed to allogeneic hematopoietic
stem cell transplantation (HSCT) or not. Allogeneic
HSCT is associated with the lowest rates of relapse but
benefits of allogeneic HSCT may be outweighed by high
treatment-related mortality (TRM). Thus, in the decision-
making process it is generally recommended to consider
both AML-related prognostic factors, best assessed by the
genetic profile, and factors predicting HSCT-related non-
relapse mortality.17

Beyond the identification of genetic risk factors at the
time of diagnosis, monitoring of minimal residual disease
(MRD) using sensitive quantitative polymerase chain
reaction (RQ-PCR) assays has become an important tool
to identify patients at very high risk of relapse.18

This review will focus on selected genetic markers in
AML, assessed at the time of diagnosis or in a time-
dependent manner using MRD monitoring, that are asso-
ciated with higher rates of relapse and that have con-
tributed to refining the decision-making process for risk-
adapted and pre-emptive therapy. 

Molecular markers to predict relapse in AML

With respect to the molecular markers, so far only
screening of NPM1, CEBPA, and FLT3 mutations has
entered clinical practice affecting diagnosis, prognosis,
and guidance of therapy.14 Therefore, these markers are
currently recommended to be analyzed in clinical trials
and routine practice, at least in patients who will receive
treatment other than low-dose chemotherapy and/or best
supportive care. Nevertheless, additional molecular
markers have been identified that are associated with an
increased risk of relapse, for example, mutations of
RUNX1,19-22 ASXL1,23-27 TP53,28-30 or deregulated expres-
sion of the EVI1 gene.31,32 Some of these markers have
been shown to have predictive value, in that they identify
patients who may benefit from allogeneic HSCT.
However, it should be taken into account that most of
these data stem from retrospective analyses, often involv-
ing small cohorts of patients. Therefore, validation of
these findings by further retrospective or prospective
studies will be needed before these markers can be used
in clinical routine for guidance of therapy.

FLT3 internal tandem duplications

Activating mutations of the tyrosine kinase receptor
FLT3 are diagnosed in approximately 30% of adult
patients with AML.1 Mutations are found in two function-
al domains of the receptor, the juxtamembrane domain
(JM) and the tyrosine kinase domain (TKD). The most
frequent (approx. 25%) type of mutations are internal tan-
dem duplications (ITD) that cluster in the JM domain;
more recently, it was found that approximately 30% of the

ITDs insert within the TK1 domain of the receptor.33,34

The activation loop in the carboxy-terminal lobe of the
TKD is affected by point mutations, small insertions, or
deletions, mainly at codons 835 and 836, in 5-10% of
AML.

When treated with conventional chemotherapy, progno-
sis of AML with FLT3-ITD is significantly worse com-
pared with AML without the mutation. The evidence is
most compelling in cytogenetically normal (CN)-AML.
Besides the mere presence of the ITD, the ratio of the
mutated versus wild-type allele is related to outcome in
that a high burden of the mutated allele predicts for par-
ticularly poor outcome;35-40 in few cases, there is homozy-
gosity for the mutated allele, arising from somatic recom-
bination leading to uniparental disomy (UPD).41

Furthermore, AML with FLT3-ITD that inserts within the
TK1 domain appear to be significantly worse compared
to AML with FLT3-ITD located in the JM-domain.34 The
prognostic significance of FLT3-TKD mutations has
remained controversial.

There are two important aspects to be considered in
guiding therapy in AML with FLT3-ITD. First, whenever
possible patients should be entered on a trial evaluating
FLT3 inhibitors. The compound most advanced in clinical
development is midostaurin (PKC412). Based on encour-
aging results of a Phase Ib study with midostaurin,42 a
large international randomized trial was conducted that
reached its accrual goal of 719 patients with FLT3-mutat-
ed AML in September 2011 (clinicaltrials.gov identifier:
NCT00651261). If positive, these results will impact the
treatment of patients with AML and FLT3 mutations.
Quizartinib (AC220) is a novel 2nd generation compound
expressly developed as an FLT3 inhibitor for the treat-
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Table 1. Standardized reporting for correlation of cytoge-
netic and molecular genetic data in AML with clinical
data.*

Genetic group Subsets

Favorable t(8;21)(q22;q22); RUNX1-RUNX1T1
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
Mutated NPM1 without FLT3-ITD (normal karyotype)
Mutated CEBPA (normal karyotype)

Intermediate-I† Mutated NPM1 and FLT3-ITD (normal karyotype)
Wild-type NPM1 and FLT3-ITD (normal karyotype)
Wild-type NPM1 without FLT3-ITD (normal karyotype)

Intermediate-II t(9;11)(p22;q23); MLLT3-MLL
Cytogenetic abnormalities not classified as favorable or adverse‡

Adverse inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1
t(6;9)(p23;q34); DEK-NUP214
t(v;11)(v;q23); MLL rearranged
-5 or del(5q); -7; abnl(17p); complex karyotype§

*Frequencies, response rates and outcome measures should be reported by genetic group and, if sufficient
numbers are available, by specific subsets indicated; excluding cases of acute promyelocytic leukemia.
†Includes all AMLs with normal karyotype except for those included in the favorable subgroup. Most of
these cases are associated with poor prognosis, but they should be reported separately because of the
potential different response to treatment. ‡For most abnormalities, adequate numbers have not been stud-
ied to allow firm conclusions to be drawn regarding their prognostic significance. §Three or more chromo-
some abnormalities in the absence of one of the WHO-designated recurring translocations or inversions,
i.e. t(15;17), t(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23), t(6;9), inv(3)/t(3;3); indicate how
many complex karyotype cases have involvement of chromosome arms 5q, 7q, and 17p. Adopted from
Döhner et al.14



ment of AML.43 In phase II studies, quizartinib given as a
single agent has proven to be highly efficacious, leading
to high response rates in relapsed and refractory AML
exhibiting FLT3-ITD.44,45 Second, there is increasing evi-
dence that patients with FLT3-ITD positive AML may
benefit from allogeneic HSCT in first complete remission
(CR), although the mutation remains an important prog-
nostic factor even in the context of allogeneic transplan-
tation. In a donor versus no-donor analysis performed by
the German-Austrian AML Study Group (AMLSG), a
beneficial effect of allogeneic HSCT was found for
younger patients with CN-AML with unfavorable molec-
ular genotypes that included AML with FLT3-ITD.46

These data are supported by other studies and by a recent
retrospective analysis of the European Group for Blood
and Marrow Transplantation (EBMT).47,48

Thus, although evidence from prospective trials is not
available, allogeneic HSCT should be considered in
patients whose leukemic cells have FLT3-ITD. An attrac-
tive future approach will be to combine the concepts of
allogeneic HSCT and pharmacological FLT3 inhibition,
before and after transplantation. Such a trial was recently
initiated by the AMLSG (clinicaltrials.gov identifier:
NCT01477606; Figure 1).

RUNX1 mutations

The gene encoding runt-related transcription factor 1
(RUNX1) is targeted by chromosomal rearrangements
such as t(8;21)(q22;q22) and intragenic mutations. There
are only a few studies evaluating the frequency and clini-
cal impact of intragenic RUNX1 mutations in AML.
Mutations are relatively infrequent, varying between
5.6% and 13.2%, and in all studies RUNX1 mutations
have been associated with inferior outcome.19-22 In the

Taiwanese study, RUNX1 mutations predicted for lower
CR rate and shorter disease-free (DFS) and overall sur-
vival (OS); in multivariate analysis, RUNX1 mutations
were an independent prognostic factor for OS.19 A nega-
tive impact on DFS, OS and event-free-survival (EFS) for
both younger (age < 60 years, n=175) and older (age ≥ 60
years, n=225) CN-AML patients was also described by
the Cancer and Leukemia Group B (CALBG).22 RUNX1
mutations were associated with ASXL1 mutations and
inversely correlated with NPM1 and CEBPA mutations,
and its negative impact persisted also in ASXL1-wild-type
patients. In a study by the AMLSG of 945 unselected
younger adult AML patients, RUNX1 mutations were
found in only 5.6%.21 RUNX1 mutations clustered in the
intermediate-risk cytogenetic group (CN-AML 6.3%) and
were significantly associated with MLL partial tandem
duplications and with IDH1/IDH2 mutations. Mutations
predicted for resistance to chemotherapy as well as infe-
rior EFS, relapse-free survival (RFS), and OS.
Explorative analysis revealed that allogeneic HSCT had a
favorable impact on RFS in patients with RUNX1 muta-
tions (Figure 2A), demonstrating that allogeneic trans-
plantation may have a role in the management of these
patients.21

Deregulated EVI1 expression

In addition to structural genetic lesions, changes in
expression of specific genes impact prognosis.
Deregulated expression of EVI1 (ecotropic viral integra-
tion site 1) is found in all AML cases with
inv(3)(q21q26.2) or t(3;3)(q21;q26.2) leading to
rearrangement of the RPN1 and EVI1 genes.31,32 EVI1
overexpression is not restricted to this entity, but is also
found in approximately 10% of unselected AML as
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Figure 1. Design of the AMLSG 16-10 clinical trial in AML with FLT3-ITD combining the concepts of pharmacological FLT3
inhibition using midostaurin and allogeneic hematopoietic stem cell transplantation (HSCT) as first priority for postrem-
ission therapy (clinicaltrials.gov identifier: NCT01477606). *Midostaurin: start on Day 8, thereafter continuous dosing,
only interrupted on days of chemotherapy. **Optional consolidation before allogeneic HSCT.



assessed by RQ-PCR.31,32 EVI1 expression is associated
with specific cytogenetic subsets, in particular monosomy
7 and translocations involving the MLL locus at chromo-
somal band 11q23 [t(11q23)], while expression is virtual-
ly absent in favorable subsets, such as core-binding factor
(CBF)-AML and AML with NPM1 mutation.32 In a large
study of 1,382 younger adult AML patients performed by
the Dutch-Belgian Hemato-Oncology Cooperative Group
and the AMLSG, EVI1 expression was associated with
inferior outcome, in particularly in cytogenetic intermedi-
ate-risk AML. Interestingly, patients with deregulated
EVI1 expression who received allogeneic HSCT in first
CR had significantly better 5-year RFS (Figure 2B).32

As already mentioned, EVI1 overexpression is fre-
quently found in the subgroup of AML with t(11q23). A
recent study specifically analyzed the frequency and clin-
ical impact of EVI1 expression in a cohort of 286 AML
with t(11q23).49 EVI1 overexpression was found in 45.8%
of all patients with t(11q23), with t(6;11) showing the
highest frequency (83.9%), followed by t(9;11) at 40.0%,
and t(v;11q23) at 34.8%. EVI1 overexpression was the
sole prognostic factor for all survival endpoints, that is,
EFS, RFS, and OS, in all AML with t(11q23) as well as in
the subset of AML with t(9;11). EVI1 overexpressing
AML with t(11q23) in first CR had a significantly better
RFS after allogeneic HSCT compared with other consol-
idation therapies (Figure 2C) resulting in a significantly
better long-term outcome (5-year OS, 54.7% vs. 0%).49

These two studies, although retrospective in nature,
provide evidence that patients with this molecular marker
significantly benefit from allogeneic HSCT in first-line
treatment.

Complex karyotype, monosomal karyotype,
and TP53 mutations

AML with complex karyotype (CK) and AML with
monosomal karyotype (MK) are descriptive in nature and
do not define distinct disease entities.50,51 Complex kary-
otype is defined by the presence of 3 or more chromo-
some abnormalities in the absence of aberrations defined
in the WHO category “AML with recurrent genetic abnor-
malities”. A new descriptive cytogenetic category was
proposed that identifies AML of particularly unfavorable
risk, that is, the monosomal karyotype.51 In this study, the
MK was defined by the presence of one single monosomy
(excluding isolated loss of X or Y) in association with at
least one additional monosomy or structural chromosome
abnormality (excluding CBF-AML). The majority of
AML with MK also falls into the category of AML with
CK. However, in the initial study by Breems et al., AML
with MK outperformed AML with CK as poor prognostic
markers. This effect was confirmed in subsequent
studies.52-55

The non-random pattern of chromosome abnormalities
in AML with CK includes a predominance of unbalanced
rearrangements.30,50 One of the prominent features is the
frequent loss of 17p and/or TP53 gene mutation occurring
in approximately 70% of the cases.28-30 Loss of 17p/TP53
mutation in turn is highly correlated with the presence of
the MK.30 In a recent study of a large cohort of CK-AML,
the MK lost its prognostic power when adjusted for the
variable loss of 17p/TP53 mutation.30 Thus, loss of TP53
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Figure 2. Role of allogeneic hematopoietic stem cell trans-
plantation (HSCT) in molecular subsets of AML. Relapse-
free survival after allogeneic HSCT in first complete remis-
sion: (A) according to RUNX1 mutation status;21 (B) in
EVI1+ AML as compared to other consolidation;32 and (C) in
the EVI1+ AML subset with t(11q23) as compared to other
consolidation.49



function by TP53 loss and/or mutation is an important
predictor of very poor prognosis.

In general, allogeneic HSCT is advocated as the treat-
ment of choice for younger adult patients with intermedi-
ate-I/II and high-risk genetics (according to the European
LeukemiaNet classification) who achieve CR and provid-
ed an appropriate donor is available.17,56-59 This also
applies for patients whose leukemic cells exhibit a CK.
More recent studies specifically looked at the effect of
allogeneic HSCT in patients with MK-AML.54,60-64

In the study by HOVON-SAKK of patients under 61
years of age, allogeneic HSCT, applied as consolidation
in CR1, was associated with a significant reduction in
relapse and improvement in survival, with the same rela-
tive reduction in relapse and death as in other cytogenetic

risk categories.62 The 5-year OS was 19% for patients
with MK-AML after allogeneic HSCT compared with 9%
for those who received chemotherapy or autologous
HSCT. Positive effects of allogeneic HSCT in patients
with MK-AML were also found in retrospective analyses
performed by the AMLSG and investigators at the Fred
Hutchinson Cancer Center.54,61 In a study of a small
cohort of patients with loss of 17p/TP53 mutation, allo-
geneic HSCT did not improve outcome.30

In summary, although in these studies looking at the
effect of allogeneic HSCT in patients with MK-AML
there was some improvement in survival end points, the
beneficial effects appear to be marginal, stressing the
need for novel therapeutic agents for these poor prognosis
AML subsets.
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Figure 3. Prognostic relevance of minimal residual disease (MRD) by using mutated NPM1 as target gene.70 (A)
Cumulative incidence of relapse (CIR) and (B) overall survival (OS) for patients in complete remission according to MRD
status after induction therapy in bone marrow (negative vs. any positive NPM1 mutation transcript level value). (C) CIR
and (D) OS according to MRD status after completion of therapy in bone marrow.



Role of minimal residual disease assessment
for relapse prediction

Monitoring of minimal residual disease (MRD) in
AML is emerging as a very powerful tool to identify
patients who are at high risk of relapse. Monitoring of
MRD can be determined either by RQ-PCR detecting
leukemia-specific targets, such as gene fusions, gene
mutations, and deregulated expression of genes, or by
multiparametric flow cytometry identifying leukemia-
associated aberrant phenotypes.18 In the past, in AML the
clinical value of MRD monitoring was mainly restricted
to acute promyelocytic leukemia. However, more recent-
ly, the predictive power has also been shown for other
subsets, such as AML with inv(16)(p13.3q22) or
t(16;16)(p13.1;q22); CBFB-MYH11,65-67 AML with
t(8;21)(q22;q22); RUNX1-RUNX1T1,66-68 and AML with
NPM1 mutation.69,70

There are various useful applications of MRD monitor-
ing. One of the most informative time points to guide fur-
ther post-remission therapy is after induction or early
consolidation therapy. This also relates to the question as
to whether in case of molecular disease persistence the
patient should be referred to allogeneic HSCT. Beyond
guidance of post-remission therapy, MRD monitoring
early on may become a powerful instrument to assess the
efficacy of novel, investigational compounds, as a surro-
gate marker for survival end points. In addition, MRD
monitoring can be used post-treatment to diagnose
impending relapse and guide pre-emptive therapy.

As a paradigm, NPM1 mutant alleles have become one
of the most interesting molecular targets for MRD,
because of their high frequency and the availability of
sensitive RQ-PCR assays. In a study by AMSLG,70 NPM1
mutant transcript levels were highly predictive for treat-
ment outcome, and clinically relevant time points could
be identified (Figure 3). After induction therapy, achieve-
ment of RQ-PCR negativity identified patients with a low
cumulative incidence of relapse and, therefore, allowed a
refined risk assessment. Second, after completion of ther-
apy, NPM1 mutant transcript levels again were an inde-
pendent factor for survival. Finally, in the follow-up peri-
od, serial MRD measurement allowed early prediction of
relapse. Not unexpectedly, the reduction in NPM1 mutant
transcript levels correlated with the FLT3-ITD status,
with FLT3-ITD negative patients achieving a significant-
ly better molecular response.

Given the high power of predicting relapse, monitoring
of MRD by RQ-PCR is now being integrated in prospec-
tive trials for guidance of therapy, in case of molecular
persistence or molecular relapse of the disease.
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Immune impairment and infection predisposition 
in graft-versus-host disease 

Introduction

Graft-versus-host disease (GVHD) and
infections have been the most important com-
plications since the early days of hematopoiet-
ic stem cell transplantation. There are several
links between the two entities such as the
immunosuppressive effect of GVHD prophy-
laxis and treatment, the immunosuppressive
effect by GVHD itself, and the increased risk
for GVHD thought to be caused by infections.
Furthermore, genetic polymorphisms in the
innate immune system have been associated
both with acute GVHD and the risk for severe
viral and fungal infections.1 Recently the poly-
morphisms of the genes in the Th17/IL23
pathway has been suggested to influence both
the risk for candida infections and acute
GVHD.2,3 Furthermore, polymorphisms in the
gene for CCR6 were associated with both
chronic GVHD and invasive aspergillosis.4

Acute and chronic GVHD profoundly
impact the immune system and its regenera-
tion after allogeneic HSCT. T-cell dysfunction
and poor immune reconstitution is common in
patients with GVHD. Early after the HSCT,
the T-cell reconstitution is mostly dependent
on expansion of mature T cells from the graft.
In contrast, naïve T cells are needed to obtain
a long-term immune reconstitution with broad
responses to different pathogens and this
requires a functional thymus. Older patients
have poorer reconstitution of the thymic func-
tion and a narrow T-cell repertoire, and have
an increased risk for late opportunistic infec-

tions.5 The late immune reconstitution is nega-
tively influenced by GVHD.6 Chronic GVHD
is associated both with T-cell and B-cell dys-
function.7 Inadequate reconstitution of naive B
cells and the persistence of high levels of B-
cell activating factor have been found in
patients with chronic GVHD.8

Infection as a risk factor for graft-
versus-host disease

An early hypothesis for the pathogenesis of
acute GVHD was the influence of gut bacterial
flora. This was supported by studies in germ-
free animals and also data from human studies
of the protective effects of transplants in lami-
nar air flow rooms.9-11 It has been shown in
both murine and human recipients of allogene-
ic bone marrow grafts that intestinal inflam-
mation secondary to GVHD is associated with
major shifts in the composition of the intestin-
al microbiota. The microbiota, in turn, can
modulate the severity of intestinal inflamma-
tion.12 The risk for acute GVHD can be affect-
ed by reduction of the intestinal bacterial flora,
The mechanism might be upregulation of
minor histocompatibility antigens on the T-cell
repertoire.13 Damage to the gastrointestinal
tract allowing activation of antigen presenting
cells by microbial products such as
lipopolysaccharide has also been suggested to
be a pathogenetic factor in the development of
acute GVHD, especially of the gastrointestinal
tract.14 Also secretion of inflammatory
cytokines such as TNFα can be stimulated by

Stem cell transplantation  

Infections and graft-versus-host disease (GVHD) have from the early days been major obstacles to
allogeneic hematopoietic stem cell transplantation (HSCT). It is likely that the relationship between
both acute and chronic GVHD and infectious complications is bidirectional with pathogens resulting
in an inflammatory cascade activating the immune system resulting in acute GVHD, and the immuno-
suppressive effect of GVHD and its therapy increasing the risk for severe infections. An example of this
complex relationship is cytomegalovirus (CMV), chronic GVHD, and the graft-versus-leukemia effect
resulting in lower risks for leukemia relapse although the mechanism need still to be clarified. Other
examples are acute GVHD and candida colonization and varizella-zoster virus and chronic GVHD. This
review discusses this interplay between pathogens and the reactions of the host.

Learning goals

At the conclusion of this activity, participants should be able to:
- clarify the complex interactions between pathogens and graft-versus-host disease;
- identify patients at increased risk for infectious complications.
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microbial products14 contributing to the inflammatory cas-
cade that increase the risk for development of severe acute
GVHD. It has also recently been shown that colonization
with candida of the gastrointestinal tract increases the risk
for acute GVHD.15

Acute graft-versus-host disease and bacterial
infections

Acute GVHD grades II-IV has been reported to be an
independent risk factor for blood stream infections16 and S.
Aureus bacteremias.17 Organ damage induced by acute
GVHD, such as that in the gut, predisposes to bacterial
infections.16 Clostridium difficile infections have at some
centers become a major clinical problem in patients under-
going HSCT. A recent study showed that acute GVHD of
the gastrointestinal tract was associated with C. difficile
infections.18 Although pneumococcal infections are usual-
ly associated with late infections, also early severe infec-
tions do occur.19

Acute graft-versus-host disease and viral 
infections

CMV 
Cytomegalovirus (CMV) has been one of the major

obstacles to successful allogeneic HSCT. Several studies
have suggested that the interrelationship between CMV
and acute and chronic GVHD is complex. Although some
early studies suggested that CMV seropositivity was asso-
ciated with a higher risk for acute GVHD, this has not
been supported. But more recent reports have instead
observed that CMV seronegative patients with seronega-
tive donors had an increased risk for acute GVHD grade
II-IV.20 It has been shown that the allogeneic reaction can
reactivate CMV from latency,21 and acute GVHD has been
shown to be a risk factor for CMV infection.22

Furthermore, several studies have shown that acute
GVHD, especially grades II-IV, is a risk factors for CMV
disease.23-26

Adenovirus 
Acute GVHD is a risk factor for disseminated aden-

ovirus disease.27-29 However, adenovirus is controlled
mainly by specific T cells and so there is a conflict in man-
agement. It is logical to try to decrease immunosuppres-
sion to control adenovirus but this might increase the risk
for acute GVHD. Therefore, the use of adeno-specific T-
cells is being evaluated to improve specific immunity.30,31

Human herpesvirus 6 
Recently, the two subtypes of human herpesvirus 6

(HHV-6) A and B have been classified as two different
viruses. HHV-6 B infects most children early in life and is
then associated with skin rash (exanthem subitum).32

HHV-6 is frequently detected early after HSCT and is then
temporarily associated with the development of acute
GVHD. However, given the characteristic of HHV-6 to
integrate into the germline, data must be interpreted with
caution.33 Data have been presented supporting the obser-
vation that acute GVHD grade II-IV is more common in

patients with early HHV-6 reactivation.34-37 However, a
recent study suggests a bidirectional relationship through
which HHV-6 predisposed for acute GVHD and also the
opposite was found.38 Furthermore, HHV-6 DNA has been
detected in the skin of patients with a skin rash resembling
acute GVHD.39 HHV-6 also has immunosuppressive prop-
erties, and has been suggested to predispose for CMV
infection37 and to inhibit development of CMV-specific T-
cell response.40

Respiratory viruses 
Progression to lower respiratory tract disease in commu-

nity acquired respiratory viral infections, such as RSV and
influenza, has been associated with lymphopenia41-43 and
poor outcome.44,45

Acute graft-versus-host disease and invasive
fungal infections

Invasive fungal infections have been one of the major
infectious complications after allogeneic HSCT contribut-
ing to transplant-related mortality. Acute GVHD has been
identified in several studies as one of the major risk factors,
especially for mold infections.46,47 In a classic paper, Wald et
al. showed that invasive aspergillosis occurs with two peaks
after allogeneic HSCT; the first peak occurring during neu-
tropenia, and the second and stronger peak occurring after
engraftment during the time where acute GVHD is occur-
ring.47 It is difficult to differentiate between the relative con-
tributions of acute GVHD and the immunosuppression
given as treatment. High-dose corticosteroids used as thera-
py for GVHD have been found to increase the risk for inva-
sive aspergillosis,47,48 outcome of aspergillosis,49-51 and
development of disseminated candida infections. High
doses of corticosteroids have several effects on the immune
system possibly contributing to this increased risk. These
include effects on lymphocytes (induction of lymphopenia,
especially CD4+ cells, decreased proliferation capacity of
lymphocytes, decreased lymphokine production, and a shift
from Th1 to Th2 cells), and effects on granulocytes, mono-
cytes, and macrophages (reduced phagocytosis, chemo-
taxis, and killing by granulocytes and monocytes, reduced
production of NO, IL-1, IL-6, and TNFα, and reduced mat-
uration to macrophages and dendritic cells). Furthermore,
corticosteroids have effects on the fungal pathogens such as
increased growth rate of aspergillus and increased capacity
for candida to pass from the gut wall to the blood stream.

Chronic graft-versus-host disease as a risk
factor for bacterial and fungal infections

Patients are at risk for severe infections many years after
HSCT if they have had chronic GVHD. It has been shown
that chronic GVHD is an independent risk factor for late
infectious disease mortality.52 Furthermore, extensive
chronic GVHD was shown to be a risk factor for late
severe bacterial and fungal infections and non-hepatitis C
virus infections.53 Chronic GVHD has also been shown to
be a risk factor for invasive aspergillosis.48,54

Chronic GVHD is a risk factor for pneumonia.55,56 An
important infectious complication in patients with chronic
GVHD is pneumococcal disease. It was shown that chron-

| 360 | Hematology Education: the education program for the annual congress of the European Hematology Association | 2013; 7(1)

18th Congress of the European Hematology Association



ic GVHD was a risk factor for pneumococcal infection.19,57

Early after transplantation, and in patients with chronic
GVHD, the antibody response to pneumococcal polysac-
caride is immature, similar to that in young children, with
mainly IgG1 response. In contrast, later after transplant in
patients without chronic GVHD, the patients respond with
IgG2.58 This effect can be circumvented by the use of con-
jugate vaccines that are able to induce good immune
responses also early after HSCT.59 However, the likeli-
hood of achieving protective antibody titers was lower in
patients with chronic GVHD also when using a pneumo-
coccal conjugate vaccine.59

Chronic graft-versus-host disease and viral
infections

The relationship between CMV infection, chronic
GVHD, and late immune reconstitution is complex. CMV
infection has been associated with the occurrence of late
lethal infections.52 Chronic GVHD has also been correlat-
ed to development of late CMV pneumonia.60 Several
studies using different techniques have suggested that
CMV drives the development of extensive chronic
GVHD. Early on, a significant correlation was found
between CMV serological status in the recipient and/or the
donor and the development of chronic GVHD.61-63 A pos-
sible mechanism has been proposed through CD13 since
patients with chronic GVHD had CD13 specific antibod-
ies in skin biopsies.64 Recently, it was found that antibod-
ies against a late CMV protein UL94 were correlated to
scleroderma-like skin lesions in chronic GVHD.65 Finally,
the use of early pre-emptive therapy reduced the risk for
extensive chronic GVHD.66 A correlation was also found
with CMV serological status or CMV infection and the
graft-versus-leukemia effect.67,68 A recent study showed
that early CMV infection was strongly associated with a
decreased relapse rate in patients with AML.69 The under-
lying mechanism of this effect needs still to be clarified. A
recent large study from the Infectious Diseases Working
Party failed to show any relationship between CMV sero-
logical status of either patient or donor with the risk for
relapse in patients transplanted for AML (P Ljungman et
al., unpublished data, 2012). 

Other viral infections and chronic graft-versus-
host disease

Extensive chronic GVHD is a risk factor for herpes
zoster after allogeneic HSCT.53,70 It has also been suggest-
ed that herpes zoster can stimulate the development of
chronic GVHD.71 Chronic GVHD is also a risk factor for
becoming seronegative to measles and thereby having
increased risk for infection.72 Late deaths from influenza
have been documented in patients with chronic GVHD 

Conclusion

Pathogens and graft-versus-host disease strongly influ-
ence each other. The relationship can be uni- or bidirection-
al and is different for acute and chronic GVHD. Table 1
shows a summary of information regarding some of the
relationships between pathogens and GVHD discussed in
this review. More biological and clinical studies are needed.
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Introduction

The hemostatic system safeguards the
patency of the vasculature. Platelet aggrega-
tion, coagulation, and fibrinolysis operate in
concert with the endothelium and other vascu-
lar cells to arrest bleeding and prevent throm-
bosis. The coagulation pathway contributes to
regulation of the hemostatic balance via multi-
ple mechanisms and pathways that ensure a
balanced and confined hemostatic response at
the site of injury. Despite these feedback
mechanisms to fine-tune the hemostatic
response, genetic and/or acquired defects often
tilt the balance sufficiently to increase the risk
for thrombophilia. In the current model of
coagulation,1,2 clot formation is initiated by the
extrinsic pathway with little or no role for the
contact system in the initiation of physiologi-
cal coagulation, although platelet-derived
polyphosphates may provide an endogenous
activation mechanism for FXII.3,4 Thrombin
formation occurs during two mechanistically

different phases. In the first phase, referred to
as primary thrombin formation, the extrinsic
pathway generates the clot initiated by the tis-
sue factor/activated factor VIIa (FVIIa) com-
plex. However, primary thrombin formation is
short-lived due to rapid inactivation of the tis-
sue factor/FVIIa initiator complex by tissue
factor pathway inhibitor (TFPI). In the second
phase, when sufficient thrombin is generated
to initiate FXI activation, secondary thrombin
formation will continue inside the clot via
thrombin-mediated FXI activation and ampli-
fication by the intrinsic pathway.5 This second-
ary thrombin formation contributes to clot
strength and conveys resistance to fibrinolysis
via the activation of FXIII and thrombin acti-
vatable fibrinolysis inhibitor (TAFI).6,7

Control of coagulation is generally provided
by three different mechanisms. First, the γ-car-
boxyglutamic acid (Gla)-domain, common to
most coagulation factors, requires the presence
of negatively charged phosphatidylserine for
calcium-dependent binding to lipid surfaces.8
Thus, assembly of the tenase (activated factor
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Downregulation of the clotting cascade by the protein C
pathway

Thrombosis

A B S T R A C T

The protein C pathway provides important biological activities to maintain the fluidity of the circu-
lation, prevent thrombosis, and protect the integrity of the vasculature in response to injury. Activated
protein C (APC), in concert with its co-factors and cell receptors, assembles in specific macromolecular
complexes to provide efficient proteolysis of multiple substrates that result in anticoagulant and cyto-
protective activities. Numerous studies on APC’s structure-function relation with its co-factors, cell
receptors, and substrates provide valuable insights into the molecular mechanisms and presumed
assembly of the macromolecular complexes that are responsible for APC’s activities. These insights
allow for molecular engineering approaches specifically targeting the interaction of APC with one of
its substrates or co-factors. Thus far, these approaches resulted in several anticoagulant-selective and
cytoprotective-selective APC mutants, which provide unique insights into the relative contributions of
APC’s anticoagulant or cytoprotective activities to the beneficial effects of APC in various murine
injury and disease models. Because of its multiple physiological and pharmacological activities, the
anticoagulant and cytoprotective protein C pathway have important implications for the (patho)phys-
iology of vascular disease and for translational research exploring novel therapeutic strategies to com-
bat complex medical disorders such as thrombosis, inflammation, ischemic stroke and neurodegener-
ative disease.

Learning goals

At the conclusion of this activity, participants should know that:
- the protein C pathway provides multiple important functions to maintain a regulated balance

between hemostasis and host defense systems;
- APC’s anticoagulant activities prevent thrombosis whereas APC’s cytoprotective activities protect

cells;
- APC’s different activities require assembly of different macromolecular complexes with different co-

factors that can be targeted by mutagenesis to obtain activity-selective APC mutants;
- anticoagulant-selective and cytoprotective-selective APC mutants provide insights into the relative

contributions of these APC activities to beneficial effects in various murine injury and disease models.



IXa, X, and VIII (FIXa, FX and FVIIIa)) and prothrombi-
nase (FXa, FII, and FVa) complex is limited by the pres-
ence of negatively charged lipid surfaces (such as on acti-
vated platelets).8,9 Second, serine protease inhibitors
(SERPINs) rapidly inhibit activated coagulation factors,
thereby blunting coagulation and preventing the escape of
active coagulation factors in the circulation.10 Finally, the
protein C pathway actively inhibits coagulation by prote-
olysis of the tenase and prothrombinase complex co-fac-
tors, FVa and FVIIIa, thereby providing a dynamic regula-
tion of coagulation.11-15

The focus of this review will be on the protein C path-
way. Because activated protein C (APC) inactivates both
FVa and FVIIIa, it has important effects on the downreg-
ulation of both primary and secondary thrombin forma-
tion that manifest as potent anti-thrombotic effects in
vivo. Furthermore, APC’s relatively new activities on
cells provide physiological and pharmacological relevant
protective effects on the endothelium and the vasculature.
Thus APC conveys multiple activities that require assem-
bly of macromolecular complexes with different co-fac-
tors, cell receptors and substrates. Structure-function
analysis of these APC complexes, discussed in the next
sections, provides a unique understanding of how a single
enzyme can mediate multiple biologically and therapeuti-
cally relevant activities.

The protein C pathway

The protein C pathway provides important contributions
to maintain the fluidity of the circulation, prevent throm-
bosis, and protect the integrity of the vasculature in
response to injury. The reactions of the protein C pathway
encompass protein C activation on endothelial cells, the
anticoagulant protein C pathway on activated platelets, the
cytoprotective protein C pathway on cell membranes, and
inactivation of APC by plasma serine protease inhibitors
(SERPINs) in the fluid phase (Figure 1). Each of these
aspects of the protein C pathway will be discussed in the
sections below.  

The physiological importance of the protein C system is
best illustrated by the manifestation of massive thrombotic
complications in infants with protein C deficiency.16,17

Neonatal purpura fulminans, a rapidly progressing hemor-
rhagic necrosis of the skin due to microvascular thrombo-
sis, inflammation, and disseminated intravascular coagu-
lation (DIC), is typically observed in severe protein C
deficiency, whereas heterozygous protein C deficiency in
adults carries a significantly increased risk for venous
thrombosis.18-20 A rare complication referred to as war-
farin-induced skin necrosis with clinical symptoms similar
to that of purpura fulminans, may present within days after
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Figure 1. Reactions of the protein C pathway. Schematic representation of the protein C pathway reactions, from left to
right: protein C activation, the cytoprotective protein C pathway, the anticoagulant protein C pathway and the inactivation
of APC by serine protease inhibitors (SERPINs). Protein C activation: physiological activation of protein C (PC) by the
thrombin (IIa)-thrombomodulin (TM) complex occurs on the surface of endothelial cell membranes when protein C is
bound to the endothelial protein C receptor (EPCR). Since protein C and APC have a similar affinity for EPCR, after acti-
vation APC can remain bound to EPCR to initiate cytoprotective signaling. The cytoprotective protein C pathway: APC’s
direct effects on endothelial cells require the cellular receptors EPCR and PAR1. These cellular activities of APC include
anti-apoptotic and anti-inflammatory activities, alteration of gene expression profiles, and protection of endothelial bar-
rier functions and are collectively referred to as APC’s cytoprotective activities. The anticoagulant protein C pathway: APC
anticoagulant activities involve proteolytic cleavages of FVa and FVIIIa. Different protein co-factors, such as protein S (PS),
FV, and various lipid co-factors (e.g. phosphatidylserine, phosphatidylethanolamine cardiolipin, glucosylceramide, etc.),
enhance the inactivation of FVa and FVIIIa by APC. APC inactivation: inactivation of APC in plasma by serine protease
inhibitors (SERPINs) is slow, which contributes to a remarkably long circulation half-life of APC (approx. 20 min). Most
important inhibitors of APC in plasma are protein C inhibitor (PCI), plasminogen activator inhibitor-1 (PAI-1), and α1-antit-
rypsin and, to a lesser extent, α2-macroglobulin and α2-antiplasmin.



initiation of oral anticoagulant therapy with coumarin
derivatives. This is due to a temporary functional protein
C deficiency caused by the shorter circulation half-life of
protein C (8 h) compared to the other procoagulant coag-
ulation factors (24-72 h).17,18,21 Acquired protein C defi-
ciency is also found in patients with severe infection and
sepsis, most likely due to consumption and poor synthesis
in the liver, and low protein C levels correlate with poor
clinical outcome and death.22

Protein C activation

The protein C zymogen is synthesized in the liver and
circulates in plasma at 4 μg/mL, which is equivalent to
approximately 70 nM based on a molecular weight of
62,000 Da. The domain topology of protein C is typical
of vitamin K-dependent coagulation factors.23 The N-
terminal protein C light chain contains nine γ-carboxy-
lated Glu residues (Gla-domain) and two epidermal
growth factor (EGF)-like domains. The C-terminal
heavy chain contains an N-terminal acidic protein C
activation peptide that is removed upon activation and
the protease domain with a typical His211 (mature pro-
tein C numbering), Asp257 and Ser360 active site triad
(residues His57, Asp102 and Ser195 in chymotrypsin
nomenclature. For a conversion table see Mather et
al.24).

Protein C is activated by thrombin through limited
proteolysis at Arg169. Physiological activation of pro-
tein C on the endothelial cell surface requires binding of
thrombin to thrombomodulin (TM) and binding of pro-
tein C to the endothelial protein C receptor (EPCR)
(Figure 1).14,25-27 The binding surface for TM on protein
C shows a partial overlap with the exosite for interac-
tions with FVa, and includes residues in loop 37 (Lys191
and Lys192), loop 60 (Lys217 and Lys218), loop 70-80
(Arg229 and Arg230), and possibly loop 20 (Lys174,
Arg177, and Arg178), although the direct interaction of
these latter residues with TM remains controversial
(loops are referred to by their chymotrypsin number-
ing24).28-30

Protein C activation by thrombin in the absence of TM
is very inefficient and is inhibited by calcium.
Presumably, this limitation ensures that APC generation
is initiated only when the clot covers the intact endothe-
lium and thrombin comes in contact with TM.14 Several
residues surrounding the Arg169 activation site in pro-
tein C (i.e. P3-P9’ residues relative to Arg169 denoted as
P1)31 are responsible for the inhibitory effect of calcium
on the activation of protein C by free thrombin.
Mutation of these residues allows for efficient protein C
activation by thrombin in the presence of calcium that is
no longer dependent on the presence of TM.32-34 In vivo
proof-of-principal that TM-independent protein C acti-
vation by thrombin results in enhanced APC generation
was provided by a transgenic mouse (named the APChigh

mouse) expressing human protein C with mutations of
the P3 and P3’ residues (Asp167Phe/Asp172Lys).33,35

Interestingly, increased blood loss after tail amputation
in these mice suggest that uncoupling of protein C acti-
vation from TM disrupts the regulation of normal throm-
bus formation.  

Inactivation of APC

Inactivation of APC in plasma is driven by serine pro-
tease inhibitors (SERPINs) of which protein C inhibitor
(PCI), plasminogen activator inhibitor-1 (PAI-1), α1-antit-
rypsin and, to a lesser extent, α2-macroglobulin and α2-
antiplasmin are most relevant for APC (Figure 1).36 Even
though heparin and vitronectin accelerate the reaction of
APC with PCI and PAI-1 several orders of magnitude, the
reaction of APC with SERPINs is relatively slow, resulting
in an approximately 20 min half-life of APC in the circu-
lation.36 APC exosites required for interactions of APC
with the various inhibitors and heparin largely overlap
with those required for interaction with FVa and include
residues in loop 37 and the autolysis loop.36,37

Interestingly, some residues that affect interactions with
SERPINs are not shared with FVa and these include
Leu194 in loop 37, Lys217 and Lys218 in loop 60,
Thr254, and Ser336.36,38,39

The anticoagulant protein C pathway

The protein C pathway is best known for its anticoagu-
lant activity that involves proteolytic inactivation of FVa
and FVIIIa on negatively charged phospholipid mem-
branes and that is enhanced by co-factors protein S and FV
(Figure 1).40-42 Because APC inactivates both FVa and
FVIIIa, it has important effects on the downregulation of
both primary and secondary thrombin formation.
Inhibition of primary thrombin formation results in
delayed clot formation, whereas inhibition of secondary
thrombin formation results in diminished activation of
TAFI and subsequently in an enhanced susceptibility of
the clot to fibrinolysis. The latter effects of APC on sec-
ondary thrombin formation are also referred to as APC’s
profibrinolytic effects.43

APC’s anticoagulant activity requires binding of the
Gla-domain to negatively charged phospholipid mem-
branes. Although membranes containing phos-
phatidylethanolamine in addition to phosphatidylserine
generally improve APC’s lipid-dependent functions, bind-
ing of APC to negatively charged phospholipids is rela-
tively poor compared to other vitamin K-dependent coag-
ulation factors.44 Therefore, anticoagulant activity of APC
can be enhanced by strategies aimed at improving APC’s
affinity for membranes, such as Gla-domain swaps or tar-
geted mutagenesis of the Gla-domain.45,46

Inactivation of FVa and FVIIIa

FVa is a non-covalent heterodimeric complex composed
of a heavy chain (domains A1-A2) and a light chain
(domains A3-C1-C2).47 Since FVa enhances prothrombi-
nase approximately 10,000-fold, inactivation of FVa by
APC effectively shuts down thrombin formation.40,48

Inactivation of FVa involves APC-mediated cleavages at
Arg306 and Arg506. The rapid cleavage at Arg506 is
kinetically favored over cleavage at Arg306, but results
only in partial inactivation of FVa, whereas the slower
cleavage at Arg306 results in a complete loss of FVa func-
tion.40,41 The importance of APC-mediated FVa inactiva-
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tion is clear from the increased risk for thrombosis associ-
ated with mutations of the APC cleavage sites in FV
(Arg506Gln a.k.a. FVLeiden, Arg306Thr a.k.a. FVCambridge and
Arg306Gly a.k.a. FVHong Kong). In fact, FVLeiden is the most
common identifiable hereditary risk factor for venous
thrombosis among Caucasians.47,49

Mutagenesis studies have identified several positively
charged exosites on the APC protease domain surface that
are required for rapid inactivation of FVa (Figure
2B).36,37,51,52 This extended FVa exosite on APC is com-
prised of residues in loop 37 (Lys191, Lys192, and
Lys193), loop 60 (Asp214, Glu215 and Arg222), loop 70
(Arg229 and Arg230) and the autolysis loop (Lys306,
Lys311, Arg312 and Arg314). 36,37,51,52 Remarkably, these
residues primarily contribute to APC cleavage of FVa at
Arg506 but have little effect on APC-mediated cleavage at
Arg306, suggesting that the FVa Arg306 cleavage site
does not rely on APC exosite interactions or that the
exosite for Arg306 has not been found yet.51,52 Instead,
protein S enhances APC-mediated cleavage at Arg306 (see
below).

In the circulation, tight non-covalent binding (KD
approx. 0.5 nM) of FVIII to von Willebrand factor (vWF)
prevents the incorporation of factor VIII into the tenase
complex.53 FVIIIa dissociates from vWF after activation
and enhances FXa formation by the tenase complex
approximately 200,000-fold.54 Despite a domain topology
similar to that of FVa, FVIIIa circulates as a heterotrimer
and not a heterodimer due to different cleavage patterns
that cause their respective activations. As a consequence
of being a heterotrimer, FVIIIa is quite unstable with a
half-life of only 2 min due to spontaneous dissociation of
the A2-domain.53 Nevertheless, several observations,
including stabilization of FVIIIa by FIXa in the tenase
complex, support a role for APC in the inactivation of
FVIIIa.55 Homologous to inactivation of FVa, inactivation
of FVIIIa by APC occurs upon cleavage at Arg336 and
Arg562; but in contrast to FVa, cleavage of FVIIIa at
either site results in a complete loss of cofactor activity.56,57

Both protein S and FV but not FVa enhance inactivation of
FVIIIa by APC.57,58

Protein S

Protein S is best known for its function as a non-enzy-
matic co-factor to APC in the inactivation of FVa and
FVIIIa. In addition, protein S has APC-independent
anticoagulant effects and also has direct (cytoprotective)
effects on cells that are independent of its anticoagulant
functions but instead require interactions with receptors
on cells. (The reader is referred to the references provid-
ed as a starting point for a more detailed discussion of
these protein S activities).59,60

The important anticoagulant contributions of protein S
are clear from the thrombotic complications and
increased risk of venous thromboembolism associated
with homozygous and heterozygous protein S deficien-
cy.61 Functionally, five distinct domains can be identi-
fied that include an N-terminal Gla domain, a thrombin
sensitive region (TSR), a repeat of four EGF-like
domains, and a sex hormone-binding globulin (SHBG)
domain composed of two laminin G-type domains.23

Protein S predominantly stimulates FVa cleavage at
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Figure 2. Schematic structural model of the anticoagulant pro-
tein C pathway. (A) Proposed model for the APC-mediated inac-
tivation of FVa at Arg506 based on the interaction of an extend-
ed basic exosite on the protease domain (PD) of APC with neg-
atively charged residues on the surface of FVa (adapted from
Pellequer et al.50). In this model, the protease domain of APC
(yellow) interacts with the A1 (green) and A2 (gray) domains of
FVa. The interactions between APC and FVa position Arg506
(blue) of FVa in the active site pocket (red) of APC. The Gla-
domain of APC (green) and the C1 (pink) and C2 (purple)
domains of FVa interact with the phospholipid layer. Although
biochemical data strongly support additional interactions
between the APC Gla-domain and the FVa light chain (A3-C1-
C2), especially residues within the A3 (light blue) sequence
Arg1865-Ile1874, the extended projection of these domains in
this model illustrate the need for a more flexible orientation of
the APC protease domain to accommodate this (see text for
additional details). (B) Schematic overview of the extended
exosite (blue) on the surface of the APC protease domain, com-
prised of residues in loop 37, loop 60, the calcium-binding loop
(loop70-80) and the autolysis loop that are required for interac-
tions with FVa to accommodate cleavage at Arg506. (C)
Schematic overview of the residues on the FVa surface (blue)
that are involved in interactions of FVa with APC. Important
residues are located on the A2 domain surrounding the Arg306
and Arg506 cleavage sites (red) and between the A1 and A3
domain at the back of the protein (not visible). (D) A schematic
overview of APC residues implicated in the interaction of APC
with protein S. Important residues (blue) in the Gla-domain
(Asp35-Ala39) and the EGF1-domain (Asp71) are highlighted.
(E) Schematic overview of the protein S residues (blue) impli-
cated in the interaction of protein S with APC. Important
residues (blue) in the Gla-domain (Glu36), TSR (Arg49 and
Gln52), and EGF1-domain (Asp78, Gln79, Asp95, Lys97,
Thr103 and Pro106) are highlighted. 



Arg306 by APC but also neutralizes the FXa-mediated
protection of FVa against APC cleavage at Arg506.62,63

Molecular mechanisms for enhanced APC-mediated
cleavage of FVa at Arg306 by protein S have been par-
tially clarified and involve a protein S-induced change
in the geometry of APC relative to the membrane.
Presumably, protein S binding lowers APC’s active site
closer to the membrane, placing it in a better position to
cleave Arg306.64 This provides a molecular explanation
for how APC can inactivate FVa at Arg306 without
extensive exosite interactions between APC and FVa.
APC residues that are implicated in interactions with
protein S (Figure 2D) include Gla-domain residues 35 to
39 (in particular Leu38), Asp71 that contains a post-
translational β-hydroxyaspartic acid modification in
EGF1, and potentially the C-terminus of the light-
chain.65-68

Molecular interaction between APC, protein
S, and FVa

Since limited structural information is available, the
perceived assembly of APC with protein S and the inter-
actions with FVa remain highly speculative.24,50,69,70 An
APC-FVa model for cleavage at Arg506 (Figure 2A),
based on the interaction of the extended positively
charged exosite of APC (Figure 2B) with a negatively
charged region on FVa that includes Asp513, Asp577,
and Asp578 in the A2-domain and Asp659, Asp660,
Glu661, Glu662, and Asp663 that follows the A2-
domain (Figure 2C), projects the APC Gla-domain
rather far away from FVa.50,52 In complex with protein S
and FVa, the APC Gla-EGF1 domains are anticipated to
be orientated in closer proximity to FVa, with a flexible
conformation of the APC protease domain that bends
down to Arg506 (or Arg306). This hypothesis is consis-
tent with biochemical data that indicates binding of APC
to the FVa light chain.71,72 Thus, protein S is likely to
have important implications for the spatial orientation of
APC in the ternary APC-protein S-FVa complex.

The APC co-factor function of protein S involves a
complex set of interactions of protein S with APC and
factor Va.73 The minimal structure of protein S to sup-
port APC co-factor activity requires the Gla-domain, the
TSR and EGF1 (approx. 30% compared with native pro-
tein S), although EGF2 and part of the SHBG domain
provide additional interactions with APC and FVa and
are required for full protein S cofactor activity.74-76

Direct APC-binding to protein S seems contained to pro-
tein S EGF1 with important contributions of Asp78,
Gln79, Asp95, and Thr103 (Figure 2E).75,77 The protein
S Gla-domain, TSR and EGF-2 are unlikely to con-
tribute to direct interactions with APC but rather play a
supporting structural role. Important residues in these
supporting domains identified thus far include Glu36 in
the Gla-domain and Arg49 and Gln52 in the TSR.70,74-78

The SHBG domain of protein S is projected to extend
above the protease domain of APC since protein S con-
tains two additional EGF-like domains compared to
APC. The contributions of the SHBG-domain to protein
S co-factor activity seem contained to the C-terminus of
the SHBG laminin G2-domain and are likely derived
from mediating interactions with FVa rather than APC.79

Especially residues Lys630, Lys631, and Lys633 in the
G2-domain seem to provide important contributions for
binding of protein S to FVa, which possibly facilitates
directing the APC protease domain to the FVa cleavage
sites consistent with protein S decreasing the distance of
the APC active site to the membrane.64,80

The cytoprotective protein C pathway 

In addition to its anticoagulant activity, APC can con-
vey direct effects on cells, collectively referred to as
APC cytoprotective activities, that require endothelial
protein C receptor (EPCR) and protease activated recep-
tor 1 (PAR1).11,81-84 Dependent on the cell type and
injury, these cellular activities of APC include anti-
apoptotic and anti-inflammatory activities, alteration of
gene expression profiles, and protection of endothelial
barrier function. Other receptors may also contribute to
APC-initiated signaling such as sphingosine-1-phos-
phate receptor 1 (S1P1), apolipoprotein E receptor 2
(ApoER2), CD11b/CD18 (αMβ2; Mac-1; CR3), PAR-3,
and Tie2, whereas APC’s ability to inactivate extracellu-
lar histones is presumably independent of APC’s cell
signaling effects.85,86

The currently prevailing paradigm for APC’s direct
cytoprotective actions on endothelial cells is that when
PAR1 and EPCR are co-localized in caveolin-1 enriched
lipid rafts or caveolae, APC binding to EPCR permits
non-canonical PAR1 activation at Arg46 to initiate cyto-
protective signaling.11,87-89 It is important to realize that
there are several fundamental distinctions between
PAR1 activation by APC and thrombin on endothelial
cells. Foremost, the functional outcome is different.
Thrombin activation of PAR1 results in proinflammato-
ry and endothelial barrier disruptive effects, whereas
PAR1 activation by APC results in cytoprotective
actions that include endothelial barrier stabilization. The
reasons for this functional contrast become evident
when considering the fundamental differences in PAR1
activation and signaling between these two proteases.
PAR1 activation by thrombin occurs after cleavage of
the canonical Arg41 site after which the tethered-ligand
starting at Ser42 promotes G-protein dependent signal-
ing that includes activation of barrier disruptive Ras
homolog gene family member A (RhoA). In contrast,
activation of PAR1 by APC occurs through cleavage of
the non-canonical Arg46 site after which the tethered-
ligand starting at Asn47 mediates β-arrestin 2-dependent
barrier protective Ras-related C3 botulinum toxin sub-
strate 1 (Rac1) activation (Figure 3).89,90 Synthetic pep-
tides representing the sequences of the different tethered
ligands exposed after cleavage of PAR1 at Arg41
(thrombin receptor activating peptide, TRAP) or Arg46
(TR47) also recapitulate the remarkable differences in
PAR1 signaling. TRAP induces typical phosphorylation
of ERK1/2 but TR47 does not. Instead, TR47 but not
TRAP, induces phosphorylation of Akt in endothelial
cells that is linked to cytoprotective functions.89 The fact
that different ligands induce different signaling path-
ways via the same receptor, of which one employs G
protein-dependent signaling (TRAP) and the other initi-
ates β-arrestin 2-dependent signaling (TR47), is highly
indicative that PAR1 can induce biased signaling
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(Figure 3).91 Presumably the thrombin generated TRAP-
like tethered-ligand induces a subset of PAR1 conforma-
tions that preferentially employs G protein-dependent
signaling, whereas the APC generated TR47-like teth-
ered-ligand induces a different spectrum of PAR1 con-
formations that recruit β-arrestin 2-dependent signaling.
Thus, non-canonical activation of PAR1 by APC at
Arg46 and canonical activation of PAR1 by thrombin at
Arg41 can understandably mediate the often opposite
effects of thrombin and APC because each protease gen-
erates different tethered-ligand agonists that utilize dif-
ferent signaling pathways with different functional con-
sequences. 

Relative contributions of APC’s anticoagulant
and cytoprotective activities 

Because of its multiple biological activities, APC and
the protein C pathway components have important roles in
complex and challenging medical disorders, and provide
potential opportunities for pharmacological treatment
strategies in thrombosis, inflammation, and ischemic
stroke.15,92,93 Although APC conveys beneficial effects in
numerous different in vivo disease models, not all APC
activities are necessarily beneficial. Based on the notion
that the substrates and co-factors for APC’s anticoagulant
activity (phospholipids, protein S and FVa) differ from
APC’s cytoprotective effects (EPCR and PAR1), engi-
neered APC mutants with cytoprotective-selective activi-
ties or anticoagulant-selective activities allowed the inter-
rogation of the differential requirements for APC benefi-
cial activities in vivo.67,94,95 Targeted disruption of the inter-
action of APC with protein S (PS) (Leu38Asp-APC) or
with FVa results in cytoprotective-selective APC mutants
such as, Arg222Cys/Asp237Cys (stabilizing the 70-80
loop, Arg229Ala/Arg230Ala-APC, Lys191Ala/
Lys192Ala/Lys193Ala (a.k.a. 3K3A-APC) or a combina-
tion of the latter two (a.k.a. 5A-APC) (Figure 4).11,65,94-97

Targeted disruption of APC binding to EPCR while leav-
ing phospholipid binding relatively intact (Leu8Gln-
APC), or disruption of a region on APC that is required for
cleavage of PAR1 (Glu330Ala and Glu333Ala), yields
anticoagulant-selective APC mutants.98,99 Glu149Ala-
APC, another anticoagulant-selective mutant, provides a
challenging test of our current understanding of the cyto-
protective protein C pathway, as its lack of cytoprotective
activities remains enigmatic.67 Cytoprotective-selective
but not anticoagulant-selective APC mutants provide ben-
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Figure 3. Induction of biased signaling by canonical and
non-canonical activation of PAR1.  Schematic representa-
tion of the fundamental and functional differences
between APC and thrombin-mediated PAR1 activation.
APC cleavage of PAR1 at Arg46 and the tethered-ligand
sequence generated by this cleavage starting at Asn47
(TR47) induces a subset of PAR1 conformations that pre-
fer signaling mediated by β-arrestin-2 involving activation
of the PI3K-Akt pathway and that result in activation of
barrier protective Rac1. In contrast, thrombin cleavage of
PAR1 at Arg41 and the tethered-ligand sequence generat-
ed by this cleavage starting at Ser42 (TRAP) induces a
subset of PAR1 conformations that prefer G protein-medi-
ated signaling involving activation of the ERK1/2 and that
result in activation of barrier disruptive RhoA. Thus,
depending on the activating ligand, PAR1 can recruit differ-
ent signaling pathways that result in different functional
outcomes, which has been labeled ‘biased agonism’.  The
agonist bias is thus directly related to the cleavage sites of
the tethered-ligand and the new N-terminal sequence as
represented by the TRAP peptide that exists after cleavage
at Arg41 or the TR47 peptide that exists after cleavage at
Arg46 (Mosnier et al. Biased agonism of protease-activat-
ed receptor 1 by activated protein C caused by noncanon-
ical cleavage at Arg46. Blood 2012;120:5237-46.© the
American Society of Hematology89).

Figure 4. Schematic representation of the different struc-
tural requirements for APC’s anticoagulant and cytoprotec-
tive activities. Anticoagulant activity of APC requires bind-
ing of the Gla-domain (green) to phospholipid surfaces,
interaction with protein S (PS) mediated by residues on the
Gla-domain and EGF1-domain (pink), and interactions of
exosite residues (blue) on the APC protease domain (PD)
with FVa. In contrast, cytoprotective activity of APC
requires binding of the Gla-domain to EPCR (indicated by
Leu8 (purple)), and interactions of a region on the opposite
side of the FVa exosite on protease domain of APC that
involves residues Glu330 and Glu333 (gray). 



eficial effects in models of inflammation, sepsis, and
ischemic stroke, whereas anticoagulant-selective but not
cytoprotective-selective APC mutants prevent thrombosis,
generally consistent with the concept that APC’s cytopro-
tective activities protect cells and APC’s anticoagulant
activities prevent occlusive thrombosis.67,93,94 For instance,
cytoprotective-selective 3K3A-APC or 5A-APC reduce
mortality in bacteremia and LPS-induced endotoxemia,
but anticoagulant-selective Glu149Ala-APC fails to
reduce mortality in these settings, indicating that the anti-
coagulant activity of APC that contributes to bleeding is
dispensable for reducing mortality from sepsis.67,94

Comparable results have been obtained for APC protec-
tion in ischemic stroke and neurodegenerative disease.93 In
contrast, cytoprotective-selective 5A-APC fails to delay
time to first occlusion in an acute carotid artery thrombo-
sis model, whereas anticoagulant-selective Glu149Ala-
APC effectively delays time to first occlusion as anticipat-
ed.67 Interestingly, and contrary to expectations, anticoag-
ulant-selective Glu149Ala-APC but not cytoprotective-
selective 5A-APC mitigates toxicity induced by lethal
total body irradiation.100 Thus, depending on insult or dis-
ease model some activities of APC mediate beneficial
effects, whereas other APC activities are dispensable or
even harmful. 

Conclusions

A concerted effort by many has resulted in several
important discoveries concerning the protein C pathway in
the last decade. These important advances include novel
insights into the structure-function relation of APC with its
multiple co-factors, receptors and substrates. The discov-
ery of a novel cytoprotective protein C pathway that is
independent of APC anticoagulant activities and conveys
activities directly on cells through interactions with cellu-
lar receptors such as EPCR and PAR1 exemplifies another
major advance in the last decade. The subsequent search
for molecular mechanisms to explain these remarkable
effects of APC on cells has provided some initial clues as
to the fundamental differences and contrasting functional
effects between APC and thrombin-mediated initiation of
PAR1-dependent cell signaling. Nevertheless, many unan-
swered questions still remain. The notion that PAR1 can
initiate biased signaling with different and often opposite
outcomes provides an intriguing challenge for ongoing
and future basic and translational research into the protein
C pathway and PAR1 structure-function. Biased signaling
by PAR1 is especially relevant and helpful for interpreta-
tion of recent outcomes of large phase III clinical trials
that evaluated the anti-thrombotic effects of PAR1 antag-
onists, as these PAR1 antagonists were associated with
increased bleeding, especially intracranial bleeding.101 In
this regard, 2nd generation PAR1 compounds that antago-
nize PAR1-dependent G protein-mediated signaling but
not β-arrestin 2-dependent signaling may provide thera-
peutically relevant entities, especially since APC, although
an anticoagulant, prevented bleeding in the brain associat-
ed with profibrinolytic therapy.102

Perhaps the most striking advancement in the last
decade that impacts our current view of APC’s multiple
activities and the regulation thereof relates to the struc-
ture-function analysis of the protein C pathway. The

notion that APC’s anticoagulant activity requires the APC
Gla-domain to bind phospholipids and the APC protease
domain to interact with FVa and FVIIIa, aided by protein
S versus APC’s cytoprotective activities that require the
APC Gla-domain to bind to EPCR and the APC protease
domain to interact with PAR1, led to new investigation
into the extended exosite on the protease domain of APC
that is required for interactions with FVa and FVIIIa.
Observations that the FVa exosite on APC is not required
for APC interactions with PAR1, but instead that APC
interaction with PAR1 requires a negatively charged
region on the other side of the protease domain, provided
a way to separate APC anticoagulant activities from its
cytoprotective activities. Pharmacological applications of
these activity-selective APC mutants have provided
unique insights into the relative contributions and require-
ments of anticoagulant versus cytoprotective activities of
APC for its beneficial effects in numerous in vivo injury
and disease models. In addition, activity-selective APC
mutants allow for the exploration of new avenues in trans-
lation, pre-clinical and clinical research. For instance, the
cytoprotective-selective APC 3K3A mutant has recently
entered phase I clinical testing for applications in ischemic
stroke.103

In summary, APC has multiple activities that require
assembly of APC in macromolecular complexes supported
by interactions of APC with co-factors and by exosite
interactions on the protease domain of APC with its differ-
ent substrates. These exosite interactions are overlapping
or partially overlapping for some substrates, whereas for
other substrates they are unique and non-overlapping.
Although the novel advances of the last decade provide
unique insights into how a single enzyme can mediate
multiple biologically and therapeutically relevant activi-
ties, information on spatial orientation of the various ter-
nary APC co-factor-substrate complexes is limited and
much remains unknown. Overall, the protein C pathway
provides plentiful opportunities for basic research on the
structure-function and molecular mechanisms of its multi-
ple activities, as well as exciting avenues for translational
research with potential therapeutic applications in com-
plex diseases, such as the treatment of thrombosis,
ischemic stroke, inflammatory disease, atherosclerosis,
and vascular disease. 
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Evolution of thrombophilia testing

Introduction

To our knowledge, the term ‘thrombophilia’
was first used by Nygaard and Brown in 1937
when they described sudden occlusion of the
large arteries, sometimes with co-existent
venous thrombosis.1 In 1956, Jordan and
Nandorff extensively reviewed their own and
published cases on the familial tendency in
thrombo-embolic disease.2 Nowadays, the
term is generally used for a laboratory abnor-
mality, most often in the coagulation system,
which increases the risk of venous throm-
boembolism (VTE), i.e. venous thrombosis in
any site or pulmonary embolism. In the past
half century, thrombophilia has evolved from a
very rare genetic disorder to a highly prevalent
trait. This evolution is an immediate conse-
quence of increasing insight into the blood
coagulation system, as well as into genetic
research possibilities, that made it possible to
search for specific candidate abnormalities in
the coagulation proteins and their encoding
genes. Nowadays, some form of thrombophil-
ia can be identified in approximately half of
the patients presenting with VTE. Testing has
increased tremendously for various indica-
tions,3 but whether the results of such tests
help in the clinical management of patients has
not been settled.4,5 In this educational session,

we give a short overview of the history of
thrombophilia research and review the cur-
rently most commonly tested thrombophilias,
with a focus on an evidence-based approach to
justify testing for thrombophilia in various
patient groups. 

A short history of thrombophilia
research

Research into thrombophilia started by
investigating candidate proteins or genes in
highly thrombophilic families and linking
abnormalities with the clinical phenotype
within these families. As a next step, findings
were confirmed in case control studies. These
showed increased risk compared to controls,
often taken from the general population. For
clinicians and patients, an absolute risk esti-
mate is more appropriate to guide decisions
regarding prevention or treatment, and this
was the subject of family studies of consecu-
tive probands with a specific thrombophilic
defect. The huge progress in genetic and bioin-
formatic techniques now allows all kinds of
searches to be made, both in population-
derived studies of cases with VTE and con-
trols, and in thrombophilic families.6-8

In 1965, Egeberg identified a deficiency of the
physiological anticoagulant antithrombin in a

Thrombosis

Thrombophilia can be identified in many patients presenting with venous thromboembolism (VTE).
Whether the results of such tests help in the clinical management of patients has not been settled.
Thrombophilia testing in asymptomatic relatives may be useful in families with antithrombin, protein
C or protein S deficiency, or homozygosity for factor V Leiden, but is limited to women who intend to
become pregnant or who would like to use oral contraceptives. Careful counseling with knowledge of
absolute risks helps patients make an informed decision in which their own preferences can be taken
into account. Patients who have had VTE and have thrombophilia are, at most, at a slightly increased
risk for recurrence. In the absence of trials that compared routine and prolonged anticoagulant treat-
ment in patients testing positive for thrombophilia, testing for such defects to prolong anticoagulant
therapy cannot be justified. Diagnosing antiphospholipid syndrome in patients with VTE and in women
with recurrent miscarriage usually leads to a change in patient management, although the evidence
to support this is limited. Over the past half century there has been an increase in our knowledge and
greater possibilities for genetic testing have become available. Despite this, testing for thrombophilia
serves only a limited purpose and should not be performed on a routine basis.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe currently established thrombophilias;
- describe the risks of clinical manifestations associated with thrombophilias; 
- discuss the pros and cons of thrombophilia testing in various clinical settings.
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Norwegian family in which several members suffered from
venous thrombosis.9 In the early 1980s, deficiencies of the
other anticoagulant proteins, i.e. protein C and protein S,
were discovered as hereditary risk factors of VTE.10,11 At this
time, the genes could be cloned, and since then numerous
mutations in the genes encoding antithrombin, protein C and
protein S have been identified as underlying causes of low
plasma levels of the anticoagulant proteins.12-14 Another
decade later, in 1993, Dahlbäck described the phenomenon
of a poor anticoagulant response to activated protein C
(APC), i.e. APC resistance, in a Swedish family with a high
tendency of venous thrombosis.15 In the original paper,
Dahlbäck proposed that APC resistance was best explained
by an inherited deficiency of a previously unrecognized
cofactor to APC, after having ruled out several possible
mechanisms, including deficiencies of protein S, protein C,
or linkage with polymorphisms in the factor VIII or Von
Willebrand factor genes. He then showed that this alleged
‘co-factor’ was identical to coagulation factor V.16 Soon
thereafter, several laboratories independently reported the
underlying genetic defect: a single G to A substitution in the
gene of factor V at nucleotide position 1691, resulting in an
amino acid change at position 506, the first cleavage site of
factor Va for APC (FV Q506, also named FV Leiden).17-20 In
1996, genetic analysis of candidate factor prothrombin
revealed a G to A transition at position 20210 that was quite
common in patients with VTE who had a family history of
VTE. The mutation was linked to elevated levels of pro-
thrombin.21 Since then, various more common genetic vari-
ants that increase the risk of VTE to a greater or lesser extent
have been identified and are included in diagnostic panels of
thrombophilia testing.22 For the more common thrombophil-
ias that increase the risk at least 2-fold, a large number of
clinical studies have led to reliable estimates of the relative
and absolute risk for VTE; these will be summarized in this
review. 

Current thrombophilia test panel

The currently most commonly tested inherited throm-
bophilias include deficiencies of antithrombin, protein C,
or protein S, and the gain-of-function mutations factor V
Leiden and prothrombin G20210A, that impact either the
anticoagulant or procoagulant pathways.4 Lupus antico-
agulant, anticardiolipin antibodies, and anti-ß2-glycopro-
tein1 antibodies, which are laboratory features of the
acquired thrombophilic antiphospholipid syndrome, are
also generally included in a thrombophilia testing panel.23

Elevated levels of several coagulation factors, including
factors VIII, IX and XI, also increase the risk of VTE.24-26

Although the levels of coagulation factors are in part
determined genetically, factor VIII also increases with
age and during various inflammatory diseases including
VTE. It is worthy of note that some laboratories also
include other, less well-established polymorphisms in
their thrombophilia panel for which clinical implications
are most uncertain. Examples are MTHFR 677TT and
PAI-1 4G/5G that have at most only a weak association
with VTE.6

Epidemiology of thrombophilia

General considerations

Thrombophilic abnormalities can be either acquired or
inherited. An example of acquired thrombophilia is the
antiphospholipid antibody syndrome that is characterized
by a tendency toward venous or arterial thrombosis,
recurrent pregnancy loss or late pregnancy-related com-
plications, in combination with persistent lupus anticoag-
ulant or antiphospholipid antibodies. Furthermore, there
are many acquired and/or transient conditions that lead to
a prothrombotic state including cancer, surgery, strict
immobilization, pregnancy and the postpartum period,
and use of estrogen-containing medication, such as oral
contraceptives and hormone replacement therapy.
Although the term thrombophilia was traditionally used
to apply to patients with unusual manifestations of VTE,
such as recurrent spontaneous episodes, thrombosis at a
young age, a strong family history, or thrombosis in an
unusual site, we now know that thrombophilia tends to
increase the risk for any episode of venous thrombosis or
pulmonary embolism. Approximately half of the patients
with inherited thrombophilia will develop their first VTE
related to an acquired or transient prothrombotic risk sit-
uation. Furthermore, despite the fact that thrombosis at a
young age was assumed to be a criterion for thrombophil-
ia, and the mean age at time of a first thrombotic age is
approximately ten years lower than in the general popula-
tion, the vast majority of patients will have the first
episode when they are over 45 years of age; a threshold
that is often used to justify thrombophilia testing. The the-
oretical concept is that patients with thrombophilia have
an intrinsic prothrombotic state which in itself is insuffi-
cient to cause thrombosis, but may lead to an event when
superimposed on clinical risk factors, including increas-
ing age.27 It is also likely that selective testing in families
with a strong history of VTE, and consequently co-segre-
gation of known and unknown genes in the early days of
thrombophilia research, has resulted in a perceived
stronger risk increase than more contemporary studies
have established.28,29

Prevalence of thrombophilia and association with various
clinical conditions

Table 1 shows the prevalence of the various established
thrombophilias in the general population, as well as their
relationship with first and recurrent episodes of VTE,
arterial thrombosis, and pregnancy complications. These
defects are consistently associated with a first episode of
VTE, with relative risk increases of 2 to 10.4,30 However,
inherited thrombophilias only modestly increase the risk
of recurrent episodes.4,31 Also, the association between
thrombophilias and arterial thrombosis or pregnancy
complications is not consistent.32,33 Nevertheless, approx-
imately half of all thrombophilia tests are being per-
formed in the latter clinical settings.3 The prevalence of
persistent lupus anticoagulant or antibodies against phos-
pholipid in the general population is not well known,
since in most population-based studies these were only
assessed once.4
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Pros and cons of thrombophilia testing
according to clinical factors

Testing for thrombophilia to modify the risk of a first VTE

In clinical practice, requests for thrombophilia testing
often come from asymptomatic individuals with a family
history of VTE, in whom the index patients may or even
may not have a known specific thrombophilic defect.
Having a family history of VTE is a very poor predictor of
the presence of thrombophilia.34,35 However, VTE in one
or more first degree relatives increases the risk of VTE by
approximately 2-fold in the absence of an inherited throm-
bophilic defect, but even more so when both are present.35

Still, a potential advantage of testing patients with VTE
for thrombophilia may be the identification of asympto-
matic family members in order to take preventive meas-
ures if tested positive, and to withhold such measures if
relatives have tested negative. An important requisite is
that a test result does indeed differentiate between carriers
and non-carriers in terms of their risk for a first episode of
VTE. 

Table 2 summarizes the absolute risks for a first episode
of VTE as assessed in several retrospective and prospec-

tive family cohort studies with a similar design that have
been summarized in a previous review.4 The overall annu-
al incidence of a first VTE in individuals with antithrom-
bin, protein C or protein S deficiency is approximately
1.5%, whereas this risk is approximately 0.5% for carriers
of the factor V Leiden or prothrombin 20210A mutation.
These estimates roughly correspond with multiplying the
baseline risk in the general population with the relative
risk estimates as listed in Table 1. Obviously, the 2% annu-
al major bleeding risk associated with continuous antico-
agulant treatment with vitamin K antagonists outweighs
the risk of VTE.36 Table 2 also shows that during high-risk
situations such as surgery, immobilization, trauma, preg-
nancy, the postpartum period, and during the use of oral
contraceptives the absolute risk is generally low, with the
exception of women with some defects who use oral con-
traceptives or who are pregnant. 

For women who wish to use oral contraceptives and
who have a positive first degree relative with VTE and a
known thrombophilic defect, one can estimate the effect of
avoidance of oral contraceptives on the number of pre-
vented episodes of VTE by means of thrombophilia test-
ing or, alternatively, by using a positive family history
without thrombophilia testing. The results are listed in
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Table 1. Prevalence of thrombophilia and relative risk estimates for various clinical manifestations.

Antithrombin Protein C Protein S Factor V Prothrombin Lupus Anti cardiolipin Anti �2 GPI 
deficiency deficiency deficiency Leiden 20210A mutation anticoagulant* antibodies* antibodies

Prevalence in the 0.02% 0.2% 0.03-0.13% 3-7% 0.7-4% 1-8% 5% 3.4%
general population

Relative risk for a first 
venous thrombosis 5-10 4-6.5 1-10 3-5 2-3 3-10 0.7 2.4

Relative risk for recurrent 
venous thrombosis 1.9-2.6 1.4-1.8 1.0-1.4 1.4 1.4 2-6 1-6 -

Relative risk for arterial No association No consistent No consistent 1.3 0.9 10 1.5-10 -
thrombosis association association

Relative risk for pregnancy 1.3-3.6 1.3-3.6 1.3-3.6 1.0-2.6 0.9-1.3 No consistent data No consistent data -
complications

Figures are derived from studies that are reviewed in detail elsewhere.4 *In most studies, presence of these thrombophilic risk factors was only assessed once.

Table 2. Estimated incidence of a first episode of VTE in carriers of various thrombophilias (data apply to individuals with
at least one symptomatic first-degree relative).

Antithrombin, protein C, Factor V Leiden, Prothrombin 20210A mutation Factor V Leiden, 
or protein S deficiency heterozygous homozygous 

Overall (%/year, 95%CI) 1.5 (0.7-2.8) 0.5 (0.1-1.3) 0.4 (0.1-1.1) 1.8 (0.1-4.0)*

Surgery, trauma, or immobilization (%/episode, 95%CI)† 8.1 (4.5-13.2) 1.8 (0.7-4.0) 1.6 (0.5-3.8) -

Pregnancy (%/pregnancy, 95%CI) 4.1 (1.7-8.3) 2.1 (0.7-4.9) 2.3 (0.8-5.3) 16.3#

During pregnancy, %, 95%CI 1.2 (0.3-4.2) 0.4 (0.1-2.4) 0.5 (0.1-2.6) 7.0#

Postpartum period, %, 95%CI 3.0 (1.3-6.7) 1.7 (0.7-4.3) 1.9 (0.7-4.7) 9.3#

Oral contraceptive use (%/year of use, 95%CI) 4.3 (1.4-9.7) 0.5 (0.1-1.4) 0.2 (0.0-0.9) -
Figures are derived from numerous family studies which are reviewed in detail elsewhere.4 †These risk estimates reflect to a large extent the situation before thrombosis prophylaxis was routine patient care. *Based on
pooled OR of 18 (8-40) and an incidence of 0.1% in non-carriers. #Data from family studies; risk estimates lower in other settings.



Table 3, in which the first column shows the observed
incidence of VTE during one year of oral contraceptive
use in carriers and non-carriers from thrombophilic fami-
lies. From the risk difference between carriers and non-
carriers (second column) the number of women who need
to refrain from oral contraceptive use to prevent one
episode of VTE can be calculated (third column). Table 3
clearly indicates that women with antithrombin, protein C
or protein S deficiency have a high absolute risk of VTE
provoked by use of oral contraceptives. However, in these
families, women without a deficiency also have a marked-
ly increased risk of oral contraceptive-related VTE com-
pared to pill users from the general population (0.7% vs.
0.04% per year of use), reflecting a selection of families
with a strong thrombotic tendency in which yet unknown
thrombophilias have co-segregated. Thus, although selec-
tive avoidance of oral contraceptive use prevents VTE
episodes in deficient women, for women from these fami-
lies a negative thrombophilia test may lead to false reas-
surance. The risk estimates are very different for the more
common and less severe thrombophilias, such as factor V

Leiden and the prothrombin 20210A mutation, with a
large number of women needing to avoid use of oral con-
traceptives to avoid 1 VTE, and 666 study subjects needed
to power the results. Also, from these families, women
without the mutation have a higher incidence of pill-relat-
ed VTE than women in the general population (0.2% vs.
0.04% per year of use).

Table 4 indicates the number of study subjects needed to
test to initiate prophylactic measurements around pregnan-
cy, again applicable to women from thrombophilic fami-
lies. For women with antithrombin, protein C or protein S
deficiency, or those who are homozygous for factor V
Leiden, the risks of 4% and 16%, respectively, during preg-
nancy and the postpartum period may outweigh the nui-
sance of daily subcutaneous low molecular weight heparin
(LMWH) injections with frequently occurring skin reac-
tions, and the very small risk of severe complications of
anticoagulant therapy during pregnancy.40.42 However, the
optimal dose of LMWH prophylaxis in pregnancy has not
been established and the most often used regimen of low-
dose LMWH is certainly not 100% effective.42,43 Hence,
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Table 4. Estimated number of asymptomatic thrombophilic women who should use LMWH prophylaxis during pregnancy
and/or the postpartum period to prevent pregnancy-related VTE, and estimated number needed to test. 

Thrombophilia Risk of VTE Risk difference per N. using prophylaxis N. of female relatives 
per pregnancy,§ % 100 women to prevent 1 VTE^ to be tested

Antithrombin, protein C, or protein S deficiency 
Deficient relatives 4.1* 3.6 28 56
Non-deficient relatives 0.5*

Factor V Leiden or prothrombin 20210A mutation, heterozygous
Relatives with the mutation 2.0* 1.5 66 132
Relatives without the mutation 0.5*

Factor V Leiden or prothrombin 20210A mutation, homozygous
Homozygous relatives 16.0 15.5 6 24
Relatives without the mutation 0.5

Family history of VTE
General population, no family   history 0.5# n/a 200 none
General population, positive family history 1.0# 0.5 200 none

§Antepartum and postpartum combined. *Based on family studies as outlined in Table 2. #Based on a population risk of pregnancy-related VTE of 0.5% per pregnancy,39 and a relative risk of 2 of VTE by having a positive
family history.35 ^These estimates apply to women with a positive family history of VTE and assume an unrealistic 100% efficacy of prophylaxis with LMWH.

Table 3. Estimated number of asymptomatic thrombophilic women or women with a positive family history for VTE who
should avoid using oral contraceptives to prevent one VTE, and estimated number needed to test.

Thrombophilia Risk on OC Risk difference per N. not taking OC to N. of female relatives 
per year, % 100 women prevent 1 VTE to be tested

Antithrombin, protein C, or protein S deficiency 
Deficient relatives 4.3* 3.6 28 56
Non-deficient relatives 0.7*

Factor V Leiden or prothrombin 20210A mutation
Relatives with the mutation 0.5* 0.3 333 666
Relatives without the mutation 0.2*

Family history of VTE
General population, no family history 0.04# 0.03 3333 none
General population, positive family history 0.08# 0.06 1667 none

*Based on family studies as outlined in Table 2. #Based on a population baseline risk of VTE in young women of 0.01% per year,37 a relative risk of VTE by use oral contraceptives of 4,38 and a relative risk of 2 of VTE
by having a positive family history.35 OC: oral contraceptives.



the figures in Table 4 underestimate the true number of
women that need to use prophylaxis (and be tested prior to
this decision) in order to avoid pregnancy-related VTE.
Whether the absolute risks of pregnancy-related episodes
justifies prophylaxis for eight months during pregnancy, or
the shorter postpartum period of six weeks is a matter of
choice for the physician and patient. The risk of pregnan-
cy-related VTE in women from these families who do not
have the inherited thrombophilic defect is approximately
0.5%, compared to 0.2% in the general population.39

Hence, withholding prophylaxis from women from throm-
bophilic families who do not have the defect is supported
by evidence from well-designed studies of individuals in
the same clinical context.
Thrombophilia testing in patients with venous thromboembolism 

Thrombophilia testing is most often considered in
patients with VTE, particularly if they are young, have
recurrent episodes, have thrombosis at unusual sites, or
have a positive family history for the disease. However,
although such a strategy may lead to an increased yield of
testing, the main question is whether a positive test result
should change patient management. VTE tends to recur,
with a cumulative incidence of a second episode of
approximately 25% in five years. Patients with a transient
clinical risk factor such as surgery eliciting their first VTE
have a very low risk of recurrence.44,45 However, whether
the presence of thrombophilia is able to predict recurrence
is much less clear, with conflicting results in various stud-
ies that compared the prevalence of thrombophilia in
patients with recurrent VTE with those in patients without
recurrence.4, 31 The relative risk of recurrent VTE for car-
riers of inherited thrombophilia found in most population-
based cohorts is estimated to be approximately 1.5 for
most defects (Table 1). In a large pooled study of throm-
bophilic families, we observed a cumulative incidence of
VTE recurrences after ten years of 55% in relatives with a
deficiency of antithrombin, protein C or protein S defi-
ciency, as compared to 25% in those with the factor V
Leiden mutation, the prothrombin 20210A mutation or
high levels of FVIII.46 For homozygous or double het-
erozygous carriers of factor V Leiden and/or the prothrom-
bin 20210A mutation, the estimated risks of recurrence
vary widely between studies, with a pooled estimate of 2.7
(95%CI: 1.2-6.0).47,48 Whether such a risk increase war-
rants prolongation of the duration of anticoagulation, par-
ticularly after provoked VTE, is a matter of debate.49,50

Furthermore, given the rarity of homozygous or double
heterozygous thrombophilias in unselected patients with
VTE, the efficiency of testing is obviously very low.5,51

A randomized controlled trial in which testing for
thrombophilia in patients with a first episode of VTE is the
intervention, and recurrent VTE is the outcome, would
provide the ultimate evidence to decide whether this is jus-
tified. Testing should lead to a pre-defined strategy to pre-
vent recurrence with, for instance, a longer or indefinite
duration of anticoagulant therapy. To our knowledge, no
such trials have been successfully performed.52 In order to
investigate whether testing for thrombophilia reduces the
risk of recurrent VTE in patients after a first episode, for
instance by prolonged use of anticoagulation, avoidance
of high-risk situations, or intensified prophylaxis in high-
risk situations, we selected 197 patients from the MEGA
case control study who had had a recurrent event during

follow up.53 We compared the proportion of these patients
who had been tested with the proportion of 324 control
patients who did not have a recurrence during follow up,
matched for age, sex, year of event and geographical
region. Thrombophilia tests were performed in 35% of
cases and in 30% of controls. The OR for recurrence was
1.2 (95%CI: 0.9-1.8) for tested versus non-tested patients,
indicating that testing, with real-life clinical decisions
based on the outcome of testing, does not reduce the risk
of recurrent VTE in patients who have experienced a first
episode. For patients with antiphospholipid syndrome the
issue is more complicated. It is a heterogeneous syndrome,
both clinically as well as due to problems in standardiza-
tion of laboratory tests. There is no evidence to define the
optimal treatment duration of consecutive patients with
VTE and persistent laboratory criteria for antiphospho-
lipid syndrome, although it is widely recommended to
treat such patients for a prolonged period with anticoagu-
lant medication.54 If the prevalence of persistently positive
tests in patients with VTE is 10%, 10 patients would need
to be tested in order to identify one patient with antiphos-
pholipid syndrome in whom prolonged anticoagulant
treatment should be initiated. This seems to be a reason-
able number, but most clinicians only test for antiphospho-
lipid syndrome in patients with VTE in the absence of pro-
voking risk factors, or when other clinical manifestations
raise suspicion.

Vitamin K antagonists at a higher than normal INR
intensity do not decrease the risk of recurrence in patients
with well-defined antiphospholipid syndrome, as com-
pared to vitamin K antagonists at a target intensity of 2.0
to 3.0.55,56

Thrombophilia testing in patients with arterial cardiovas-
cular disease

Numerous studies have investigated the association
between thrombophilia and arterial cardiovascular dis-
eases, and yielded conflicting results.32 There is no evi-
dence that the presence of inherited thrombophilia should
lead to different secondary prevention, and testing in this
clinical setting is not justified.
Thrombophilia testing in women with pregnancy complica-
tions

The association between inherited thrombophilia and
pregnancy complications varies depending on the type of
thrombophilia and the complication (Table 1).33 Pregnancy
complications are amongst the clinical manifestations of
the antiphospholipid syndrome.57 Aspirin and heparin
treatment is suggested for women with antiphospholipid
syndrome and recurrent miscarriage, although the evi-
dence that this is efficacious is very limited.42,58

Whether the association between pregnancy complica-
tions and inherited thrombophilia is causal is controver-
sial, as many other factors play a role in this risk.59,60

Therapeutic options to prevent pregnancy complications
in women with inherited thrombophilia, like in antiphos-
pholipid syndrome, include aspirin as well as LMWH.
There is no current evidence supporting treatment since
observational research is hampered by poor methodology
or inconsistent results.60,61 In women with unexplained
recurrent miscarriage, two recent randomized controlled
trials, i.e. the ALIFE and the SPIN studies, were unable to
demonstrate a beneficial effect of anticoagulant therapy
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compared to no pharmacological treatment or placebo.62,63

The HABENOX trial also did not demonstrate a differ-
ence in live birth between three active treatment arms, i.e.
LMWH combined with aspirin, LMWH alone, and aspirin
alone, in 207 women with recurrent pregnancy loss with or
without inherited thrombophilia.62 A subgroup analysis did
not suggest a differential effect amongst the 25% women
with thrombophilia. Although the ALIFE study was under-
powered for subgroup analyses, an a priori planned analy-
sis in women with inherited thrombophilia showed a rela-
tive risk for live birth of 1.31 (95%CI: 0.74 to 2.33) for the
combined intervention compared to placebo, and 1.22
(95%CI: 0.69 to 2.16) for aspirin, with corresponding
absolute difference in live birth rates of 16.3% (95%CI:
−18.2 to 50.8) and 11.8% (95%CI: −21.1 to 44.6), respec-
tively.62 The possibility that one or both of these interven-
tions might be beneficial in such women warrants further
study in adequately powered, controlled trials. We have
just started recruiting in the multicenter ALIFE2 trial
(www.trialregister.nl;  NTR3361) that compares LMWH
with standard pregnancy care in women with thrombophil-
ia and a history of recurrent miscarriage. 

Some trials have shown benefit of anticoagulant treat-
ment for specific pregnancy complications in women with
inherited thrombophilia. First, women with a single previ-
ous pregnancy loss after ten weeks’ gestation and who had
heterozygous factor V Leiden mutation, prothrombin
G20210A mutation, or protein S deficiency, were allocat-
ed to enoxaparin 40 mg once daily (n=80) or to aspirin 100
mg (n=80).65 Women who were treated with enoxaparin
had a higher chance of a live birth than those allocated to
aspirin (86% and 29%, respectively, risk difference 57%,
odds ratio 15.5, 95%CI: 7 to 34). However, methodologi-
cal issues were raised regarding concealment of alloca-
tion, lack of generalizability due to very stringent inclu-
sion criteria, and an unusually high prevalence of late mis-
carriage in the source cohort.66 Furthermore, women who
experienced an early miscarriage after randomization were
not taken into account.67 The results of this single study
have not been implemented in recent evidence-based
guidelines.42 Second, for women at moderate to high risk
of preeclampsia, aspirin provides a modest benefit in
reducing this risk, whereas anticoagulants are not consid-
ered useful.42,68,69 The recently published FRUIT trial eval-
uated the effect of adding LMWH to standard aspirin in
139 women who had had previous early-onset preeclamp-
sia, HELLP syndrome, eclampsia and/or small for gesta-
tional age babies and had inherited thrombophilia without
antiphospholipid antibodies.70 LMWH with aspirin
reduced the incidence of early onset recurrent hyperten-
sive disorders  (risk difference 8.7%, 95%CI: 1.9-15.5%).
Whether this single, relatively small trial justifies testing
and subsequent treatment in all women with a history of
severe preeclampsia has not yet been settled.

In conclusion, given the currently available evidence,
using anticoagulant therapy to improve the prognosis of a
pregnancy in women with recurrent pregnancy loss who
do not have a diagnosis of antiphospholipid syndrome
must be considered experimental.42,61 Furthermore, for
women with other pregnancy complications including
preeclampsia, testing for antiphospholipid syndrome or
inherited thrombophilia at present can not be justified.42

General cons of thrombophilia testing
A disadvantage of testing patients with a VTE for

thrombophilia is the high cost involved. Although two
studies concluded that testing for thrombophilia in some
scenarios could indeed be cost-effective, the underlying
assumptions from inconsistent observational studies seri-
ously hamper their interpretation.71,72 The psychological
impact and consequences of knowing that one is a carrier
of a genetic thrombophilic defect are considered to be lim-
ited, although a qualitative study described several nega-
tive effects of both psychological and social origin.73,74

Furthermore, difficulties in obtaining life or disability
insurance are frequently encountered by individuals who
are known carriers of thrombophilia, regardless of
whether they are symptomatic or asymptomatic.73

Future of thrombophilia testing

Whereas a somewhat nihilistic approach may be the result
of the currently available evidence in favor of thrombophilia
testing in clinical practice, this obviously should not prevent
investigators from acquiring more insight. To be able to bet-
ter predict risk to the point where it will enable evidence-
based decisions to be made would be of particular interest
for patients with all clinical indications. It is possible that in
the future, multiple SNP analyses of genes inside or outside
the coagulation system will further improve and become fea-
sible in clinical practice.75,76

Conclusion

Despite the increasing knowledge about the etiology of
VTE, testing for thrombophilia serves only a limited pur-
pose and should not be performed on a routine basis.
Thrombophilia testing in asymptomatic relatives may be
useful in families with antithrombin, protein C or protein
S deficiency, or for siblings of patients who are homozy-
gous for factor V Leiden, and is limited to women who
intend to become pregnant or who would like to use oral
contraceptives. Careful counseling with knowledge of the
absolute risks helps patients make an informed decision in
which their own preferences can be taken into account.
Observational studies show that patients who have had
VTE and have thrombophilia are, at most, at a slightly
increased risk of recurrence. Furthermore, no beneficial
effect on the risk of recurrent VTE was observed in
patients who had been tested for inherited thrombophilia.
In the absence of trials that compare routine and prolonged
anticoagulant treatment in patients testing positive for
thrombophilia, testing for such defects to prolong antico-
agulant therapy cannot be justified. Diagnosing antiphos-
pholipid syndrome would potentially lead to changes in
treatment in selected patients with VTE and women with
recurrent miscarriage, although the evidence to support
this is limited.
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Optimal duration of venous thrombosis treatment

Introduction

Venous thromboembolism (VTE), a syn-
drome comprising deep vein thrombosis and
pulmonary embolism, is a common and poten-
tially fatal disease. The incidence ranges
between 1-2 per 1000 person-years and the
short-term mortality rate is approximately
25%.1-3 The major goals of treatment of VTE
are to immediately restore perfusion of the
vessel, to inhibit progression and embolization
of the thrombus, and to prevent recurrence.
The recurrence risk is highest during the first
few weeks after the acute event, but never sub-
sides. It may remain as high as 10% per year
with a case-fatality rate of 3.6-12%.4-6

Recurrence can be prevented in more than
95% of patients through antithrombotic treat-
ment.7  The minimum duration of anticoagula-
tion for all patients with VTE is three months.
Reducing the duration to 4-6 weeks doubles
the risk of recurrence during the next year.8,9 

Considering a potentially high recurrence
rate, prolonged and even indefinite anticoagu-
lation may be required in some patients.
Several interventional trials have investigated
the value of extending anticoagulation from 3
to 6, 12, or 24 months, or even indefinitely.10-
16 While recurrence is effectively prevented

during treatment, the recurrence risk increases
again once anticoagulation is stopped and is
not lower than what would have been expected
after a shorter anticoagulation period.17 Thus,
after a VTE, if a high risk of recurrence is sus-
pected, patients should either be treated for
three months or for an indefinite period of
time. 

The bleeding risk is increased during antico-
agulant treatment, and has to be taken into
account when deciding on its optimal duration.
In addition, the patient’s preference and adher-
ence issues should be considered before mak-
ing a decision on long-term treatment.18

Treatment of acute and subacute
venous thromboembolism (first 3
months)

Once the diagnosis of VTE has been objec-
tively confirmed, immediate anticoagulation is
required. Up to now, this has only been
achieved by parenteral administration of
heparin or fondaparinux. Since the risk of
thrombus progression, embolization and recur-
rence does not subside within a few days, anti-
coagulation beyond the acute phase is neces-
sary. Usually, for that purpose, a vitamin K
antagonist is started simultaneously with

Thrombosis

Deciding on the optimal duration of anticoagulation is based on the risk of recurrent venous throm-
boembolism (VTE) and of bleeding during anticoagulation. The duration of anticoagulation should be
at least three months as shorter courses double the recurrence rates. At three months, anticoagulation
can be stopped in patients with a VTE provoked by a transient risk factor, as the recurrence risk is
expected to be lower than the bleeding risk during anticoagulation. Patients with unprovoked VTE are
at higher risk of recurrence and prolonged anticoagulation is currently recommended. However,
attempts are made to stratify these patients according to their recurrence risk and to identify those
with a low recurrence risk who would not benefit from extended anticoagulation. Novel approaches
to optimize the management of patients with unprovoked VTE are the use of prediction models which
link clinical patients’ characteristics with laboratory testing to discriminate between patients with a
low risk (who may discontinue anticoagulation) and those with high risk (in whom long-term antico-
agulation is justified). Moreover, new antithrombotic concepts including new oral anticoagulants or
aspirin, both of which potentially confer a lower bleeding risk and are more convenient for the
patients, have been explored for extended thromboprophylaxis. 

Learning goals

At the conclusion of this activity, participants should be able to:
- assess the recurrence risk of patients with venous thrombosis; 
- reflect on options to prevent recurrence; 
- consider benefits and risks of antithrombotic drugs to prevent recurrence; 
- decide on the optimal duration of anticoagulation after venous thrombosis.
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heparin or fondaparinux. Parenteral anticoagulation can be
discontinued after a minimum of five days provided that
the international normalized ratio (INR) is 2.0 or higher
for at least 24 h. In patients with cancer and VTE, the risk
of recurrence, and also the bleeding risk, are particularly
high.19 There is evidence from randomized interventional
trials that extended anticoagulation with low molecular
weight heparin at therapeutic dose followed by a 25%
dose reduction after four weeks is more effective than, and
as safe as, treatment with vitamin K antagonists at conven-
tional intensity.20,21 The optimal duration of secondary
thromboprophylaxis is less well defined. Since cancer
patients have a high risk of recurrence, low molecular
weight heparin should be given for at least six months.22

For the treatment of acute VTE in pregnant women,
fixed-dose, weight-adjusted subcutaneous low molecular
weight heparin is the anticoagulant of choice and should
be given at a therapeutic dose throughout pregnancy.23

Studies on the optimal duration and intensity of anticoag-
ulation are lacking. Low molecular weight heparin should
be discontinued 24 h before induction of labor or caesare-
an section, re-started at a reduced dose when it is safe to
do so, and continued for an additional 6-8 weeks. 

Recently, new oral anticoagulants have been tested in
patients with acute VTE.  Rivaroxaban, a direct factor Xa
inhibitor, is already licensed for the treatment of acute
deep vein thrombosis and pulmonary embolism.
Treatment consists of an oral dose of 15 mg twice daily for
three weeks followed by 20 mg once daily. No initial par-
enteral anticoagulant drug is required. Rivaroxaban has
similar efficacy and a lower rate of major bleeding com-
pared to conventional treatment with a parenteral antico-
agulant followed by vitamin K antagonist.24,25 The results
of a phase III study with dabigatran, an oral direct throm-
bin inhibitor, for treatment of acute VTE shows similar
efficacy and safety compared to standard treatment,26 and
licensing of the drug for this indication is awaited. The
results of interventional trials with apixaban or edoxaban,
other oral direct factor Xa inhibitors, on safety and effica-
cy for treatment of acute VTE are also awaited. 

All new oral anticoagulants are contraindicated during
pregnancy and breastfeeding, and have not been adequate-
ly studied for the treatment of VTE in cancer patients. 

Who should stop anticoagulation after three
months?

Patients in whom VTE occurs in association with a tem-
porary risk condition have a low risk of recurrence. This is
particularly true for patients with venous thrombosis after
surgery or while using hormone contraceptives.8,17,27-30 The
risk of recurrence is less well studied in patients who had
their initial venous thrombosis provoked by trauma, preg-
nancy, immobilization or long-distance travel, but is also
regarded as low. As the recurrence risk in these patients is
expected to be lower than the bleeding risk in case of
extended anticoagulation, stopping anticoagulation after
three months is recommended for all patients with VTE in
association with a temporary risk factor.7

Also in patients with a high risk of bleeding and/or poor
adherence to treatment, anticoagulation may be stopped
after three months regardless of the presence or absence of
a transient triggering risk condition.  

Who should continue anticoagulation beyond
three months?

Patients with unprovoked VTE, i.e. an event that cannot
be explained by a temporary triggering event, may have an
annual recurrence risk of as high as 10%.4 These patients
would be candidates for extending anticoagulation beyond
three months. However, despite an overall high recurrence
risk, many patients with a first unprovoked VTE will stay
recurrence free but are exposed to an unnecessary risk of
bleeding in case of extended anticoagulation. For vitamin
K antagonists, the annual risk of bleeding ranges between
1% and 3%,7,31,32 and the case-fatality rate is approximate-
ly 13%.6 Moreover, some patients dislike anticoagulation
because of the prospect of long-term medical treatment or
inconvenience in their professional life. 

There are basically two approaches that may help to
optimize the long-term management of patients with
unprovoked VTE: 1) discriminating between patients with
a low risk of recurrence and related fatalities in whom
anticoagulation can be stopped from patients with a high
risk who may indeed benefit from indefinite anticoagula-
tion; or 2) use of alternative antithrombotic concepts
which have a low risk of bleeding and/or are more conven-
ient to manage. 

Strategies to identify patients with 
unprovoked venous thromboembolism 
with a low or high recurrence risk

Thrombophilia screening
Screening for laboratory markers of thrombophilia has

been widely used with the primary aim of identifying
patients at high risk of recurrence. This so-called throm-
bophilia screening has been abandoned as the relevance of
these parameters with regard to the risk of recurrence is
either only moderate, unknown or is seen as controversial.
Importantly, most patients carry more than one risk factor
and their combined effect on the recurrence risk is largely
unknown.4 In addition, we recently reported that a large
proportion of patients with two unprovoked events have a
normal thrombophilia screening result indicating that the
absence of laboratory defects in patients with a history of
VTE does not necessarily mean that their recurrence risk
is low.4

Clinical features
Some years ago, the risk of recurrent VTE was estimat-

ed on the basis of only a few patients’ characteristics,
including absence or presence of a triggering factor, con-
comitant pulmonary embolism, previous venous thrombo-
sis or a positive family history. More recently, high quality
clinical studies led to a better understanding of the impor-
tance of clinical conditions and patients’ characteristics for
predicting the risk of recurrence. Accepted clinical fea-
tures associated with a high risk of recurrence are now
male sex, proximal deep vein thrombosis or pulmonary
embolism (as compared to distal DVT), multiple throm-
botic events, presence of the postthrombotic syndrome
and being overweight.28,33-41 Some studies28,41-43 but not
others44-47 report an association between advancing age
and an increased risk of recurrent venous thrombosis.

The usefulness of residual vein thrombosis as a predic-
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tor of recurrence is under debate. In a systematic review
and meta-analysis, residual vein thrombosis was associat-
ed with a modestly increased risk of recurrent VTE in
patients with DVT. However, residual vein thrombosis
was not a predictor of recurrent VTE in patients with
unprovoked DVT.48 Moreover, association with recurrence
risk is strongly dependent on how residual vein thrombo-
sis is defined.49 The definition of vein recanalization lacks
standardization, and assessment requires a high degree of
expertise. Thus, it is premature to make clinical decisions
on the basis of residual vein thrombosis measurements.
Global markers of fibrin and thrombin generation

VTE is a multicausal disease that may be driven by mul-
tifactorial thrombophilia. Several coagulation markers that
provide a more global measurement combining effects of
clotting or fibrinolytic disorders have been tested. Among
these, D-Dimer is the most promising and allows discrim-
ination into groups of high and low risk of recurrence. In
an Italian study, patients with a low D-Dimer after stop-
ping anticoagulation had a low risk of recurrence (4.4
recurrences per 100 patient years). Patients with high D-
Dimer in whom anticoagulation was discontinued after six
months had a 5-fold higher risk of recurrence than those
who received anticoagulation for a longer period of time
(10.9 vs. 2.0 recurrences per 100 patient years).50 We
found that patients with a first unprovoked VTE and D-
Dimer levels less than 250 ng/mL had a 60% lower recur-
rence rate than those with higher levels.51,52 In a Canadian
study, the 250 ng/mL cut off during warfarin treatment
proved to be particularly useful to identify women at low
recurrence risk.28

In a meta-analysis of patients with a first unprovoked
VTE, the timing of post-anticoagulation D-Dimer testing
(<3 weeks, 3-5 weeks, >5 weeks), patient age (<65 or >65
years), and the assay cut-off point used (500 ng/mL and
250 ng/mL) did not affect the ability of D-Dimer to distin-
guish between patients with a higher or lower risk for
recurrent VTE.53 The high negative predictive value of
recurrence of D-Dimer is independent of the presence or
absence of hereditary thrombophilia.54

Until we have the results of ongoing large clinical stud-
ies further investigating the usefulness of D-Dimer to pre-
dict recurrence, measuring D-Dimer to guide the duration
of anticoagulation in patients with unprovoked VTE can-
not be recommended for routine patient care. 
Prediction models

A novel approach for assessing the risk of recurrent
VTE consists of linking clinical patients’ characteristics
with laboratory testing. Thus far, three such scoring mod-
els have been developed. In a multicenter prospective
cohort study from Canada, 69 potential clinical and labo-
ratory predictors of recurrent VTE were assessed in 646
participants with a first, unprovoked VTE while they were
taking oral anticoagulation therapy.28 Women with less
than 2 specific characteristics (hyperpigmentation, edema
or redness of either leg, D-Dimer ≥250 μg/L or over while
taking warfarin, body mass index ≥30 kg/m2, age ≥65
years) had an annual risk of recurrent VTE of 1.6%
(95%CI: 0.3-4.6%), whereas women with 2 or more of
these findings had a much higher recurrence risk (14.1%;
95%CI: 10.9-17.3%). None of the combination of predic-
tors was useful for identifying a low-risk group of men. 

Within the frame of the Austrian Study on Recurrent
Venous Thromboembolism (AUREC), we developed the
“Vienna Prediction Model” to calculate the recurrence risk
in patients with unprovoked deep vein thrombosis and/or
pulmonary embolism. We prospectively followed 929
patients after discontinuation of anticoagulation.55 Among
several pre-selected variables, patient’s sex, thrombus
location and D-Dimer but not body mass index, factor V
Leiden, or the prothrombin mutation, were relevant pre-
dictors of the recurrence risk. Based on these variables, we
developed a nomogram that can be used to calculate risk
scores and to estimate the cumulative probability of recur-
rence in an individual patient. A web-based risk calculator
is available for ease of calculation (www.meduniwien.ac.
at/user/georg.heinze/zipfile/). 

Tosetto and colleagues analyzed data of seven prospec-
tive studies enrolling patients with a first objectively diag-
nosed VTE in an individual patient data meta-analysis.56

The patient population consisted of 1818 cases with
unprovoked VTE. Abnormal D-Dimer after stopping anti-
coagulation, age under 50 years, male sex and VTE not
associated with hormonal therapy (in women) were the
main predictors of recurrence. The score is: +2 points for
positive (abnormal) post-anticoagulation D-Dimer, +1
point for age 50 years or under, +1 point for male sex, -2
points for hormone use in women at time of initial VTE.
The annualized recurrence risk was 3.1% (95%CI: 2.3-
3.9) in patients with a score of 1 or under, 6.4% (95%CI:
4.8-7.9) in patients with a score of 2, and 12.3% (95%CI:
9.9-14.7) in patients with a so-called DASH score of 3 or
over. We believe that prediction models are suitable for
identifying patients with unprovoked VTE and a recur-
rence risk that is low enough to justify discontinuation of
anticoagulation after three months. We should wait for the
results of well-designed ongoing validation studies before
applying these models in routine care. 

Alternative antithrombotic concepts

The safety and efficacy of new oral anticoagulants for
extended anticoagulation after VTE have been tested in
phase III studies. Dabigatran has been studied in this indi-
cation in two separate trials in comparison to either place-
bo or warfarin, and publication of the complete data is
awaited. For the two factor Xa inhibitors, rivaroxaban and
apixaban, placebo-controlled data have been reported.24,57

Table 1 provides an overview of the two trials which have
already been published. Compared to placebo, all new oral
anticoagulants are highly effective in preventing recurrent
VTE. Rivaroxaban is already licensed for extended throm-
boprophylaxis after deep vein thrombosis or pulmonary
embolism. Although bleeding rates were generally low in
all these trials, none of the studies was powered to ade-
quately assess the actual bleeding risk over time.
Observation time in all the trials was limited to approxi-
mately 12 months and no data on long-term risk are avail-
able. 

Thus far, the use of aspirin has had a negligible role in
the prevention of VTE. Recently, results of two random-
ized placebo controlled trials on the use of aspirin for
extended thromboprophylaxis after VTE have been pub-
lished. In the “Warfarin and Aspirin” (WARFASA) study,
an interventional, multicenter, double-blind study which
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was run predominantly in Italy, patients with a first unpro-
voked VTE who had completed 6-18 months of oral anti-
coagulant treatment were randomly assigned to aspirin
100 mg daily or placebo.58 During a median treatment
period of 23.9 months, 28 of 205 patients taking aspirin
and 43 of 197 taking placebo had a recurrence (6.6% vs.
11.2%/year; HR 0.58; 95%CI: 0.36-0.93). One patient in
each treatment group had a major bleeding episode. 

In the Australian “Aspirin to Prevent Recurrent Venous
Thromboembolism” (ASPIRE) trial studied 822 patients
who had completed initial anticoagulant therapy after a
first unprovoked VTE receiving either aspirin 100 mg
daily or placebo.59 Median follow up was 37.2 months.

Venous thromboembolism recurred in 73 of 411 patients
assigned to placebo and in 57 of 411 assigned to aspirin
(6.5% vs. 4.8%/year; HR 0.74; 95%CI: 0.52-1.05;
P=0.09). Aspirin reduced the rate of the pre-specified sec-
ondary composite outcome (rate of VTE, myocardial
infarction, stroke, or cardiovascular death) by 34%
(8.0%/year with placebo vs. 5.2%/year with aspirin; HR
0.66; 95%CI: 0.48-0.92; P=0.01). There was no signifi-
cant between-group difference in the rates of major or
clinically relevant non-major bleedings (0.6%/year with
placebo vs. 1.1%/year with aspirin; P=0.22). Table 2
shows the combined results of the two studies with regard
to number of VTE events, major vascular events, and clin-
ically relevant bleeding. The results show a significant
reduction of 32% in the rate of recurrence of VTE and a
reduction of 34% in the rate of major vascular events with-
out an excess of bleeding.

Questions to be answered

Duration of anticoagulation in special patient populations
Patients with multiple episodes of VTE have a higher

risk of recurrence.18,19 Recurrence is effectively prevented
in these patients by indefinite anticoagulation but the
bleeding risk is substantially increased. It is not known
whether patients with multiple provoked venous thrombo-
sis also have a high risk of recurrence. The optimal treat-
ment, particularly with regard to duration of anticoagula-
tion in patients with subsegmental pulmonary embolism,
incidentally detected pulmonary embolism, or in patients
with small isolated calf vein thrombosis or muscle vein
thrombosis has not been fully studied and remains, there-
fore, a subject of debate.
Choice of anticoagulant for extended anticoagulation 

Anticoagulation with a vitamin K antagonist is standard
for patients requiring extended thromboprophylaxis after
VTE. However, data on efficacy and safety of new oral anti-
coagulants or aspirin are promising. With regard to new oral
anticoagulants, there are still some caveats and issues that
need to be addressed before clear recommendations regard-
ing their use for extended thromboprophylaxis after VTE
can be given. In all the trials, the decision as to the duration
of anticoagulation was left to the discretion of the treating
physician. Hence, the group of patients included in the
extended treatment studies was ‘pre-selected’ and, therefore,
extremely heterogeneous. To improve the decision as to who
will truly benefit from extending anticoagulation, the patient
profile needs to be better described in subgroup analyses. In
addition, more data on the bleeding risk and other potential
side effects (e.g. risk of myocardial infarction, gastrointesti-
nal bleeding) of the new anticoagulants are needed to make
decisions on a more individualized treatment. Similar con-
siderations apply when deciding on the use of aspirin for
long-term antithrombotic therapy in patients with VTE.
Overall, aspirin reduces the risk of recurrence by approxi-
mately 50%. In the two studies discussed, the annual recur-
rence rates in the aspirin group were 6.6% and 4.8%, respec-
tively. In ASPIRE, major vascular events, including myocar-
dial infarction, stroke and cardiovascular death were signifi-
cantly lower in the patients treated with aspirin.59 Aspirin
could, therefore, be an attractive option particularly in
patients with VTE and risk of cardiovascular events. 
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Table 1. Recurrence and bleeding rates of new oral antico-
agulants during thromboprophylaxis beyond three months
after venous thromboembolism.

EINSTEINext24 AMPLIFYext57

N. of patients 1197 2486

Compound Rivaroxaban Apixaban

Dose 1 x 20 mg 2 x 2.5 mg
2 x 5 mg

Control Placebo Placebo

Duration of treatment 12 months 12 months

Recurrent VTE
Study drug, n/n 8/602 32/840 (2.5 mg)

34/813 (5 mg)
Placebo, n/n 42/594 96/829
Hazard ratio (95%CI) 0.18 (0.09-0.4) 0.33 (0.22-0.48) (2.5 mg)

0.36 (0.25-0.53) (5 mg)

Bleedings (major and CRNM)
Study drug, n/n 36/602 27/840 (2.5 mg)

35/813 (5 mg)
Placebo, n/n 7/594 22/829
Hazard ratio (95%CI) 5.19 (2.3-11.7) 1.20 (0.69-2.10) (2.5 mg)

1.62 (0.96-2.73) (5 mg)
n/n: events/total patient number; CRNM: clinically relevant non-major; HR: hazard ratio; CI: confidence
interval.

Table 2. Combined results of the WARFASA and ASPIRE trials. 

Placebo Aspirin Hazard ratio (95%CI) P

Venous thromboembolism
WARFASA 43/197 28/205 0.58 (0.36-0.93) 0.02
ASPIRE 73/411 57/411 0.74 (0.52-1.05) 0.09
Pooled data 116/608 85/616 0.68 (0.51-0.90) 0.007

Major vascular events*
WARFASA 48/197 36/205 0.67 (0.43-1.03) 0.06
ASPIRE 88/411 62/411 0.66 (0.48-0.92) 0.01
Pooled data 136/608 98/616 0.66 (0.51-0.86) 0.002

Major or clinically relevant non-major bleeding 
WARFASA 4/197 4/205 0.98 (0.24-3.96) 0.97
ASPIRE 8/411 14/411 1.72 (0.72-4.11) 0.22
Pooled data 12/608 18/616 1.47 (0.70-3.08) 0.31

*Composite of venous thromboembolism, myocardial infarction, stroke, or cardiovascular death.
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Biochemistry of red cell aging in vivo and storage
lesions

Introduction

Aging of red blood cells (RBCs) in vivo and
in vitro represents a key biomedical issue. 

Human RBCs have an approximate lifespan
of 120 days in vivo. In most countries, the
shelf-life of RBC concentrates stored under
blood bank conditions is limited to 42 days.

Normal human RBCs all survive to about
the same age, which implies the existence of a
molecular countdown that triggers a series of
changes leading to removal by the reticuloen-
dothelial system (Table 1, Figure 1).1,2 These
changes share some distinct features with pro-
grammed cell death of nucleated cells, which
prompted Lang’s group to coin the term ‘eryp-
tosis’, i.e. referring to erythrocyte-specific
apoptosis.3

Storage under blood bank conditions results
in the exacerbation of most of these changes
and a shortening of RBC lifespan, a phenome-
non referred to as the ‘storage lesions’.4-6

However, it should be remembered that an

RBC concentrate unit already contains nor-
mally distributed (partly aged) RBC popula-
tions.

It is still a matter of debate as to whether and
to what extent transfusion of RBC concentrate
units older than 14 days might cause untoward
effects in certain categories of recipients (e.g.
traumatized, peri-operative and critically ill
patients).7,8 Prospective clinical trials (summa-
rized in9) currently underway may shed light
on this delicate issue, though results in very
low birthweight infants have shown no effect
of older RBC transfusions on clinical out-
comes.10 

From a biochemical standpoint, storage
lesions are only partly reversible and might
affect RBC viability and functionality on
transfusion. They might, therefore, at least the-
oretically, affect the safety and effectiveness of
the transfusion therapy with older units.4-6

This paper will attempt to review the major
aspects of RBC aging in vivo and in vitro,
while focusing on recent findings with novel

Transfusion medicine

The study of in vivo and in vitro (storage conditions) aging of red blood cells has recently taken
advantage of the introduction of mass spectrometry-based “-omics” disciplines, such as proteomics,
metabolomics and lipidomics.
In vivo and in vitro aging are characterized by shared features, including altered cation homeostasis,
alteration of metabolic fluxes via decreased enzymatic activity and progressive depletion of high
energy phosphates, increased susceptibility to oxidative stress, which in turn promotes oxidative
lesions to proteins (carbonylation, fragmentation, hemoglobin glycation) and lipids (peroxidation),
morphological changes (membrane blebbing, vesiculation). Most of these mechanisms closely resem-
ble apoptosis-like phenomena.
On the other hand, the closed system of blood bank storage in plastic bags and additive solutions
results in particular in vitro alterations to red blood cells, such as hypothermically-depressed metab-
olism, the exacerbation of oxidative stress-related phenomena, the progressive leakage of DEHP-
plasticizers, the accumulation of microvesicles shed from red blood cells in the supernatant. These
phenomena underlie the difficulties related to the extension of the shelf-life of red blood cell con-
centrates in vitro from the currently allowed threshold (42 days) up to the actual life-span of red
blood cells in vivo (120 days). 
Meanwhile, retrospective clinical and basic science evidence suggests that red blood cells stored
longer than 14 days might not be as safe and effective as fresh ones.

Learning goals

At the conclusion of this activity, the participant should understand that:
- mass spectrometry-based “-omics” (such as proteomics and metabolomics) strategies have con-

tributed to recent developments in this field of research;
- ageing of red blood cells in vivo and in vitro promotes the accumulation of reversible and irre-

versible lesions;
- in vitro storage of red blood cells (closed plastic bag system, hypothermia, additive solutions) exac-

erbates oxidative stress and accelerates aging;
- storage lesions accumulating in vitro soon after 14 days of storage are only partly reversible.

A B S T R A C T



technologies, such as mass spectrometry (MS)-based
metabolomics, proteomics, and lipidomics. These disci-
plines fit within the framework of “-omics” technologies,
whereby specific classes of biomolecules (e.g. metabo-
lites, proteins and lipids) are qualitatively and quantita-
tively investigated together.

Since aging RBCs have been shown to undergo dehy-
dration with increased density and decreased size, RBC
senescence has so far been investigated through the isola-
tion of cell populations of different mean ages based on
the increasing density of older cells.11 It has also been
argued that density might not represent a good criterion to
determine RBC age, and alternative approaches, such as
biotin labeling, which allows age-dependent separation of
normal RBCs in animals, have been proposed.12

RBC aging and physiology in vivo and in vitro

The main biological role of RBCs is to deliver oxygen
to peripheral tissues. Therefore, investigators have long
been concerned to know if stored human erythrocytes
could still handle oxygen delivery efficiently.13 Among
factors determining hemoglobin-oxygen affinity in vivo,
aged erythrocytes show a decreased content of organic
phosphate compounds (adenosine triphosphate-ATP and
2,3-diphosphoglycerate, DPG)14 and an internal pH of
approximately 0.2 pH units more alkaline than the
younger cells.15 These results suggest that in vivo aged
RBCs may  show increased hemoglobin-oxygen affinity.15

Although ATP levels influence membrane stability and
thus RBC survival,16 in vitro alterations to DPG, ATP and

cation imbalances are rapidly restored upon transfusion of
RBCs in the bloodstream of the recipients.17

Analogous observations were reported for in vitro stored
RBCs,18 possibly reflecting the concomitant decline in DPG
(98% decline by 2 weeks). Since pH is inversely related to
oxygen off-loading capacity (Bohr effect), it is important to
note that RBC storage under blood bank conditions also
results in lower intracellular pH15 as a result of glycolysis in
a closed system, though lower pH will have a negative feed-
back on glycolysis itself.19  Cation transport is negatively
influenced by RBC age in vivo20 and in vitro.21 Sodium
influx and potassium efflux become dysregulated in senes-
cent RBCs and in erythrocyte concentrates that have been
stored longer when they are also affected by hypother-
mia.18,19,21 Supernatant accumulation of potassium may be
dangerous for infants receiving large volume transfusion. 

Altered potassium homeostasis is linked to an increase
in intracellular ionic calcium.22 In vivo22 and in vitro23-25

aging of RBCs have been related to intracellular increases
of Ca2+, which can lead to Ca2+ pump proteolysis and
opening of the Ca2+-dependent K+ channel. Increases in
intracellular calcium levels are consistent with activation
of calcium-activated proteases (i.e. µ-calpain) and apopto-
sis-like phenomena,3 though in vitro eryptosis mecha-
nisms can still be triggered by starvation (high energy
phosphate consumption) in the absence of calcium.26

Calcium loading in rabbit erythrocytes results in dose-
dependent decreases in reduced glutathione (GSH) lev-
els.27

Cation perturbation, metabolic decay and oxidative
damage are all interrelated in the erythrocyte aging
process.27
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Table 1. List of the main biochemical changes of aging red blood cells in vivo and in vitro.

Potassium leakage to the supernatant

Loss of metabolic modulation and depletion of DPG and ATP stores and pH lowering

Accumulation of intracellular calcium and activation of Ca2+-mediated signaling cascades (e.g. kinases, calpains)

Reduced oxygen off-loading capacity

Decreased S-nitrosothiohemoglobin;

Increased susceptibility to oxidative stress and alteration to the GSH homeostasis and Pentose Phosphate Pathway metabolism

Alteration of lipids (phospholipid loss, phospatidylserine exposure  to the outer membrane leaflet, accumulation of ceramide)

Alteration of membrane proteins (membrane protein fragmentation and migration to the membrane and/or vesiculation of subsets of structural or cytosolic antioxidant
proteins)

miR-96, miR-150, miR-196a, and miR-197 increase up to Day 20 and subsequently decreased during storage in vitro

Decreased desialiation, increased glycosylation and carbonylation of proteins; increased non-enzymatic glycation of hemoglobin (HbA1c)

Increased lipid oxidation (storage duration-dependent accumulation of malondialdehyde and 8-isoprostane)

Increased non-enzymatic glycation of hemoglobin and protein  carbonylations

Oligomerization of band 3 and enzyme/ROS-mediated fragmentation

Accumulation of protein biomarkers at the membrane level (CD47, Apo-J/Clusterin, peroxiredoxin 2, RH and rheology markers)

Progressive leaching of DEHP plasticizers (in vitro) that intercalates into the membrane

More rigid cell structures (reduced deformability and increased osmotic fragility)

Increased vesiculation rate (shedding of nano- and micro-vesicles)

Loss of the discocytic shape towards the acquisition of the echinocytic, spheroechinocytic and utterly echinocytic phenotype



From physiology to metabolism
Owing to the lack of nuclei and organelles, including

mitochondria, mature RBCs are incapable of generating
energy via the (oxidative) Krebs cycle. They rely upon a
limited network of metabolic pathways for energy produc-
tion and redox homeostasis:28,29

- the Embden-Meyerhof pathway (glycolysis), in which

90% of the ATP is generated through the anaerobic
breakdown of glucose; 

- the pentose phosphate pathway, which is responsive to
oxidative stress; 

- the Rapoport-Lubering shunt, for DPG production; 
- the purine salvage pathway, to salvage purine substrates

for replenishing high energy purine reservoirs (de novo
synthesis of purines is not present in RBCs);    
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Figure 1. The figure can be read from the upper-left corner in an anti-clockwise direction. An overview of the main bio-
chemical changes of in vitro aging red blood cells (RBCs) under blood bank conditions. Cation homeostasis dysregulation
(K+, Ca2+) is influenced by low temperatures and progressive depletion of high-energy phosphate reservoirs (adenosine
triphosphate – ATP and 2,3-diphosphoglycerate - DPG). Glucose (additive solution) is internalized through GLUT trans-
porters and consumed through the Emden-Meyerhof glycolytic pathway, in order to produce ATP, lactate (LAC) and pro-
mote pH lowering. Besides, storage results in progressive decrease of S-nitrosothiol-hemoglobin (Hb). However, low tem-
peratures and the progressive accumulation of oxidative stress (likely triggered by Hb–mediated Fenton reactions) pro-
mote a metabolic divertion towards the pentose phosphate pathway, in order to produce oxidized glutathione (GSSG)-
reducing NADPH from glucose 6-phosphate (G6P). Pentose phosphate pathway intermediates can re-enter glycolysis or
rather proceed towards the purine salvage pathway (also influenced by adenosine and inosine in the additive/rejuvenation
solution). Alterations to calcium (Ca2+) homeostasis (and of other second messenger signaling molecules, such as cAMP
and AMP) promote the activation of specific kinases (e.g. PKC, PKA, AMPK) or rather activate proteolytic enzymes (such
as calpains) that start digesting structural and functional proteins at the cytosol and membrane level, above all band 3
(AE1). Anion exchanger 1/band 3 (AE1) is indeed responsible for the chloride shift, whereby bicarbonate (HCO3-) is
exchanged for chloride (Cl-), thus modulating anion homeostasis, intracellular pH and, indirectly, Hb-oxygen affinity and
thus gas exchanges. Fragmentation of the cytosolic domain of AE1 (also mediated by reactive oxygen species, ROS) pro-
motes displacement of glycolytic enzymes (thereby bound/inhibited) and structural proteins (ankyrin, ANK, band 4.2 and
4.1). Enhanced oxidation of cytosolic proteins is partly challenged by antioxidant defenses (SOD1, PRDX2) and chaperone
molecules (heat shock proteins, HSPs), while they progressively result in the accumulation of redox modifications to pro-
teins (carbonylations, glycation of hemoglobin (HbA1c), protein fragmentation) and lipids (lipid peroxidation, accumulation
of prostaglandins in the supernatant). A role in the process is also mediated by alternative degradation strategies to pro-
teins (proteasome, eventually extruded in the supernatant) and lipids (sphingomyelinase-dependent accumulation of
ceramides). Progressive leaching of plasticizers (DEHP) from the plastic bag results in the local accumulation at the mem-
brane. At the membrane level, AE1 clusters, exposure of phosphatidylserine (PS) in the outer leaflet, lipid raft formation
alter RBC pro-immunogenic potential. Taken together, these alterations affect membrane deformability, increase osmotic
fragility and promote vesiculation events, a process where micro- and nanovesicles are shed in order to eliminate irre-
versibly altered proteins (among which traces of glycolytic enzymes), enriched with hemoglobin and lipid raft proteins,
membrane portions (also exposing common rheological antigens - CD47, Rh, RhAG, glycophorin A-GPA).



- glutathione (GSH) homeostasis;  
- the methemoglobin (met-Hb) reduction pathway, which

reduces ferric heme iron to the ferrous form to prevent
Hb denaturation via the enzyme NADH-cytochrome b5
reductase.

Energy metabolism
RBC aging in vivo corresponds to a steep decline in the

activity of key metabolic enzymes, including hexokinase
and pyruvate kinase (Embden Meyerhof).30 Using novel
MS-based metabolomics, optimized for RBC investiga-
tions,31 we recently confirmed and expanded these data by
demonstration of decreased levels of the main glycolytic
intermediate and end-product metabolites (glucose 6-
phosphate, glyceraldehyde 3-phosphate, phospho-
enolpyruvate and lactate) in density gradient-separated
senescent RBCs.32

RBC storage under blood bank conditions also results in
loss of metabolic activity, with decreased rates of ATP and
DPG production, also favored by the negative effect of
hypothermic storage temperature on enzyme activity rates,
lactate accumulation in the supernatants and altered gly-
colysis/pentose phosphate fluxes.15,33 MS-based approach-
es revealed consistent trends for RBCs stored in two dif-
ferent storage solutions, namely mannitol-adenine-phos-
phate (MAP)34 and citrate-phosphate-dextrose–saline-ade-
nine-glucose-mannitol (CPD-SAGM).23,35 In particular, in
CPD-SAGM-stored erythrocyte concentrates we showed
increased levels of glycolytic metabolites over the first
two weeks of storage, while from Day 14 onwards, we
observed a significant consumption of all metabolic
species, and diversion towards the oxidative phase of the
pentose phosphate (NADPH and 6-phosphogluconic
acid), in response to an exacerbation of oxidative
stress.23,35

Redox metabolism
Senescent RBCs display increased susceptibility to

oxidative stress and altered glutathione homeostasis.36 The
activity of the key anti-oxidant enzyme glutathione S-
transferase is independent of erythrocyte age, but aged
erythrocytes have decreased activities of the rate limiting
enzyme for the oxidative phase of the pentose phosphate
pathway, glucose 6-phosphate dehydrogenase, and of
NADH-cytochrome b5 reductase.37,38 GSH levels fall in
senescent RBCs in vivo with accumulation of GSSG.32,39

GSH depletion in vivo is paralleled by significant decreas-
es in the rate of GSH synthesis (-45±8%)40 and increased
GSSG23,35 levels under in vitro blood bank conditions, both
being largely attributable to reduced amino acid transport
(reduced levels of glutamate, glutamate-precursor gluta-
mine, glycine and cysteine), secondary to decreased ATP
concentration.32,41

Direct measurement of reactive oxygen species (ROS)
during RBC storage under blood bank conditions evi-
denced a significant increase in oxidative stress after 14
days of storage of either leukofiltered or non-leukofiltered
erythrocyte concentrates.22,35

From metabolism to proteomics: the transport
metabolon

Both in vivo and in vitro, cation and metabolic modula-

tion of RBCs is largely dependent on ultra-structural com-
plexes of cytosolic enzymes and protein-protein interac-
tions, of which those involving the anion exchanger 1-
band 3(AE1) membrane protein represent a structural
example. 

AE1, the major integral membrane protein of RBCs, is
involved in the ‘chloride shift’ (exchange of cellular
HCO3

– with plasma Cl-), a process that promotes the con-
version of the weak acid H2CO3 to the strong acid HCl,
thereby rendering the intracellular pH acidic. Acidification
increases the dissociation of molecular oxygen (O2) from
oxyhemoglobin, and the dissociated O2 is supplied to tis-
sues that metabolically produce CO2. Protons formed in
RBCs are accepted by the groups of deoxy-hemoglobin
participating in the ‘Bohr Effect’. By means of the tran-
sient acidification triggered by the anion exchange activi-
ty, tissues producing more CO2 are supplied with more O2
from oxy-hemoglobin.

The N-terminal cytosolic domain of AE1 is a docking
site for several enzymes of the glycolytic pathway, includ-
ing phosphofructokinase, aldolase, glyceraldehyde-3-
phosphate dehydrogenase and lactate dehydrogenase40,42,
as well as deoxy-hemoglobin40,42,43 and the anti-oxidant
enzyme peroxiredoxin 2,44 a non-catalytic scavenger of
low-level hydrogen peroxide in the erythrocyte.45

Competitive binding of deoxy-hemoglobin to the cytosolic
domain of AE1 results in the displacement of glycolytic
enzymes from the RBC membrane and promotes their
activation. In this way, RBCs are able to undergo an oxy-
gen-linked modulation of metabolism.40,42,43It has recently
been observed that phosphorylation of the tyrosine
residues of the AE1 protein at position 8 and 21 modulates
the binding of glycolytic enzymes and deoxy-hemoglobin
to the N-terminal domain. The underlying mechanism
seems to involve the phosphorylation-dependent increase
in the number of negative charges at the N-terminal
domain of AE1, which increases deoxy-hemoglobin bind-
ing to AE1 (similar to the stabilizing T-state of deoxy-Hb
bound to negatively charged DPG), displaces otherwise
bound/inhibited glycolytic enzymes, and results in an
increased (+45%) glycolytic flux and reduced shift
towards the pentose phosphate pathway (-66%).42,46

Notably, deoxygenation seems to promote phosphoryla-
tion of the N-terminal domain of AE1.44

An understanding of the central role of AE1 as an actual
‘transport metabolon’ in the physiology of RBCs will help
us widen our knowledge of the importance of the long
documented in vivo and in vitro aging-triggered lesions to
AE1.47,48 The most widely accepted models for RBC
senesce in vitro and in vivo involve either: i) enzyme and
oxidative stress-mediated proteolysis of AE1 (promoting
the formation of a 24 and 34kDa fragment, respectively)49;
or ii) the formation of AE1 oligomeric clusters47,49 which
display pro-immunogenic properties and mediate recogni-
tion through naturally-occurring antibodies and RBC
removal by resident spleen and liver macrophages.

Compared to the involvement of calcium-modulated
proteases in red cell aging and apoptosis,3 the involvement
of oxidative stress-mediated proteolysis of the cytosolic
domain of AE1 is a recent suggestion which fits well with
recent theories of a central role for oxidative stress in
RBC-storage lesions, most particularly in the blood
bank.32 Clusterization of AE1 proteins might be indirectly
dependent upon oxidative stress, since oxidized and poor-
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ly-glycosylated AE1 is selectively phosphorylated by Syk
kinase to form large membrane clusters in normal and glu-
cose 6-phosphate dehydrogenase-deficient RBCs.50

Evidence of increased levels of membrane peroxiredox-
in-2 in long-stored RBCs32,51 further support the rationale
above. In the light of these findings, we recently proposed
targeted assays as quality control tests for long-stored ery-
throcyte concentrates.52 

Oxidative stress to proteins: proteomics 
of RBC aging in vivo and in vitro

Aging of RBCs results in the accumulation of oxidative
stress modifications to RBC proteins. So far, two main
oxidative stress-mediated modifications to RBC proteins
have been investigated: glycation of hemoglobin and car-
bonylation of RBC proteins. Glycation of hemoglobin
(HbA1c) is a non-enzymatic irreversible process that is
promoted by the prolonged exposure of erythrocytes to
high glucose concentrations,53 a condition that is known to
occur in vivo in diabetic patients, and in vitro during blood
bank storage where additive solutions expose RBCs to
higher than normal glycemic levels (e.g. 50 mM). While
the process has been widely documented for senescent
erythrocytes in vivo,53 measurements on in vitro stored
RBCs give conflicting results.41,54 Recent MS-based evi-
dence from our group55 seems to support early observa-
tions of an increase in the levels of HbA1C in RBCs that
have been stored longer.

Other than glycation, enzyme-mediated glycosylations
may play a role in the alteration of rheological properties
and RBC recognition by macrophages during RBC aging
both in vivo and in vitro.56 Membrane-associated carbohy-
drate changes act as signals for removal of senescent and
damaged RBCs from the circulation, and could play a role
in the RBC storage lesion and survival after transfusion. A
recent experiment with fluorescein-labeled lectins in
young and senescent RBC populations and RBCs stored
for long periods of time, indicated that both in vivo and in
vitro aging were associated with progressively increased
binding of lectins specific for galactose and N-acetylglu-
cosamine residues.57

Carbonylation is a hallmark of protein oxidative lesions.
Carbonylation in the cytoskeletal membrane fraction
increases significantly after the third week of storage in
CPD-SAGM,35,58 and in particular between Day 29 and
Day 42 of storage.58 Leukodepletion of erythrocyte con-
centrate appears to ameliorate oxidative stress, reducing
the degree of measured carbonylation.35,56,59

Aging of RBCs in vivo is characterized by alternative
oxidation and post-translational modification phenomena,
such as desialiation60 or the progressive deamidation of
Asn478 and 502 of the band 4.1b protein which results in
altered electrophoretic mobility, and thus different appar-
ent molecular weight in SDS-PAGE runs.32

During the last five years, great progress in the field of
proteomics and sample pre-fractionation strategies has led
to the simultaneous identification of 1578 distinct cytoso-
lic proteins;61 when added to known membrane proteins,
this gives a current total of 1989 RBC proteins.62,63

Alterations of the RBC membrane and cytosol proteome
during in vitro storage have been analyzed by several
groups.35,64-66 Storage-induced changes to the proteome

include fragmentation of membrane structural proteins
(spectrin, ankyrin, AE1, band 4.1), membrane accumula-
tion of hemoglobin, antioxidant enzymes (peroxiredoxin-
2) and chaperones, and decrease in cytosolic transglutam-
inase-2, beta actin, and copper chaperone for superoxide
dismutase. Proteomics can provide a snapshot of
cytoskeletal reorganization by highlighting the relocation
of SNAP proteins35 and the decrease in RBC membrane
content of lipid raft-associated proteins flotillins and stom-
atin.65

Alterations to the RBC membrane proteome are depend-
ent on the tested additive solution. The storage induced
increase in the overall spot number on 2D-gel elec-
trophoresis, a measure of protein fragmentation events,
was less in AS-3 stored RBCs than in SAG-M.67

Interestingly, RBCs do have a functional proteasome-
based protein degradation system, while cell aging in vitro
corresponds to proteasome 20S accumulation in the super-
natants.68 Membrane remodeling in vivo results in the
impairment of proper ubiquitination of specific structural
proteins, such as spectrin.69,70 This phenomenon might be
affected to some extent by phosphorylation of structural
proteins (spectrin and band 4.1),71 a post-translational
modification that deserves further investigations within
the framework of RBC aging in vivo and in vitro through
the application of innovative Omics approaches such as
electron transfer dissociation MS.

Oxidative stress: effects on the lipidome

Aging of RBCs also results in the progressive accumu-
lation of oxidative stress markers in the lipid fraction.
Thiobarbituric acid-reactivity assays show malondialde-
hyde accumulation in senescent RBCs in vivo72 and in
vitro.35,73 Glucose autoxidation from excess glucose in
RBC storage solutions may contribute to this accumula-
tion.74 Consistent with this possibility, we recently detect-
ed ferrous-conjugated lactone dimer derivatives of glucose
autoxidation in the supernatants of RBC concentrates
stored for longer periods of time.23

Oxidative stress under prolonged storage in vitro also
promoted the accumulation of peroxidized lipids in the
supernatant, in the form of prostaglandins (such as 8-iso-
prostane, PGF2α).6,23

Oxidative stress-induced alterations to the RBC
lipidome are relevant in that mature erythrocytes are
devoid of any de novo lipid synthesis capacity, owing to an
incomplete long chain fatty acid synthesizing system.75

RBC membrane properties are largely affected by lipid
composition, which in turn is influenced by diet.76 Early
studies77-79 have demonstrated membrane phospholipid
asymmetry in senescent RBCs with externalization of
phosphatidylserine (PS) to the outer leaflet of the plasma
membrane recalling apoptosis-like phenomena.3 However,
a recent study found no evidence for elevated external PS
in senescent RBCs, even though older RBCs had signifi-
cantly lower activity of aminophospholipid translocase.80

Increased externalization of PS has been shown in long-
stored RBCs in vitro.81

Like apoptotic cells,3 senescent and long-stored RBCs
display higher levels of ceramides which may be produced
from cell membrane sphingomyelins by an acid sphin-
gomyelinase.82,83 The sphingomyelinase is stimulated by
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platelet-activating factor PAF which is generated from cell
membrane lipids by a phospholipase, that is in turn acti-
vated during osmotic erythrocyte shrinkage (reviewed
in3). Ceramides and sphingosines might also be responsi-
ble for the formation of specific rafts/membrane domains,
which underlie hot cold-hemolysis (cells pre-incubated at
37°C in the presence of certain agents undergo rapid
hemolysis when transferred to 4°C).84

Osmotic fragility, morphology changes and
vesiculation

Senescent RBCs are characterized by increased osmotic
fragility and impaired deformability, as measured through
viscoelastic time constant indexes.85 In other words, shape
recovery following membrane deformation is delayed in
old RBC, which compromises their functionality in vivo
where they should be able to traverse passage ways as nar-
row as 1 μm in diameter (capillaries and splenic slits) and
survive periodic high turbulence and shear stresses, along
with extremely hypertonic conditions. Increased osmotic
fragility has also been reported for RBCs stored for long
periods of time under blood bank conditions.86

In vitro storage results in the prolonged exposure to
plasticizers that might affect membrane deformability and
thus osmotic fragility.87,88 Plastic bags were first intro-
duced in the 1950s when their lighter weight and greater
resistance to breakage in comparison to glass bottles made
them more suitable for military logistics. Prolonged RBC
storage in plastic bags under blood bank conditions is also
accompanied by the progressive leaching and membrane
intercalation of the plasticizer di-2-ethylhexyl phthalate
(DEHP), a common component in medical plastics, which
promotes a 4-fold improvement of weekly measurements
of hemolysis values over other plasticizers.87 Owing to the
potential toxicity of DEHP, novel plasticizers are continu-
ously under evaluation.88

Proportional to RBC age in vivo and in vitro, the red cell
phenotype changes from a biconcave disc, towards an
echinocyte, spheroechinocyte and, finally, spherocytic
phenotype.87,89-91 Data acquired on tens of thousands of red
cells showed that nearly as much membrane area is lost
during the 1-2 days of reticulocyte maturation (10-14%) as
in the subsequent four months of erythrocyte aging
(approx. 16-17%).90 Surface/volume ratio constantly
increases as RBCs shed one microvesicle per hour during
their lifespan in vivo.92 In vitro, irreversible morphology
phenotypes accumulate significantly after the first two
weeks of storage.86,91 By storage Day 21, more than 50%
of RBCs displayed a non-discocyte shape.86 Several bio-
logical inputs (e.g. calcium signaling, ATP depletion,
ceramide accumulation) and physico-chemical constraints
(e.g. alterations to surface charge density and surface/vol-
ume ratio minimization in the model proposed by Gov92)
trigger the acquisition of the spheroechinocytic-spherocyt-
ic phenotype.92

Alterations in RBC morphology related to storage age
recall in vivo erythrocyte senescence whereby membrane
blebbing and vesiculation represent the conclusive step
towards apoptosis.3 Over the years, concerns have arisen
about the possible untoward consequences of transfusion
of exocytic micro- and nano-vesicles (180 and 80 nm,
respectively).93 Several research groups have studied the

rheological properties and molecular content of these vesi-
cles, mainly through flow-cytometry and proteomic
approaches.94-99 Importantly, leukofiltration affects RBC-
shed vesicle quantity and content.22,95 RBC-derived vesi-
cles can be separated from white blood cell counterparts
by the presence of membrane markers including blood
group antigens from the RH, KEL, JK, FY, MNS, LE and
LU systems and plasma protein S-antigen (PS).99 On the
other hand, the presence of M(MNS1), N(MNS2) and
s(MNS4) antigens could not be demonstrated by flow-
cytometry, despite the fact that glycophorin A and B were
identified on microparticles using anti-CD235a and anti-
MNS3.99

Generation of vesicles during blood bank storage
accounts for a considerable part of the cellular hemoglobin
loss.96 These vesicles expose PS and are also targeted by
immunoglobulins and various complement proteins,
which may contribute to the adverse effects upon transfu-
sion. The identification of human immunoglobulins on
vesicles,95 especially upon exposure to plasma rich
media,97 supports the hypothesis that vesicles might serve
to remove membrane patches that have a high content of
removal signals (such as the marker of self and molecular
switch for erythrocyte phagocytosis CD4798). 

Vesicles are also enriched in ankyrin, AE1, spectrin
beta, lipid raft-associated proteins (flotillin and stomatin),
while relatively low amounts of glyceraldehyde 3-phos-
phate dehydrogenase have been detected.99 Proteomic
analyses of RBC-shed vesicles have shown a resemblance
to older RBC membranes, which has prompted sugges-
tions of a possible role of vesiculation as a mechanism to
remove damaged proteins. Supporting this, extracellular
20S proteasome subunits have been found to accumulate
in the supernatants of packed RBC units.68

miRNAs

Though investigations are at an early stage, profiling of
RBCs for 52 micro-RNAs (miRNAs, negative regulators
of mRNAs) revealed that miR-96, miR-150, miR-196a,
and miR-197 increase up to Day 20 and subsequently
decreased during in vitro storage.100

Conclusion

In the present review, we have summarized the major
biochemical changes related to RBC aging both in vivo
and in vitro. 

Future developments in the field will be fueled by the
introduction of novel storage strategies (e.g. new additive
or rejuvenation solutions, anaerobiosis, pathogen inactiva-
tion protocols) and the further application of integrated “-
omics” approaches and mathematical models,28 and the
use of nanotechnology-based assays, such as atomic force
microscopy.
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Introduction

The development of blood storage made a
dramatic change in transfusion practice.
Originally, the patient and the donor were
directly connected to each other, whereas
today blood can be stored in solutions for up to
35-42 days with a post-transfusion 24-h red
cell survival of 75%-80%. Liquid preservation
is the most common way to preserve blood for
transfusion and prolonged duration of liquid
preservation has been shown to affect RBC
structure and its functional properties, which
may interfere with its oxygen transporting
capacity.1,2 To prevent transfusion of dysfunc-
tional RBCs and standardize transfusion prac-
tice, several criteria have been set. However,
these criteria are based on the physical proper-
ties of RBC units, such as the mean hemoglo-
bin mass per unit, 24-h survival of 75%, and
1% hemolysis, and do not reflect the clinical
oxygenation efficacy of blood transfusion.3

Several clinical and pre-clinical studies have
shown storage to have deleterious effects on
RBC functions and storage.1-4 However, the
clinical importance of this so-called storage
lesion is not well known. When exactly stor-

age diminishes the red blood cell structural
and functional properties, and how often more
harm than good is encountered when stored
RBCs are transfused in daily practice, remain
uncertain. In a large study cohort, the ABC
study,1 the mean age of blood was 16±7 days,
whereas in the CRIT study,2 the mean age of
blood was 21±11 days. Interestingly, the age
of blood was found not to be related to any
clinical outcome. In another study, Raat and
colleagues analyzed the age of stored RBC
concentrates in 74,084 units in an academic
hospital in Netherlands between the years
1997-2001. They found that the mean storage
time was 19.4±7 days with 37% of blood
being older than three weeks.5 The above data,
in a total number of 90,000 RBC units, showed
that most RBC units being used in critically ill
patients are between 16-21 days old. Since
one-third of the patients received blood trans-
fusions older than 21 days, it can be stated that
there may be a clinical problem which needs to
be addressed if storage-related RBC dysfunc-
tion indeed occurs in these RBC units. In this
paper, we focus on the effect of storage of
RBC on oxygen supply in the microcirculation
as estimated in animal models.
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The impact of storage on the red cell physiology, 
function, and survival in vivo

Transfusion medicine

A B S T R A C T

The ultimate goal of red blood cell (RBC) transfusions in anemic patients is to provide oxygen-deliv-
ery to the microcirculation to improve or to preserve tissue oxygenation. There is little scientific evi-
dence, however, as to whether this goal is actually achieved in patients. Experimental studies brought
the efficacy of blood transfusions into question, and in particular, prolonged storage of RBCs was sug-
gested to be associated with failure to preserve or improve tissue oxygenation. Several clinical studies
have reported blood transfusion-related complications associated with the aging of blood, such as an
increase in mortality, multiple organ failure, infections, and hospital length of stay. Other studies, in
contrast, have not found any differences in outcome following transfusion of fresh blood or aged
blood. So far, the studies on transfusion medicine have been mainly focused on storage-related bio-
chemical, physical and hemorrheological changes, commonly referred to as storage lesions, and these
are held responsible for many of the deleterious effects of RBC transfusions. Leukocytes and their by-
products in stored blood may be another factor affecting in vivo function of transfused blood. Taken
together, these so-called storage lesions may adversely affect the ability of transfused RBCs to deliver
oxygen-rich blood to the microcirculation. 

Learning goals

At the conclusion of this activity, participants should know that:
- RBCs undergo several biochemical, physical and hemorrheological changes during their storage;
- experimental studies provide scientific evidence for the impact of the so-called storage lesion on

efficacy of blood transfusion; 
- clinical studies have reported conflicting results regarding the efficacy and potential harm of trans-

fusing aged RBCs;
- leukocytes and their by-products in stored blood may be another factor affecting in vivo function

of non-leukodepleted transfused blood.



Biochemical and hemorrheological changes
during storage 

RBCs undergo several biochemical, physical and
hemorheological changes during their storage.6 These
changes are commonly referred to as the storage lesion and
are held responsible for alleged deleterious effects of RBC
transfusion. The biochemical changes include a decrease in
2-3 DPG and adenosine triphosphate (ATP) levels,7 a
decrease in membrane sialic acid,8 RBC membrane lipid per-
oxidation,9 a loss of intrinsic RBC membrane proteins,10 a
loss of cellular antioxidant capability,11 a decrease in pH,12 an
increase in free hemoglobin due to hemolysis,13 and a
decrease in S-nitrosohemoglobin concentrations.14

The initial studies on the loss of oxygen delivery ability of
RBCs during storage were mostly focused on 2,3-diphos-
phoglycerate (DPG). 2,3-DPG is a metabolite and allosteric
modifier of hemoglobin and decreases to very low levels
during the first 2-3 weeks of storage. This decrease leads to
an increase in hemoglobin oxygen affinity, which may
explain the decrease in RBC oxygen delivery ability during
storage. However, 2,3-DPG levels recover within hours after
transfusion.15 Additionally, a recent experimental study
showed that, although RBCs were stored for 2-3 weeks and
were completely devoid of 2,3-DPG, their oxygen delivery
capacity to the intestinal microcirculation was no different to
that of fresh (2-6 days) RBCs.7 An additional biochemical
change that occurs in stored RBC is the decrease in intracel-
lular ATP levels. ATP, as well as playing a role in membrane
deformability, is crucial for RBC function due to its role as a
vasodilator under hypoxic conditions.16,17 Raat et al. showed
that ATP levels remained unchanged in RBCs stored for 2-3
weeks, but dropped to 60% in RBCs stored for 5-6 weeks.7
The loss of ATP was inversely associated with oxygen deliv-
ery ability of the RBCs; old (5-6 weeks) RBCs had a reduced
oxygen delivery capacity compared to fresh (2-6 days) and
intermediate (2-3 weeks) groups. This finding supports the
idea that ATP, suggested to be a vasodilator released by RBC
in the presence of hypoxia, is related to the oxygen delivery
capacity of RBCs, and may be negatively affected by storage
duration.5 Another possible mechanism that may account for
alterations in the oxygen transport capabilities of transfused
RBCs is nitric oxide. Nitric oxide and its products, besides
their many other roles inside the organisms, can be regarded
as one of the major compounds accounting for vasodilatory
regulation of blood vessels. Recent studies have shown that
RBCs are able to release nitric oxide in the presence of
hypoxia and that this nitrite-mediated function accounts for
hypoxia-induced vasodilation.18,19 The further identification
of functional eNOS on RBC membranes has made the red
cell a central player, not only in oxygen transport, but also in
vascular control mechanisms.20 It could well be that this NO
mediated function of RBCs may be affected during storage.14

Furthermore, in a very elegant study by Donadee et al., it
was found that storage of human RBCs resulted in the accu-
mulation of cell-free and microparticle-encapsulated hemo-
globin which scavenges the vasodilator nitric oxide approx-
imately a thousand times faster than intact erythrocytes.13

The authors showed that cell-free and microparticle-encap-
sulated hemoglobin is a highly potent vasoconstrictor in
vivo, and that even the infusion of the plasma from stored
RBC units produced significant vasoconstriction in the rat
due to storage-related hemolysis.

Hemorrheological alterations such as RBC shape changes,

decreased membrane deformability and increased aggrega-
bility are a number of effects which can occur during storage
which may possibly disturb RBC flow through the microcir-
culation and influence its functional activity of transporting
oxygen to the tissue cells. The loss of phospholipids from
RBCs is seen both in storage and physiological red cell
aging and may contribute to the formation of echinocytes
with protrusions and spheroechinocytes during storage.21,22

These changes can occur parallel to decreases in surface-vol-
ume ratio, increased mean cell hemoglobin concentration,
and osmotic fragility and decreased deformability. The stor-
age-related decrease in RBC membrane deformability has
been suggested to be associated with reduced ATP level.23

Other mechanisms such as membrane phospholipids loss
or redistribution, protein and lipid oxidations have been sug-
gested to contribute to the storage-dependant alterations of
RBC membranes. The formation of microvesicals, causing
the loss of membrane phospholipids, was identified by
Rumsby et al.24 An alternative mechanism that was proposed
was the internalization of phosphotidylserine (PS) and phos-
phoethanolamine (PE) from the membrane into the cytosol,25

and loss of asymmetry in the red cell membrane. These bio-
mechanical alterations may account for less deformable
RBCs, and may cause more problems for a microcirculation
already under stress. However, biomechanical alterations are
probably not the only problem occurring during storage.
This suggestion is supported by a study by Verhoeven et al.,
in which they compared two different methods to change the
RBC asymmetry. They used flippase, which moves the PS
from the outer to inner leaflet of membrane, compared to
phospholipid scrambling which will move PS from the inner
leaflet to the outer leaflet. They showed a decrease in flip-
pase activity starting after 21 days of storage in SAGM and
further decreased over time. The authors also showed that
the correction of storage-induced metabolic changes,
restores flippase activity.26

RBCs and the microcirculation

RBCs are primarily responsible for the oxygen and carbon
dioxide exchange and transport from the lungs to the tissues.
This exchange is facilitated through synergistic effects of
hemoglobin, carbonic anhydrase, and band 3 protein, and
followed by carbon dioxide delivery to the lungs for release.
Within the organs, in order to deliver oxygen to the tissues,
RBCs need to travel through a fine network of vessels with
diameters smaller than 100 micrometer: the so-called micro-
circulation. Normally, erythrocytes have a flexible mem-
brane and can reversibly alter their biconcave, discoid shape,
which allows them to pass through capillaries smaller in
diameter (2-6 micrometer) than an RBC (8 micrometer). It is
obvious that RBC membrane properties are of great impor-
tance for entering the capillaries and thereby oxygen deliv-
ery to the tissues. 

Under normal physiological conditions, this finely regu-
lated system of capillaries, arterioles and venules is able to
supply oxygen in excess of oxygen demand, so that the tis-
sue cells can continue their function under changing meta-
bolic demands. The microcirculation has an oxygen-depen-
dent regulation system that is connected to the systemic cir-
culation, but also able to regulate and direct blood flow to the
tissues where it is needed. The flow of blood in the microcir-
culation, even under normal conditions, has a heterogeneous
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nature that actually ensures the even distribution of oxygen
in the tissues so that each cell receives the oxygen it needs.
Therefore, hypoxia-detecting mechanisms are required in
the tissues to produce vasoactive compounds affecting blood
flow and thereby oxygen transport. Besides endothelial fac-
tors, the RBC themselves play a central role in this process. 

Experimental studies

The main goal of RBC transfusion is to improve tissue
oxygenation. Over the last two decades, technological
advances made it possible to investigate tissue oxygenation
at a microvascular level, where actual oxygen transport
between RBCs and cells take place. However, these tech-
niques were relatively invasive and were not appropriate for
clinical use in human studies or for monitoring patients. This
was one of the main limitations of clinical research in the
field of transfusion medicine. This led to indirect measures
to monitor efficacy of RBC transfusion, such as epidemio-
logical end points, intensive care unit (ICU) and hospital
mortality, and morbidity. 

Given this, Van Bommel et al. showed that transfusion of
rat blood stored for four weeks was not as effective in
improving intestinal microcirculatory oxygenation follow-
ing hemorrhage as compared to fresh rat blood by measuring
intestinal microvascular PO2 with O2-dependent quenching
of palladium porphyrin phosphorescence technique.23

Furthermore, the authors showed that the type of preserva-
tion solution used to store the RBCs can significantly affect
the RBC rheological properties, and consequently the effica-
cy of RBC transfusion with respect to improving microvas-
cular oxygenation. A limitation of this model is described by
d’Almeida et al.27 and Raat et al.;7 that rat RBCs age faster
that human red blood cells and can not regenerate 2,3-DPG,
unlike human red blood cells. Raat et al. developed a model
to overcome this limitation by transfusing fresh (2-6 days),
intermediate (2-3 weeks) and old (5-6 weeks) stored human
red blood cells to improve gut microcirculatory oxygenation
in anaemic oxygen-supply-dependent rats. They have shown
that oxygen delivery capacity was diminished in the old (5-
6 weeks) group compared to the fresh and intermediate
groups by using O2-dependent quenching of palladium por-
phyrin phosphorescence technique.

Visualization of microvasculature is another technique
that was used by different groups. In a hamster window
chamber model, Tsai et al. showed in 2004 that transfusion
of stored RBCs resulted in significantly malperfused and
underoxygenated skin microvasculature in severely hemod-
iluted hamsters by measuring functional capillary density
(FCD), blood flow and high-resolution oxygen distribu-
tion.28 Interestingly, these impairments of microvascular per-
fusion and oxygenation were not detectable at the systemic
level, highlighting the importance of studying the effects of
RBC transfusions at the microcirculatory level. It must be
noted, however, that the blood was hamster blood stored for
28 days, which may correspond to much older human blood
than is conventionally used (for example, see d’Almeida et
al.27) and, in addition, the blood was not leuko-depleted so
the results of this study should be evaluated with care. 

These findings were confirmed by other groups. Gonzales
et al. in 200729 studied intravital microcirculatory hemody-
namics in the rat cremaster muscle flap. However, in contrast
to other groups, they compared 2-week stored RBCs with

fresh RBCs. The authors suggested that fresh blood transfu-
sion is more effective in relieving effects of microcirculatory
hypoxia compared to 2-week stored blood. Arslan et al.30

provided similar results suggesting that stored blood may
have a deleterious effect on the microcirculation.

Most recently, Hu et al.31 studied preventive effects of
RBC transfusion in a myocardial infarct model by coronary
artery ligation in anemic rats. Twenty-four hours after
myocardial infarction, cardiac function, infarct size, and
apoptosis were determined. The authors suggested that fresh
blood transfusion reduces infarct size and myocardial apop-
tosis, and leads to improvements in cardiac function and
short-term survival in this animal model. In contrast, trans-
fusion of blood with prolonged storage negatively affected
these beneficial effects.

With the aim of studying the effects of storage duration on
the efficacy of RBC transfusions to reach the microcircula-
tion, our group performed a prospective randomized clinical
pilot study. Twenty anemic hematologic outpatients were
randomized into 10 patients receiving transfusion of leuko-
depleted RBCs in Saline-adenine-glucose-mannitol
(SAGM) stored for less than one week, and 10 patients
receiving transfusion of leuko-depleted RBCs in SAGM
stored for 3-4 weeks. We were able to show a parallel
increase in both systemic Hb and Ht values and microvascu-
lar perfused vessel density and oxygen saturation, and found
no differences between the two groups.32

In conclusion, the pre-clinical studies demonstrated the
harmful effects of prolonged storage on RBC functions. Most
of these studies suggest that prolonged storage over four
weeks is associated with impaired oxygen carrying capacity
of RBCs. Whether this impairment is clinically relevant for
all patients remains uncertain. The results from clinical stud-
ies are confusing, and the answer to the question of how
important these storage-induced alterations are in vivo, and
especially under clinical conditions, remains uncertain.

Leukocytes

Leukocytes and their by-products in stored blood may be
another confounding factor affecting in vivo efficacy of
transfused blood. It is generally assumed that the cytokines,
enzymes, and inflammatory mediators derived from leuko-
cytes during blood storage may worsen the RBC storage
lesion and cause transfusion-related immunomodulation in
host. Leukoreduction is performed to reduce some of the
negative immunosuppressive effects of blood transfusions
and to mitigate the RBC storage lesion.33,34 However, there
are conflicting data in the literature regarding the clinical
impact of transfusion of non-leukoreduced blood. Anniss et
al. examined endothelial RBC adherence and compared
non-leukodepleted blood, buffy-coat-poor blood, and
leukodepleted blood, and demonstrated that leukodepleted
blood showed significantly lower adhesiveness to vascular
endothelial cells, an effect which would be beneficial for the
microvascular perfusion of transfused blood.35 Consistent
with the idea that leukoreduction provides a better quality of
stored blood, Van de Watering et al. reported increased sur-
vival rates in cardiac surgery patients receiving leuko-
reduced RBC units compared to patients transfused with
buffy-coat-removed packed RBCs units.36 In addition,
Netzer et al. reported an association between leuko-reduced
RBC transfusion and decreased mortality rates in patients
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with acute lung injury.37 In contrast, several other random-
ized prospective studies comparing patients with various
clinical conditions receiving either leuko-reduced or non-
leuko-reduced RBC units showed no beneficial effect of
leukoreduction on clinical outcome, including mortality,
length of ICU stay, and readmission rate.38,39 

Conclusions 

RBCs undergo several biochemical, physical and hemor-
rheological changes during their storage that may affect their
ability to improve tissue oxygenation in anemic patients.
Leukocytes and their by-products in stored blood may be
another factor affecting in vivo function of transfused RBCs.
Experimental studies demonstrate failure to preserve or cor-
rect tissue oxygenation after transfusion of aged RBCs.
However, using mostly epidemiological endpoints clinical
studies have not confirmed this conclusion. The develop-
ment of less invasive techniques to monitor the efficacy of
blood transfusion in clinical setting seems essential to con-
firm these results in clinical studies. 
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Do clinical studies support a deleterious role of stored
red blood cell transfusions?

Introduction

A few things improve with age: vintage
wine, firewood, and one’s memory of past tri-
umphs. Blood stored at refrigerated tempera-
tures is not among them. Blood preservative
solutions were developed to eliminate reliance
on vein-to-vein transfusion and to improve
blood supply and logistics.1 With the develop-
ment of new anticoagulant-preservative solu-
tions, the red blood cell (RBC) storage interval
has been extended progressively from less
than a week when blood was collected into a
citrate-glucose solution to the currently
approved storage interval of 42 days.2 The cri-
teria for extending shelf life as new storage
systems were developed relied upon a panel of
in vitro studies, although without precise
acceptance criteria, and specified a minimal
degree of hemolysis (1% in the US and 0.8%
in Europe). The gold standard remains in vivo
24-h posttransfusion recovery of over 75% of
cells labeled with radiochromium at the com-
ponent outdate.3,4 Clinical trials of safety and
efficacy have never been required (or per-
formed) for licensure. 

Stored blood does not age gracefully.
Changes in percent hemolysis, osmotic fragili-

ty, hematologic indexes, and gross morpholo-
gy were among the earliest observations that
came to be known as the ‘storage lesion’.
Detailed assessments of RBC metabolism and
quality, including changes in cellular biochem-
istry, lipid concentration, membrane loss, car-
bohydrate alterations, oxidative injury to lipids
and proteins, oxygen affinity and delivery,
adhesion of RBCs to endothelial cells, as well
as the secondary risks of accumulating con-
centrations of potassium and plasticizer, and
shedding of active proteins, lipids and
microvesicles have been reviewed elsewhere.5

The principal concern is whether these
changes result in clinical sequellae. Whereas
no one expected that RBC would perform at
the end of several weeks of refrigerated stor-
age exactly as they do when they exit the
donor’s vein, neither did clinicians anticipate
that stored blood would harm their patients.
This conviction has recently been challenged.

Many clinicians have harbored a belief that
‘fresh’ blood is superior to stored RBC and
that fresh blood will benefit their patients who
require transfusion. However no definition of
‘fresh’ is generally accepted (a vocal minority
request that it be warm to the touch) and, until
recently, evidence for a clinical benefit for
fresher RBC has been surprisingly difficult to

Transfusion medicine

The red blood cell (RBC) storage interval has been extended progressively from less than a week
when blood was collected into a citrate/glucose solution to the currently approved storage interval of
42 days. The criteria for extending storage rely upon a set of in vitro studies, and specify a minimal
degree of hemolysis, and in vivo 24-h posttransfusion recovery of over 75% of cells labeled with
radiochromium at the end of shelf life. Concerns have arisen that RBC at the end of storage (‘old
blood’) not only lose efficacy, but may develop a ‘storage lesion’ that results in previously unrecognized
toxicity. Several mechanisms for such toxicity have been proposed. Data supporting and refuting the
supposed toxicity of old blood are derived from four sources: 1) retrospective analyses; 2) volunteer
studies; 3) animal models; 4) controlled clinical trials. Current evidence suggests that old blood may
have adverse effects, but that the patient’s clinical status as well as the age, volume and method of
preparation of the RBC, may be critical variables. Several large randomized controlled clinical trials are
currently in progress to answer some of these questions; however, design limitations may compromise
interpretation of their results.

Learning goals

At the conclusion of this activity, the participant should understand that:
- describe the kinds of studies that support or refute the supposed toxicity of transfused stored red

blood cells (RBC);
- give possible explanations why some retrospective analyses suggest that old RBC are toxic and

others do not;
- describe several animal models that have been used to determine the effects of RBC transfusion;
- list and discuss several prospective transfusion trials that are in progress or have been completed
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establish. At present, most adult patients requiring transfu-
sion receive blood of their specific type with the oldest
compatible unit available given first. This first-in, first-out
principle was designed to manage blood inventories.
During the last 15 years, an ever increasing number of
published retrospective and prospective studies have
raised concern that patients receiving older blood have an
increased morbidity and mortality risk compared to
patients receiving newer stored units.6-12 A smaller number
of reports have failed to confirm such an association.13-16 If
older RBC do pose a hazard, are there particularly vulner-
able patient groups or clinical situations that pose a special
risk?

Clinical studies comparing fresh and old stored RBC
fall into four general categories. The largest number of
publications involves observational studies of different
patient populations that demonstrate a statistical associa-
tion between prolonged storage of allogeneic blood and
disease state. All of these studies have been criticized for
limitations in size, design, or methodology. Some studies
examine mortality, others morbidity, while still others
have reported on such surrogate measures as length of
hospital or ICU stay, recurrence of cancer, changes in gas-
tric intramucosal pH, serum lactate levels or decreased
oxygen delivery to different organs.17-21 Three studies
involve autologous transfusion of healthy normal volun-
teers with their own fresh or stored RBC. Studies in ani-
mal models provide an opportunity to design trials that
cannot be performed in patients or in normal volunteers.
Finally, several large prospective randomized controlled
trials have either been completed recently or are in
progress. Examples of each of these studies will be
reviewed.

The most widely publicized observational analysis was
that of Koch et al. published in 2008.22 This study com-
pared clinical and transfusion data collected from cardiac
surgery patients at the Cleveland Clinic in the United
States from 1998 to 2006. The authors analyzed 2872
patients who received 8802 units of RBCs that were stored
for less than 14 days (fresher blood) and compared them
with 3130 patients transfused with 10,782 RBCs stored for
more than14  days (older blood). In-hospital mortality,
need for prolonged ventilator support, development of
renal failure and multi-organ dysfunction were all statisti-
cally more frequent among the patients who received
blood stored for more than 14 days. Using a Kaplan-Meier
survival statistic, the authors concluded that among
patients undergoing cardiac surgery, transfusion of RBCs
stored for more than 14  days was associated with more
complications and with reduced short-term and long-term
survival. The study has been justly criticized for contro-
versial statistical treatment, numerous clinical differences
(heterogeneity) between the two patient groups, an almost
inevitable consequence of retrospective analyses, and the
‘unadjusted comparison’ in the Kaplan-Meyer curve.23 

Following Koch’s publication, we undertook our own
meta-analysis of published studies.24 We concluded that
previous meta-analyses had incurable flaws, so we decid-
ed to use a methodology that allows the end points (pri-
marily mortality and morbidity) to be comparable across
the studies selected. We identified 93 unique article cita-
tions published from 2001 to 2010, including 13 observa-
tional studies (3 prospective and 10 retrospective) and 3
randomized controlled trials. Trials were included if they

compared survival rates after being transfused with blood
that was stored over different durations in days, one hav-
ing longer storage times (‘old blood’) and the other having
a shorter storage time (‘new blood’).  We excluded studies
that did not have mortality data, or that did not refer to the
age of the stored blood. A total of 21 trials met inclusion
criteria (Figure 1).

There were a total of 374 deaths among 5185 patients
transfused with new blood (7.2%) and a total of 523 deaths
among 5853 patients transfused with old blood (8.9%)
from ten studies that provided such data. There was no sig-
nificant heterogeneity among these 21 studies for the mor-
tality end point. The overall estimate of mortality with
transfusion of old blood compared to new stored blood
was highly significant (Figure 2). We also found a highly
significant increase in adverse events associated with old
stored blood. In our meta-analysis, approximately one-
third of the studies were in trauma patients, one-third in
cardiac surgery patients, and one-third in a mix of varied
populations. The results were similar comparing these
three subgroups and very consistent with the overall
increase in mortality found with old blood versus new
blood.  In studies having 500 or under or over 500
patients, as well as in studies of patients receiving on aver-
age 3 units or under versus more than 3 units per patient,
the results in all these subgroups were likewise similar to
the overall findings of our study showing old blood versus
new blood increases mortality.  Although the published
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Figure 1. Flow diagram of the published studies evaluated
for inclusion in the meta-analysis.



clinical experience to date suggests that newer blood, if
used exclusively, might save lives, most of the data we
analyzed derive from observational studies and small
prospective studies, so conclusions must be interpreted
cautiously. Observational studies serve the purpose of pos-
ing questions. Even a cursory reading of the several refer-
enced studies that involve numerous confounding vari-
ables (disease state, patient demographics, nature and
number of the blood components, concurrent treatments,
and definition of old blood and of adverse events) suggests
that additional observational studies will not answer this
question regardless of the statistical legerdemain  that is
used. 

Normal volunteers

Hod et al. studied 14 healthy human volunteers who
donated standard leuko-reduced, double RBC units and
received one unit transfused ‘fresh’ (3-7 days of storage),
and the other ‘older’ unit transfused after 40-42 days of
storage.25 Significant differences between fresh and older
transfusions were observed in iron parameters and mark-
ers of extravascular hemolysis. Volunteers tolerated all
transfusions without incident or evidence of adverse reac-
tions. Compared with fresh RBCs, mean serum total
bilirubin increased at 4 h after transfusion of older RBCs.
In addition, after the older transfusion, transferrin satura-
tion increased progressively over 4 h to a mean of 64%,
and non-transferrin-bound iron appeared, reaching a mean
of 3.2 μM. The increased concentrations of non-transferrin

bound iron correlated with enhanced proliferation in vitro
of a pathogenic strain of Escherichia coli. The authors
concluded that circulating non-transferrin-bound iron
derived from rapid clearance of transfused, older stored
RBCs may enhance transfusion-related complications,
such as infection in hospitalized patients.

In a series of imaginative experiments, Weiskopf et al.
showed that acute, severe isovolemic anemia degrades
neurocognitive function in young healthy volunteers, and
that this deficit can be reversed by transfusion of autolo-
gous RBCs stored in citrate-phosphate-dextrose-adenine
for fewer than 4 h.26 Using the same model in which cere-
bral function is oxygen-delivery dependent, these investi-
gators further demonstrated in 9 young (21-25 years) vol-
unteers that a sensitive, reproducible test of neurocogni-
tive function, the digit-symbol substitution test, and a sec-
ondary physiological end point (heart rate) were both
completely and equivalently reversed by RBCs stored for
either 3.5 h (‘fresh’) or 23 days (‘old’).15 These results
suggest that RBCs that are fresh and those that are old
deliver oxygen equivalently and normally. This was the
first prospective randomized trial in humans investigating
the hypothesis that erythrocytes stored for at least three
weeks, with a markedly increased hemoglobin affinity for
oxygen (decreased P50), are as efficacious as are erythro-
cytes with hemoglobin with a normal affinity for oxygen.
There are several limitations to this study: the subjects are
healthy young volunteers so that these results cannot be
generalized to critically ill patients; observations using
neurocognitive function cannot necessarily be translated
to compromised organ systems; storage for 23 days in
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Figure 2. Mortality end point in 21 trials. The size of the data markers is proportional to the inverse variance of each
point estimate. References refer to the original publication of Wang et al.24 



CPDA-1 may not be equivalent to longer storage in other
anticoagulant preservative solutions; the number of study
subjects was small, although the power calculations were
performed a priori.

Using a similar design but without severe anemia and
with pulmonary gas exchange deficit as an end point,
Weiskopf et al. studied 35 healthy, normal volunteers who
donated one unit of blood four weeks and another three
weeks prior to two study days separated by one week.27 On
study days, two units of blood were withdrawn while
maintaining isovolemia, and the volunteers were trans-
fused with either autologous fresh RBCs or autologous
stored RBCs in random order. The following week, each
volunteer was crossed over and studied again. RBC trans-
fusion was found to cause subtle pulmonary dysfunction,
as evidenced by impaired gas exchange; however, there
was no evidence that RBCs stored for more than 21 days
caused more harm than the fresh RBCs. Some of the same
limitations apply to interpretation of these studies regard-
ing their clinical meaning as to the earlier studies of cog-
nitive function.

Animal models

Clinical studies comparing 1-day old blood with blood
at the end of its storage life are operationally difficult and
ethically challenging. RBCs must be processed, tested and
shipped prior to issue for transfusion and this extends the
interval of storage. Relatively few 5-7 day old units are
available. Most blood in developed countries is used with-
in three weeks of collection; the mean age is approximate-
ly two weeks, especially for group O RBC. Few such units
are available at the end of the approved shelf life. Blood
stored for 42 days deteriorates by most measures of red
blood cell function, and because most of the older studies
have associated old blood with increased morbidity and
mortality; it is hard to imagine that an informed patient
would consent to receive only blood at the very end of its
shelf life. Therefore, ongoing human clinical trials have
been designed to compare newer blood with current trans-
fusion practice or with older RBCs of mixed age available
in the hospital inventory. It might be better to use an
appropriate animal model to assess the clinical differ-
ences, if any, between the very youngest and oldest units.
If older blood is found to increase risks, animal studies can
help define dose response, critical storage interval, and
high-risk clinical circumstances. 

Rodent models have the advantage of cost and scale for
transfusion studies, although the translation of results to
human clinical transfusion situations remains a concern.
Hod et al. used a murine RBC storage and transfusion
model to show that transfusion of stored RBCs, or washed
stored RBCs, increases plasma nontransferrin bound iron
(NTBI), produces acute tissue iron deposition, and initi-
ates inflammation.28 In contrast, the transfusion of fresh
RBCs, or the infusion of stored RBC-derived supernatant,
ghosts, or stroma-free lysate, does not produce these
effects. In these studies, the insult induced by transfusion
of stored RBC enhanced subclinical endotoxinemia and
produced clinical effects in the animals. The increased
plasma NTBI also enhanced bacterial growth in an in vitro
culture system. These results suggest that, in a mouse
model, the cellular component of leuko-reduced, stored

RBC may contribute to the harmful events that occur after
transfusion of RBC with prolonged storage. 

Baek et al. have used a guinea pig model of transfusion
to show that older but not newer stored blood led to
hemolysis, vasoconstriction, vascular injury, and kidney
dysfunction.29 Those effects were attenuated by complex-
ing cell-free hemoglobin (CFH) with haptoglobin, thus
isolating these injuries to release of CFH.  

We have used a canine model of 2-old purpose-bred
beagles infected with a validated dose of Staphyllococcus
aureus to produce pneumonia in one lung.30 Dogs were
randomized in a blinded fashion for exchange transfusion
with either 7- or 42-day old canine universal donor blood
(80 mL/kg) in four divided doses. Canines were chosen as
a model since blood banking procedures for this species
are similar to those for humans, making such a study both
feasible and clinically relevant. Canine hemoglobin is
functionally and immunologically indistinguishable from
human hemoglobin. Given the widespread use of RBC
transfusion over decades, and the relatively sparse evi-
dence of toxicity, we chose to study critically ill animals
near death and compare transfusion of large volumes of
the freshest practical blood with blood at the very end of
its shelf-life (42 days) to maximize the chances of finding
a clinical effect if one existed.  

After transfusion, the concentration of plasma CFH
increased progressively for days in the animals receiving
older blood; CFH release from ongoing intravascular
hemolysis of older blood was observed along with signif-
icantly decreased haptoglobin levels. Transfusion of older
blood resulted in a highly significant increase in mortality,
arterial alveolar oxygen gradient (24-48 h post-infection,
systemic and pulmonary pressures during transfusion (4-
16 h) and pulmonary pressures for 8 h afterward (Figure
3). Furthermore, older blood caused more severe lung
damage as evidenced by increased necrosis, hemorrhage,
and thrombosis at the infection site at post-mortem exam-
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Figure 3. Survival curves. (A) Kaplan-Meier plot over the
96-h study comparing animals challenged with intrapul-
monary S. aureus and exchange transfused with 42-day
old (solid circle, solid line) or 7-day old (open circle, dashed
line) stored blood.  



ination. Plasma CFH and nitric oxide (NO) consumption
capability were elevated, and haptoglobin levels were
decreased with older blood during and for 32 h post-trans-
fusion. The low haptoglobin and high NO consumption
levels at 24 h were associated with poor survival. Plasma
non-transferrin bound and labile iron (the toxic moiety)
were significantly elevated only during transfusion, but
not associated with survival. We interpret these findings to
indicate that older blood after transfusion has a propensity
to hemolyze in vivo, releases iron intravascularly early
after transfusion, and CFH and possibly iron moieties over
several days, worsens pulmonary hypertension, gas
exchange and ischemic vascular damage in the infected
lung, and thereby increases the risk of death.  It is not clear
from our experiment whether the ‘first pass’ of hemoglo-
bin through the lung makes this organ particularly sensi-
tive, or whether pre-existing infection, pulmonary dam-
age, or staphylococcal sepsis are necessary for all of the
effects we reported. 

Randomized controlled trials

Evidence that blood transfusions are effective therapy
remains largely empiric. Large-scale clinical trials of RBC
safety and efficacy have never been required prior to
extending the RBC storage interval, nor would such stud-
ies likely be useful or practical. However, once observa-
tional studies suggest that stored blood is harmful, careful-
ly controlled prospective trials to confirm or refute the
results become imperative. Several large randomized con-
trolled clinical trials are studying different patient popula-
tions in different parts of the world; one such trial has been
completed. The Age of Blood Evaluation (ABLE) study,
supported by the Canadian Institutes of Health Research is
randomizing about 2500 intensive care unit patients to
receive either less than 8-day old RBC or standard-issue
RBC (2-42 days) should they require transfusion.31 More
than 1500 patients have already been entered. The Red
Cell Storage Duration and Outcomes in Cardiac Surgery is
randomizing 2800 cardiac surgery patients who are 18
years or older to receive RBC that are either less than 14
or more than 20 days old.32 The National Heart, Lung and
Blood Institute’s Red Cell Storage Duration Study
(RECESS) plans to randomize approximately 1800 car-
diac surgery patients to receive, if transfused, RBCs that
have been stored for ten days or less or units that have
been stored for 21 days or more; the composite end point
includes measures of multiorgan dysfunction seven days
after surgery.33 The INFORM multicenter trial in Canada,
a comparative effectiveness study, will randomize all
patients requiring transfusion to receive either the freshest
possible RBCs or the oldest in inventory with an in-hospi-
tal mortality end point; 1320 patients are planned to be
registered. A pilot study has been successfully completed
and published.34 The Australian/New Zealand TRANS-
FUSE study has a similarly pragmatic approach. ICU
patients are randomly assigned to receive blood at the
‘front of the refrigerator’ (older) or blood at the ‘back of
the refrigerator’ (fresher), reflecting the real-world age of
stored blood and standard transfusion practice. The end
point is 90-day mortality.35 Finally, a single institution,
randomized, controlled trial of cardiac surgery patients at
the Cleveland Clinic (Red Cell Storage Duration and

Outcomes in Cardiac Surgery) plans to enroll 1800 heart
surgery patients.36 This is the follow-on study based on the
findings of the retrospective analysis by Koch et al. that
was discussed above.

In the recently-published double-blind, randomized
controlled study of premature infants analogous to the
ABLE trial in adults (Age of Red Blood Cells in
Premature Infants, ARIPI), 377 premature infants with
birth weight less than 1250 g admitted to six Canadian ter-
tiary neonatal intensive care units received aliquots of
RBC either less than 8-day or standard-issue RBC (2-42
days).37 The primary end point was a composite measure
of major neonatal morbidities, including necrotizing ente-
rocolitis, retinopathy of prematurity, bronchopulmonary
dysplasia, and intraventricular hemorrhage, as well as
death. The primary outcome was measured within the
entire neonatal intensive care unit stay up to 90 days after
randomization. The rate of nosocomial infection was a
secondary outcome. Acutely ill premature babies who
received fresher blood did not fare better than those who
received the current standard of care. There was no differ-
ence between the two approaches with respect to major
organ injury, mortality or infection. However, the age dif-
ference between the fresher units (5.1 days) and the older
units (14.6 days) was relatively small and determining the
average age of blood for those neonates transfused more
than once was challenging; there was a wide range of RBC
age in each transfusion.

Conclusion

There is currently no consensus regarding the toxic
effects of ‘older’ RBC. Most retrospective studies have
flaws in their design or introduce bias that results in an
overestimation of the association between untoward
effects and the age of the blood. Studies in normal volun-
teers are somewhat reassuring in that no evidence of clin-
ical toxicity has been observed. However, the number of
subjects studied is small, the study end points relate more
to physiology than to pathology, and the findings in these
healthy subjects should not be applied to patients with a
variety of illnesses of differing severity. Studies in ani-
mals, while not definitive, suggest that at the extremes of
illness severity and RBC shelf life, the ‘storage lesion’
may be clinically relevant. It may be too smug to say that
fresher is always better; it is after all well-known that cer-
tain complications (transmission of spirochetes, infection
with some cell-associated viruses, and transfusion-associ-
ated graft-versus-host disease) are more common with
fresh blood. The transfusion medicine community main-
tains a high degree of optimism, if not confidence, that the
outcome of the ongoing randomized trials, still several
years away, will resolve the issue of the risk of stored
blood. It is certainly possible that these trials will prove to
be underpowered to provide a definitive result, or, if neg-
ative, will fail to identify clinical situations in which
stored blood might prove a substantial enough additional
insult to result in an adverse outcome. It is unlikely that
either animal models or additional retrospective analyses
(and certainly not in vitro studies) will provide sufficient
evidence to change blood collection and transfusion prac-
tice. A series of large, comparative effectiveness studies
may be required to resolve this issue.
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HIV-associated lymphomas in the HAART era

Virus-associated lymphomas 

A B S T R A C T

Introduction

The incidences of both non-Hodgkin’s lym-
phoma (NHL) and Hodgkin’s lymphoma (HL)
are significantly increased in patients with
HIV infection in comparison with those in the
general population. NHL in HIV patients, fre-
quently grouped under the term AIDS-related
lymphoma (ARL), is an AIDS-defining malig-
nancy (ADM), whereas HL is a non-AIDS
defining malignancy (NADM). The poor prog-
nosis of patients with AIDS in the pre-highly
active anti-retroviral therapy (HAART) era led
to a nihilistic symptomatic/palliative approach
in the management of patients with HIV and
lymphoma. The advent of HAART resulted in
a significant improvement in the outcome of
patients diagnosed with HIV and lymphoma
and a growing tendency to treat them follow-
ing the same protocols used in the non-infect-
ed population. Nevertheless, some controver-
sial issues in the management of patients with
HIV and lymphoma remain, which will be
reviewed in this session.

Etiopathology and classification

The development of lymphoma in patients
with HIV infection is, undoubtedly, related to

their immunosuppression and low CD4 counts,
as demonstrated by the almost complete disap-
pearance of primary central nervous system lym-
phoma (PCNSL) (characterized by extremely
low CD4 counts at diagnosis) in the HAART
era.1 However, the relationship is not a simple
lineal one. The conflicting reports on the inci-
dence of HL in the HAART era illustrate this,
with some articles reporting that the incidence
has not decreased in the HAART era,1,2 and oth-
ers reporting a higher incidence in recent years.3
In fact, some studies suggest that the incidence of
HL is higher in patients with moderate CD4
counts than in those with severe immunosup-
pression, so that the risk of developing HL might
actually increase when patients start HAART.4
The fact that the risk of being diagnosed with
lymphoma does not disappear in patients on
HAART with adequate viral suppression and
CD4 counts further demonstrates that a low CD4
count and a high viral load are not essential for
the development of lymphoma in these patients.
Although the CD4 count recovers in patients
responding to HAART, it is clear that their
immune system is not fully functional.
Furthermore, HIV results in chronic antigen
stimulation, and all of these circumstances con-
tribute to the increased risk of lymphoma. It is
important to note, at this point, that patients with
HIV infection can develop many different types
of lymphoma. The last update of the Centers for

The incidence of lymphoma is increased in patients with HIV infection, partly related to their
immunosuppression. The advent of highly-active anti-retroviral therapy (HAART) resulted in a signifi-
cant improvement in the outcome of patients diagnosed with HIV and lymphoma. This led to a gen-
eralized tendency to treat these patients with the same chemotherapy protocols used in the general
population. Nevertheless, this is undoubtedly a subset of patients with some specific particularities
which might result in an increased risk of toxicity during treatment, and this should be taken into
account when managing them. Thus, the selection of the appropriate HAART combination and the use
of prophylactic antibiotics are crucial to ensure a good outcome. The prognosis of patients with HIV
and lymphoma is comparable to that of the non-infected population, as long as patients with HIV
infection receive the same regimens as HIV-negative patients, and provided they receive adequate
support therapy, in terms of prophylactic antibiotics and anti-retroviral treatment.

Learning goals

At the conclusion of this activity, participants should be able to:
- describe how the introduction of HAART has impacted on the incidence and outcome of lymphoma

in patients with HIV infection;
- enumerate arguments in favor and against the concomitant use of HAART during chemotherapy;
- describe the management of patients with HIV and lymphoma and discuss how their outcome com-

pares with that of patients with the same types of lymphoma in the general population.



Disease Control and Prevention (CDC) definitions for AIDS
in 2008 confirmed the 24 AIDS-defining conditions previ-
ously included in 1999,5 amongst them Burkitt’s lymphoma
(BL), immunoblastic lymphoma (or equivalent) and primary
central nervous system lymphoma (PCNSL), which are fre-
quently grouped under the term ‘AIDS-related lymphoma’
(ARL). In contrast, the World Health Organization (WHO)
2008 classification acknowledges the diversity of subtypes of
lymphoma that can be diagnosed in individuals with HIV
infection (Table 1).6 This follows the spirit of the Revised
European American Lymphoma Classification (REAL) clas-
sification, continued in the WHO, recognizing that each sub-
type of lymphoma is an individual and specific entity, with its
specific pathogenesis, clinical features, treatment and prog-
nosis. In this regard, the pathogenic mechanisms leading to
the development of lymphoma in patients with HIV infection
vary in different types of lymphoma, the degree of immuno-
suppression/chronic stimulation required, the involvement of
other viruses such as Epstein-Barr virus (EBV) or human her-
pes virus-8 (HHV-8), and the presence of genetic abnormali-
ties, differing from one subtype to the other.7,8 

Concomitant administration of HAART during
chemotherapy

It was clear in the pre-HAART era that the concomitant
administration of anti-retroviral (ARV) therapy during
chemotherapy resulted in a significant increase in the tox-
icity of chemotherapy with a very poor tolerance.9,10 This
is not surprising considering that almost the only available
ARV at that time was zidovudine (AZT), which is charac-
terized by its myelotoxicity. This led in many centers to
the avoidance of ARV in patients receiving chemotherapy,
even when newer less toxic combinations were developed.
In contrast, the recommendation on the use of HAART
concomitantly with chemotherapy is based on the evi-
dence that the outcome of patients with HIV and lym-
phomas has significantly improved in the HAART era.11

Moreover, several studies have demonstrated that the
prognosis of patients with HIV and lymphoma is better
amongst those receiving HAART during treatment12,13 and,
even more, in those responding to HAART.14,15 In addition,
the interruption of HAART in patients on therapy prior to
the diagnosis of lymphoma might lead to the development
of viral resistance.16 There are two reasons for the
increased toxicity of chemotherapy in combination with
ARV. On the one hand, many ARV have overlapping tox-
icities with some of the chemotherapy drugs most fre-
quently used in patients with lymphoma. On the other
hand, some ARV, especially protease inhibitors (PI), alter
the metabolism of cytotoxic drugs via inhibition of
CYP3A4. In this sense, Bower et al. showed that PI-based
HAART results in a significantly increased myelotoxicty
when given in combination with chemotherapy, in com-
parison with other HAART regimens.17 This supports the
importance of an appropriate choice of ARVs in patients
receiving chemotherapy to ensure the benefit obtained by
continuing HAART without its potential downsides.

Infusional versus conventional regimens

The poor results obtained in the pre-HAART era with

conventional regimens led some investigators to explore
the use of infusional regimens to treat patients with HIV
and lymphoma;18 cyclophosphamide, doxorubicin and
etoposide (CDE)19 and dose-adjusted etoposide, pred-
nisone, vincristine, cyclophosphamide and doxorubicin
(DA-EPOCH)20 were the most commonly used. These
studies often include patients with ‘ARL’. Therefore,
patients are treated with the same regimens regardless of
their histological subtype, i.e. diffuse large B-cell lym-
phoma (DLBCL) or BL, in spite of the fact that there is
some suggestion that patients with BL might benefit less
than patients with DLBCL from some of these regimens.21

In contrast, with the advent of HAART, there was a move-
ment in many centers towards managing HIV patients
with lymphoma using the same chemotherapy schedules
used in the general population, including the intensive
chemotherapy regimens generally administered to patients
with BL. Several studies have demonstrated that the out-
come of patients with HIV and DLBCL,22 BL,23 and HL24

are comparable to those obtained in the non-infected pop-
ulation when patients receive the same protocols. In spite
of this, some centers still advocate the use of infusional
regimens. The National Cancer Institute presented excel-
lent results of the DA-EPOCH regimen in combination
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Table 1. WHO 2008 classification.

Lymphomas also occurring in immuno-competent patients

Burkitt’s and Burkitt-like lymphomas

Diffuse large B-cell lymphomas
Centroblastic
Immunoblastic (including PCNSL)

Extra-nodal MALT lymphoma

Peripheral T-NHL

Classic Hodgkin’s lymphoma

Lymphomas occurring more specifically in HIV-positive patients

Primary effusion lymphoma

Plasmablastic lymphoma of the oral cavity

Lymphomas also occurring in other immune-deficiency states

Polymorphic B-cell lymphoma (PTLD-like)

PCNSL: primary central nervous system lymphoma; MALT lymphoma: mucosa associated lymphoid tissue
lymphoma; PTLD: post-transplant lymphoproliferative disorder.

Table 2. Complete response/complete response uncertain
and survival in patients treated with ABVD according to
their serological status.

End point HIV-negative HIV-positive P

CR/CRu 79% 74% 0.34

5-year EFS 66% 59% 0.5

5-year DFS 85% 87% 0.5

5-year OS 88% 81% 0.15

ABVD: doxorubicin-bleomycin-vinblastine-dacarbazine; CR/CRu: complete response/complete response
uncertain; EFS: event-free survival; DFS: disease-free survival; OS: overall survival.



with rituximab for patients with BL (with or without HIV
infection) a few years ago,25 and is currently running a
phase II study of this regimen (NCT01092182). A pooled
analysis of two consecutive trials compared the outcome
of patients with HIV and lymphoma treated with either R-
CHOP or with R-EPOCH and concluded that R-EPOCH
resulted in a significant better complete remission (CR)
rate, event-free survival (EFS) and overall survival (OS).26

Thus, the data supporting the superiority of infusional
over conventional regimens in HIV-positive patients come
from phase II studies, with no randomized trials compar-
ing conventional versus infusional regimens in the HIV-
positive population. In view of this, the results of the ran-
domized study CALGB 50203 comparing R-CHOP with
DA-EPOCH-R in HIV-negative patients with DLBCL
might shed some light on this issue.

Use of rituximab in patients with HIV infection

The excellent results achieved with the addition of ritux-
imab to CHOP in patients with DLBCL in the general pop-
ulation27 led the AIDS-Malignancies Consortium (AMC)
to run one of the few randomized studies in patients with
HIV and lymphoma, comparing R-CHOP with CHOP.28 It
is important to note that in this study by Kaplan and col-
leagues, 20% of the patients had histological subtypes
other than DLBCL (including BL), and that the rituximab
arm included a short ‘maintenance’ phase with three
monthly additional doses of rituximab. The results of this
study are well known and can be summarized by saying
that the addition of rituximab did not result in a significant
advantage, which was partly attributed to an increased tox-
icity in patients receiving rituximab, especially in those
with very low CD4 counts. This study raised obvious con-
cerns on the safety of rituximab in severely immune-
depressed patients. More recently, another AMC random-
ized phase II study compared the concurrent administra-
tion of rituximab and EPOCH with the sequential admin-
istration of rituximab, at the end of EPOCH chemothera-
py.29 Although not the primary end point of the study, the
toxicity profile was comparable in both arms with no evi-
dence that the concurrent administration of rituximab and
chemotherapy substantially increases its toxicity in com-
parison with the sequential administration. The results of
this study, as well of those of other phase II studies,15,30

support the safety of the administration of rituximab in
patients with HIV infection, with the caveat that patients
with very low CD4 counts (defined in different studies as
<50 or <100) might present increased toxicity. Whether
rituximab should be omitted in these patients or whether it

can be given supported with prophylactic antibiotics is a
matter of debate.

Management of patients with HL

As mentioned above, the incidence of HL, one of the
most frequent NADMs, has been reported to be increasing
in the HAART era,3 and its management has also evolved.
Similarly, as in other types of lymphomas, there was some
reluctance to treat patients with HIV and HL with the stan-
dard chemotherapy regimens used in the general population
before the introduction of HAART. Again, this changed in
the HAART era with many investigators moving towards
the use of standard regimens for HL, such as doxorubicin,
bleomycin, vinblastine and dacarbazine (ABVD). The
largest series of 62 patients with HIV infection and HL
treated with ABVD reported a CR rate of 87% with a 5-year
EFS and OS of 71% and 75%, respectively,14 results similar
to those seen in non-infected patients. The lack of any dif-
ference in patient outcome, with or without HIV infection,
with HL treated with ABVD was recently demonstrated in
a multicenter study (Table 2).24 An important difference in
the management of HL in HIV patients in comparison with
HL in non-infected patients is that risk-adapted strategies
are less frequently followed. This is partly due to the small-
er proportion of patients with early favorable disease in the
HIV population on the one hand, and, on the other hand, to
the perceived increased risk of toxicity in this group of
patients. Nevertheless, a recent study has demonstrated the
feasibility of following a risk-adapted strategy in patients
with HIV and HL,31 in line with the philosophy of offering
patients with HIV infection the same curative protocols
used in the general population.

Management of relapsed/refractory disease

In spite of the excellent results achieved in the manage-
ment of patients with HIV and lymphoma, there will be, as
in the non-HIV population, a percentage of patients with
either refractory or recurrent disease. The standard man-
agement of refractory/relapsed HL and DLBCL (amongst
other types of lymphomas) in fit patients, based on the
results of several randomized studies,32-34 consists of the
administration of salvage chemotherapy with the aim at
obtaining a response, and consolidating it with high-dose
therapy and autologous stem cell rescue (HDT/ASCR). At
the beginning of this century, several small pilot studies
demonstrated the feasibility of HDT/ASCR in HIV
patients (Table 3),35-38 with adequate neutrophil and
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Table 3. High-dose therapy with autologous stem cell rescue in HIV patients with relapsed/refractory lymphoma.

Series N. On HAART Neutrophil count>0.5 (days, median) Platelet count>20 (days, median) OS EFS

Re* (2003)35 10 9 10 13 Median 18 mo Median 11 mo

Gabarre (2004)36 14 14 12 11 NR NR

Serrano (2005)37 11 10 16 20 81% (at 15 mo) 65% (at 32 mo)

Krishnan** (2005)38 20 9 11 NR 85% 85%
HAART: highly active antiretroviral therapy; OS: overall survival; EFS: event-free survival; mo: months; *median follow up: 8 months; **median follow up: 32 months.



platelet recovery, and outcomes comparable to those
expected in uninfected patients. The Lymphoma Working
Party (LWP) of the European Group for Blood and
Marrow Transplantation (EBMT) performed a case-
matched comparative analysis of the outcomes of patients
receiving HDT/ASCR for relapsed/refractory lymphoma
and demonstrated the lack of significant differences
according to their serological status,39 supporting the man-
agement of patients with HIV and lymphoma with the
same strategies used in non-HIV patients, also in the
refractory/relapse setting. Regarding the salvage regimens
used prior to HDT/ASCR, no series have been published
on the second-line treatment in HIV patients with
relapsed/refractory lymphoma and, thus, the scarce avail-
able data are extracted from series on first-line treatment
or studies of HDT/ASCR. The salvage protocols used are
varied and include the same range of different regimes
used in the general population, with small numbers of
patients treated with the same regimen, precluding any
conclusion as to the superiority of one protocol over the
others.40

Conclusions

The introduction of HAART represented a huge
advance in the outcome of patients with HIV diagnosed
with lymphoma and allowed them to benefit from the
same chemotherapy regimens employed in the general
population. This massive step, moving from a palliative
approach in the pre-HAART era to a curative one in recent
times, has eliminated the differences in the prognosis of
patients with lymphoma according to their serological sta-
tus, provided HIV-patients receive the appropriate regi-
mens for the histological subtype and stage of the disease,
and the adequate prophylactic antibiotics and HAART
regimen.
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HCV-associated lymphomas

Introduction

Hepatitis C virus (HCV) infection is a
worldwide problem, with up to 200 million
people infected worldwide. There are impor-
tant regional differences in the prevalence of
HCV infection: the lowest rates are reported in
Northern Europe while in Italy, Japan, Egypt
and southern parts of United States, preva-
lence estimates exceed 2%.1

HCV infection is the cause of chronic hepa-
titis, liver cirrhosis and hepatocellular carcino-
ma (HCC) and has been associated to a spec-
trum of extra-hepatic manifestations. Due to
the lymphotropism of HCV2 and consequent
lymphatic infection, some lymphoproliferative
disorders have been linked to the virus: mixed
cryoglobulinemia (MC),3 monoclonal gam-
mopathies4 and B-cell non-Hodgkin’s lym-
phomas (B-NHL).5

In the last 20 years, not only biological and
epidemiological studies but also therapeutic
observations provided solid evidence for the
association between HCV and B-cell NHL. In
particular, HCV has been associated with B-
cell low grade indolent NHL, especially of
marginal zone origin, as well as with aggres-
sive lymphomas, mainly diffuse large B-cell
lymphoma (DLBCL). More recently, interven-

tional studies demonstrated that in HCV-posi-
tive patients affected by indolent NHL, eradi-
cation of HCV with antiviral treatment (AT)
could directly induce lymphoma regression,
providing a strong argument in favor of a
causative link between HCV and lymphopro-
liferation.6

Mixed cryoglobulinemia 

Mixed cryoglobulinemia (MC) is the most
well defined lymphoproliferative disorder
associated with HCV infection. It is a clinical-
ly benign pre-lymphomatous disease charac-
terized by a very high prevalence (nearly 90%-
100%)3 of HCV infection, and by bone mar-
row and liver B-cell clones resembling a pic-
ture of low grade NHL. In fact, monoclonal or
oligoclonal B-cell expansion are frequently
detected in the intrahepatic infiltrates and in
the bone marrow of HCV-infected patients.
Immunophenotipic profile of the cells in the
intraportal lymphoid nodules shows that they
are mostly B cells expressing IgM and, in
some cases, CD5 antigen.7 Molecular studies
of V-D-J pattern of the B-cell component in
HCV-positive patients with MC demonstrated
that more than one clone with an oligoclonal

Virus-associated lymphomas  

The association between hepatitis C virus (HCV) infection and B-cell non-Hodgkin’s lymphomas
(NHL) has been demonstrated by epidemiological studies, in particular in highly endemic geographical
areas. Marginal zone lymphoma and diffuse large B-cell lymphoma are the histotypes most frequently
associated with HCV infection. Many mechanisms have been proposed for explaining HCV-induced
lymphoproliferation; antigenic stimulation by HCV seems to be fundamental in establishing B-cell
expansion as observed in mixed cryoglobulinemia and in NHL. Moreover, HCV-infected cells display a
mutator phenotype with increased mutation frequency of some genes, such as immunoglobulin heavy
chain. Recently, antiviral treatment has been proved to be effective in the treatment of HCV-positive
indolent lymphomas, in particular splenic marginal zone lymphoma. Across different studies, overall
response rate was approximately 75% and responses were linked to the eradication of the HCV-RNA.
More recently, a subset of apparently de novo diffuse large B-cell lymphoma emerged as a separate
entity associated with HCV infection. In this setting, antigenic trigger seems no longer necessary to
support the lymphoproliferation and antiviral treatment is not sufficient to control the disease. On the
other hand, the impact of liver toxicity after immunochemotherapy in patients with HCV-positive dif-
fuse large B-cell lymphoma is a relevant clinical issue that has not yet been completely clarified.

Learning goals

At the conclusion of this activity, participants should be able to:
- understand the mechanisms of HCV-related lymphoproliferation;
- describe the epidemiological evidences of association of HCV with NHL;
- describe the anti-lymphoma activity of antiviral treatment in HCV-associated indolent B-cell NHL;
- understand biological and clinical features of HCV-associated DLBCL.

A B S T R A C T



pattern sustains the lymphoproliferation.8
The main clinical features of MC are palpable purpura,

arthralgia, weakness, organ involvement (liver, kidney),
peripheral neuropathy and vasculitis. The vasculitic
lesions are the consequence of vascular deposition of cir-
culating immune complexes and complement.9

In HCV-infected patients with MC, the risk for develop-
ing a NHL is greatly increased with respect to the general
population (about 35 times according to a multicenter
Italian study):10 approximately 10% of patients with MC
evolve to a frank NHL. AT with pegylated interferon
(PEG-IFN) + ribavirin (RBV) has been shown to reverse
bone marrow B-cell expansion in patients with HCV-MC,
leading to clinical and virological responses in more than
half of cases.11

HCV and lymphoproliferation 

Mechanisms of lymphoproliferation in HCV-infected
subjects are not unique; many models have been proposed
and they may be not mutually exclusive (Figure 1).

The role of HCV infection in lymphomagenesis may be
related to the chronic antigenic stimulation of B-cell
response,12 similar to the well characterized induction of
gastric mucosa-associated lymphoid tissues (MALT) lym-
phoma development by Helicobacter pylori chronic infec-
tion.13 In a similar way, chronic HCV infection may possi-
bly sustain a multi-step evolution from MC to overt low-
grade NHL and eventually to high-grade NHL.12,13 During
this process, independence from antigenic stimulation can
develop due to additional genetic aberrations. Regarding
the antigenic trigger, the monoclonal component of MC is
often an IgM with a rheumatoid factor activity (anti-IgG
cross-reactive binding) that mirrors the expansion of a B-
cell monoclonal population14 not only in bone marrow but
also in hepatic follicles.7

It has also been hypothesized that the HCV antigens
such as NS3 may be involved in the induction of MC and
lymphoma.15 In addition, envelope protein such as E2 pro-
tein can play a role in lymphomagenesis; it interacts with
the tetraspanin CD81, present also on the B-cell surface,
lowering the threshold and leading to a polyclonal B-cell
activation.16 In a case of HCV-associated NHL, it has been
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Figure 1. Mechanisms of HCV-induced lymphoproliferation.



elegantly demonstrated that the specific immunoglobulin
binds the E2 protein as a human anti-E2 antibody.17 In
addition, E2 protein appears to mimic human Ig18 and
induces the production of IgM monoclonal factor
(rheumatoid factor) in MC patients.19

A role in development of HCV-related lymphoprolifera-
tive disorders could be played also by chromosomal alter-
ations: for instance, MC with or without lymphoma is
characterized by translocation t(14;18) with the overex-
pression of the antiapoptotic bcl-2 gene leading to pro-
longed B-cell survival.19 It is also worthy of note that an
increased amount of aneuploidy has also been reported in
patients with chronic hepatitis and in patients with NHL
compared to healthy subjects.20

Another mechanism of HCV-related lymphomagenesis
is associated with lymphotropism of HCV, as demonstrat-
ed by the viral replication in lymphatic tissue.2 In addition,
regarding molecular signals in HCV-related lymphomage-
nesis, it has been demonstrated21 that HCV-infected cells
display a mutator phenotype with increased mutation fre-
quency of immunoglobulin heavy chain, BCL-6, p53, and
β-catenin genes.

It was also postulated that cytokines and chemokines are
involved in the mechanisms of HCV-induced lymphopro-
liferation: IFNg, TNFα,22 CXCL1323 and BAFF24 in MC,
as well as osteopontin25 in B-NHL.

Epidemiology 

Several epidemiological studies have been conducted
since the 1990s to investigate the link between HCV and
NHL. These studies, sometimes based on relatively small
numbers of cases, suggested a significant increased risk of
B-cell NHL in HCV-positive patients, especially in coun-
tries with high prevalence of HCV infection such as
Italy,26 Egypt27 and Japan28 while studies from areas with
low HCV prevalence, such as Northern Europe and the
US, failed to show any evident association.29

Meta-analyses of studies evaluating prevalence of HCV
infection in B-cell NHL confirmed the association
between HCV and NHL.30-33 In 2003, a meta-analysis31

evaluated 48 studies (5542 patients) with a mean HCV
infection prevalence of 13%. In 10 case-control studies
examined, HCV prevalence in B-cell NHL was 17% com-
pared with 1.5% in healthy subjects (Odds ratio (OR)
10.8). In a 2006 up-dated meta-analysis33 of 15 case-con-
trol studies, relative risk of lymphoma among HCV-posi-
tive subjects was 2-2.5. Overall, the fraction of NHL
attributable to HCV infection varies greatly according to
geographical area, reaching 10% in highly endemic coun-
tries. Interestingly, in a large Danish-Swedish population-
based case-control study on 2819 lymphoma patients and
1856 controls of second-generation Danish-Swedish ori-
gin, a positive association between HCV and risk of NHL
has been demonstrated in a population with a low HCV
prevalence.34

A major limitation is that the numbers of cases analyzed
in these cohorts were too small to establish a clear corre-
lation between HCV and specific histotypes of NHL. In
the Epilymph35 study, the subtypes associated with HCV
infection resulted DLBCL, marginal zone lymphoma
(MZL) and lymphoplasmacytic lymphoma (LPL). In addi-
tion, the International Lymphoma Epidemiology

Consortium (InterLymph), based in Europe, North
America, and Australia, performed a pooled case-control
study including in the analysis data of 7 previous surveys:
among 4784 cases of NHL and 6269 controls, HCV infec-
tion was detected in 3.6% of NHL cases and in 2.7% of
controls. In subtype-specific analyses, HCV prevalence
was associated with DLBCL, MZL and LPL.36 On the
other hand, results from a population-based study from the
US are somewhat unexpected: from the US Surveillance,
Epidemiology, and End Results (SEER)-Medicare data-
base, 61,464 cases were selected and HCV was associated
not only with increased risk of DLBCL (OR 1.5) and MZL
(OR 2.2) but also with Burkitt’s lymphoma (OR 5.2) and
follicular lymphoma (OR 1.88).37

HCV and indolent lymphomas 

Several clinical-pathological studies investigated the
association of HCV-infection with specific indolent NHL
subtypes. Within indolent NHL subtypes reported in the
World Health Organization (WHO) classification,38 the
association with HCV infection has been best character-
ized in MZLs. It is well known that many infectious agents
have been involved in the pathogenesis of specific types of
MZLs: Helicobacter pylori for gastric MALT lym-
phoma,13 Borrelia burgdorferi for MALT lymphoma of the
skin,39 Chlamydophila psittaci for MALT lymphoma of
the orbit, Campylobacter jejuni for immunoproliferative
small intestine disease. In these clinical scenarios, eradica-
tion of the antigen after antimicrobial therapy may lead to
a regression of the underlying lymphoma. 

According to this scenario, also chronic stimulation by
HCV may play a role in development of a subgroup of
MZL cases; however, the role of HCV in marginal zone
lymphomagenesis can reflect geographical differences
considering the relatively high seroprevalence in some
series of MZL40 and the rarity of HCV-positive cases in
others.41

Splenic marginal zone lymphoma (SMZL) is an indo-
lent lymphoma that accounts for less than 2% of all
NHL.42 In a large Italian series, HCV serology was posi-
tive in 19% and cryoglobulins were detected in 10%. In
2005, French authors described a form of splenic lym-
phoma associated with MC and HCV infection:43 all 18
patients had MC, symptomatic in 13. In addition, in a
series of 133 SMZL (26 HCV-positive) 12% showed
stereotyped B-cell receptors, suggesting that the pathogen-
esis of SMZL may involve also HCV-related and unrelated
epitopes or an antigenic trigger common to other indolent
lymphomas. 

Recently, unsupervised hierarchical clustering of
miRNA expression profiles demonstrated a distinct signa-
ture of SMZL compared with the normal splenic marginal
zone. Supervised analysis revealed differentially
expressed miRNAs and miR-26b, a miRNA with tumor
suppressive properties, was significantly down-regulated
in HCV-positive patients with SMZL.

Primary nodal marginal zone lymphoma is listed in the
2008 edition of WHO lymphoma classification as a dis-
tinct clinical-pathological subtype characterized by exclu-
sive primary lymph node localization in the absence of
extranodal site of involvement. This rare form of indolent
NHL has been linked to HCV infection with preferential
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use of specific VH segments.44 In a relatively large Italian
series, HCV serology was positive in 24% and HCV-RNA
was detectable in half the patients studied.45

Gastric and non-gastric extranodal MZL of MALT rep-
resent 8% of all NHL. They are typically indolent diseases
of middle and advanced age; disseminated disease is pres-
ent in nearly one-third of cases.46 Interestingly, an
increased prevalence of HCV infection has been reported
in unselected series of patients with gastric lymphoma.47

In an Italian multicenter study, HCV serology was avail-
able in 35% of non-gastric MALT lymphoma.
Interestingly, three specific MALT lymphoma sites
showed an elevated prevalence of HCV infection: salivary
glands, skin and orbit.48

The association of HCV infection and salivary glands
lymphoma has been clearly demonstrated.49 In 33 cases of
primary salivary MALT lymphoma, 7 had HCV infection
and of these 11 patients with cryoglobulinemia, 5 were
HCV-positive and 6 were affected by Sjögren’s syndrome.
Interestingly, a study on B-cell lymphoma in patients with
Sjögren’s syndrome and HCV infection reported an ele-
vated occurrence of parotid involvement and a high pro-
portion of MALT lymphomas with primary extranodal
involvement (exocrine glands, liver, and stomach).50 A
series of 12 HCV-positive subjects presenting with subcu-
taneous nodules resembling ‘lipomas’ with a typical his-
tology of extranodal MZL of MALT have been recently
reported.51 From a clinical point of view, the clinical
benign appearance of these ‘lipoma-like’ lesions and their
indolent clinical behavior may delay correct diagnosis.
HCV-RNA was detectable in 10 of the 10 patients tested;
cryoglobulins were found in 4 patients and 2 presented
cryoglobulinemic purpura. Molecular analysis of
immunoglobulin heavy chain gene rearrangements docu-
mented the presence of somatic mutations in 14 of 17
(82%) clonal rearrangements; in some cases different V-
D-J rearrangements were found at diagnosis and at
relapse.

Beside MZLs, also LPL/Waldenström’s macroglobu-
linemia (WM) has been associated to HCV infection.52

However, this association is not completely defined. For
example, a survey from the US did not find any HCV-pos-
itive case among 100 untreated patients affected by WM.53

Comparing Waldenström’s macroglobulinemia and
SMZL, it seems that SMZL, despite some common fea-
tures, displayed a clearly higher association with HCV
infection than WM.54

B-cell chronic lymphoproliferative disorders are defined
as the miscellaneous category of leukemic lymprolifera-
tive disorders distinct from chronic lymphocytic leukemia
(Royal Marsden Hospital scoring system ≤355).
Association of these entities with HCV is not clear. A
monocentric Bayesian study56 showed a high prevalence
of HCV infection while another series reported a low rate
of HCV-positivity (5%) in CD5/CD10-negative B-cell
chronic lymphoproliferative disorders.57 Further investiga-
tions are needed to clarify this issue, given the heterogene-
ity and the small numbers of studies focusing on these
entities. Interestingly, monoclonal B-cell lymphocytosis
(MBL), a pre-clinical condition characterized by an
expansion of clonal B cells in the absence of frank lym-
phocytosis, was identified in nearly 30% of HCV-positive
subjects with a significantly higher frequency than in the
general population.

Antiviral treatment of HCV-positive indolent
lymphomas 

The aim of treatment for patients with HCV-related
chronic hepatitis is to prevent disease complications
through HCV eradication, defined as sustained virological
response (SVR), i.e. undetectable HCV-RNA by a sensi-
tive polymerase chain reaction (PCR)-based assay 24
weeks after discontinuation of therapy. The current stan-
dard of care is combination of PEG-IFN and weight-based
RBV for 48 weeks for genotype 1 and 4, and for 24 weeks
for genotype 2 and 3. Patients with genotype 2 or 3 obtain
a SVR in 75%-90% of cases, while patients with genotype
1 and 4 achieve SVR in nearly 50%.58 Recently, the intro-
duction of the HCV NS3/4A protease inhibitors bocepre-
vir59 and teleprevir,60 the first two drugs belonging to a
new generation of direct-acting antiviral agents, has been
demonstrated to improve virological responses in geno-
type 1 patients. Other novel potent protease inhibitors
showing promising activity are currently under develop-
ment, as well as other new upcoming classes of direct-act-
ing antiviral agents like polymerase inhibitors. Their
potential combination seems to herald the possibility of
obtaining highly efficacious IFN-free regimens for HCV
chronic hepatitis in the near future.61, 62

Strong additional evidence supporting the etiological
role of HCV in lymphomagenesis is the reported regres-
sion of indolent NHL after eradication of HCV infection
with AT. In 2005, a systematic review concerning the effi-
cacy of AT in lymphoproliferative disorders was pub-
lished63 covering 16 studies reporting the employment of
AT as primary anti-lymphoma treatment in 65 HCV-
infected patients diagnosed with lymphoproliferative dis-
orders. Complete response (CR) was reported in three-
quarters of cases. However, some reports were based on
relatively few patients and included also subjects with MC
with presence of B-cell monoclonality.64 Data regarding
124 cases of HCV-associated indolent NHL treated with
AT for lymphoma control are summarized in Table 1.65-80

Nearly half of these reports are case reports regarding 1-2
patients.

In 2002, Hermine et al. reported the outcome of 9
patients with splenic lymphoma with villous lymphocytes
and HCV infection treated with IFN. Complete response
and HCV-RNA clearance were obtained in 7 of 9 patients.
Two patients who did not respond were subsequently
treated with IFN plus RBV and obtained HCV-RNA neg-
ativity as well as lymphoma regression. This anti-lym-
phoma activity was absent in HCV-negative patients with
SMZL. A subsequent report from the same group expand-
ed these results in 18 patients with chronic HCV infection,
MC and splenic lymphoma with villous lymphocytes.43

All patients were treated with IFN (plus RBV in 10) and
14 patients obtained a CR after clearance of HCV-RNA.
Viral genotype did not seem to correlate with the response.
Another study reported first-line AT with IFN and RBV in
8 HCV-positive patients with different subtypes of MZL:
60% obtained a response and this was correlated to viro-
logical response in most cases.73

An Italian multicenter study reported results of AT in 13
HCV-positive indolent B-cell NHL, including non-mar-
ginal zone cases.74 Among 12 assessable patients, 7
achieved a CR, 2 partial responses (PR); lymphoma
regression was highly significantly associated to clearance
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or decrease in serum HCV viral load. Virological response
was more frequent in HCV genotype 2; however, lym-
phoma response did not correlate with the HCV genotype.
One of the greatest achievements of this study was the
demonstration of the efficacy of AT in a wide range of
HCV-positive low-grade NHL subtypes other than splenic
MZL, as CRs were actually observed without significant
differences in all indolent NHL histologies. More recently,
Mazzaro et al.76 reported a comparison of PEG- IFN and
standard IFN (plus RBV) as first-line treatment in 18
patients with HCV-positive low-grade B-cell NHL. CR
and SVR rates were higher in the group treated with PEG-
IFN (6 of 10 patients, 60%) with respect to the group treat-

ed with standard IFN (3 of 8 patients, 37%). Achievement
of lymphoma response was significantly related to the
clearance of HCV-RNA.

Data regarding molecular eradication with AT in HCV-
associated indolent NHL are conflicting. The French74 and
Italian66 experiences reported that no molecular response
was obtained along with clinical remission. On the other
hand, Italian and US authors reported an impact of AT on
disappearance of immunoglobulin heavy-chain gene
rearrangement and t(14;18) translocation in HCV infected
patients.19,64,81 This observation along with other similar
reports suggest that AT can eliminate clonal B-cell prolif-
eration and possibly prevent the subsequent development
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Table 1.  Series of patients with indolent B-cell lymphoma associated with HCV infection treated with antiviral treatment
as anti-lymphoma approach.

Year N. of pts Type of NHL N. of pts with MC Type of anti-viral treatment NHL response HCV response

Mazzaro et al.65 1996 6 Immunocytoma 6 α-IFN-2b 3 CR 3

Bauduer66 1996 1 EMZL (oral cavity) - α-IFN 1 PR 1

Caramaschi et al.67 1999 1 EMZL (salivary glands) - α-IFN 1 CR NA

Moccia et al.68 1999 3 SMZL - α-IFN 2 CR NA

Patriarca et al.69 2001 1 LPL - α-IFN 1 CR 1

Hermine et al.6 2002 9 SLVL 6 α-IFN 7 CR 7

Casato et al.70 2002 1 Leukemic MZL 1 α-IFN 1 CR Decreased HCV-RNA

Pitini et al.71 2004 2 SMZL - α-IFN 2 CR 2

Tursi et al.72 2004 16 EMZL (stomach) - α-IFN-2b + RBV 16 CR 11/16

Kelaidi et al.73 2004 8 SMZL (n=4) 8 α-IFN-2b + RBV 5 CR 5 SVR, 2 PR
Disseminated MZL (n=1)
Leukemic MZL (n=1)

EMZL (n=2) (1 duodenus; 1 ileus)

Vallisa et al.74 2005 13 SMZL (n=4) 5 Peg-IFN + RBV 7 CR, 2 PR 7 SVR, 1 PR
NMZL (n=2)
EMZL (n=2)
FL (n=1)
LPL (n=4)

Svoboda et al.75 2005 1 EMZL (salivary gland, liver) - Peg-IFN + RBV CR 1

Saadoun et al.43 2005 18 SLVL 18 α-IFN (+ RBV in 10) 14 CR, 4 PR 14 CR, 4 PR

Paulli et al.51 2009 2 EMZL (subcutaneous tissue) 2 Peg-IFN + RBV 1 CR, 1 PR 2 CR

Mazzaro et al.76 2009 18 1 SLVL 13 α-IFN + RBV (n=8) 9 CR, 4 PR 9 SVR
1 FL Peg-IFN + RBV (n=10)
16 LPL

Oda et al.77  2010 1 B-NHL (liver) - Peg-IFN + RBV CR SVR

Saadoun et al.78 2010 13 8 MZL 13 Peg-IFN + RBV (+ R in 7) 11 CR
4 LPL
SLL 1

Pellicelli et al.79 2011 9 3 EMZL 5 Peg-IFN + RBV 5 CR 7 SVR
3 SMZL 2 PR
1 NMZL
2 FL

Mauro et al.80 2012 1 LPL 1 Peg-IFN + RBV CR SVR

SMZL: splenic marginal zone lymphoma; NMZL: nodal marginal zone lymphoma; SLVL: splenic lymphoma with villous lymphocytes; EMZL: extranodal marginal zone lymphoma of MALT; FL: follicular lymphoma; LPL:
lymphoplasmacytic lymphoma; SLL: small lymphocytic lymphoma; NHL: non-Hodgkin’s lymphoma; NOS: not otherwise specified;  pts: patients; IFN: interferon; RBV: ribavirin; R: rituximab; CR: complete response; PR:
partial response; SVR: sustained virological response.



of lymphoma. Regarding this, Kawamura et al. reported
501 consecutive patients carrying HCV infection who had
never received IFN and 2708 consecutive patients who
received IFN therapy. They demonstrated that sustained
virological response induced by AT protects against the
development of NHL in these patients.82 In the non-treated
group, the cumulative rate of NHL development was 2.6%
at 15 years; the cumulative rate of NHL development in
IFN-group with SVR was 0% at 15 years while the cumu-
lative rate in patients with persistent infection was 2.6% at
15 years.

In the future, several lines can be pursued with the aim
of further improving these results. First, investigations
should examine whether the combination of PEG-IFN +
RBV + rituximab (PIRR scheme) tested in symptomatic
MC78,83 is able to obtain a better long-term control of dis-
ease also in indolent B-cell NHL. Interestingly, while in an
Italian study83 no patient with NHL were included, in a
French study,78 7 patients with lymphoma were treated
with the PIRR scheme and all obtained CR for lymphoma.

Second, investigations should also examine if new
antiviral combinations with new anti-HCV agents (i.e.
PEG-IFN and RBV plus boceprevir or teleprevir) that
obtain higher rates of SVR in genotypes 1 carriers,59,60

could increase the possibility of lymphoma response also
in patients with more resistant genotypes. Finally, will
future IFN-free regimens with direct antiviral agents only
allow access to AT also for HCV-positive NHL patients
with contraindications to IFN use, e.g. because of
advanced age, cytopenias and/or comorbidities. In addi-
tion, considering the anti-proliferative properties of IFN,
lymphoma regression with IFN-free regimens could defi-
nitely demonstrate that lymphoma regression is strictly
linked to the HCV eradication.

HCV and aggressive lymphomas 

Despite the classical association of HCV with indolent
NHL, aggressive NHL, in particular DLBCL, are emerg-
ing as diseases linked to HCV infection. An Italian case-
control study reported an even higher association of HCV
infection with DLBCL (OR 3.5) with respect to indolent
NHL (OR 2.3), suggesting that approximately 1 in 20
cases of DLBCL in Italy may be attributable to HCV.84 On
the other hand, an experimental model in which transgenic
mice expressing the whole HCV genome in CD19-posi-

tive B cells display a high incidence of B-NHL with the
features of typical DLBCL.85 Reports have also shown a
higher seroprevalance of genotype 1 with a short duration
of infection in HCV-positive DLBCL as compared to
patients with indolent NHL, who showed a higher preva-
lence of genotype 2.79

HCV-positive DLBCL patients display specific presen-
tation with respect to HCV-negative DLBCL.86,87 In partic-
ular, residual signs of low-grade lymphoma and extran-
odal disease such as spleen are more frequently detected in
HCV-positive cases in comparison with HCV. Data
regarding clinical features of HCV-associated DLBCL
series reported in literature are summarized in Table 2.86-89

As far as outcome is concerned, some clinical features
included in common prognostic scores for DLBCL such as
older age, advanced stage and number of extranodal sites
may be confounding because they are differently distrib-
uted in this setting. Moreover, many laboratory parameters
of common prognostic value (i.e. LDH, blood cell counts)
are influenced not only by lymphoma but also by HCV
infection. As a consequence, little is known about precise
prognostication of HCV-positive DLBCL.

Unlike indolent B-NHL, AT seems not to play a central
role in the first-line approach for HCV-positive DLBCL,
because lymphoma cells are most likely to be independent
from chronic antigenic stimulation due to the acquisition
of additional oncogenic lesions. For this reason, although
anecdotal cases of aggressive NHL such as DLBCL90 and
mantle cell lymphoma91 treated with AT and obtaining
remission have been reported, HCV-positive DLBCL
patients have to be treated with anthracycline-based
chemotherapy coupled with rituximab. 

In the pre-rituximab era, in a French study86 focusing on
23 HCV-positive DLBCL patients, 52% developed hepatic
toxicity during chemotherapy. This was significantly high-
er than matched HCV-negative patients. HCV positivity
also showed a negative impact on overall survival.

In an Italian study,87 among 132 patients with HCV-pos-
itive DLBCL, only 4% had to discontinue treatment due to
severe hepatotoxicity, while 11% required dose reduction
or prolongation of treatment intervals. 

Based on the parallel with the phenomenon of HBV
reactivation and the risk of acute exacerbation of hepatitis,
there have been many concerns about the use of rituximab.
In MC syndrome with advanced liver disease, rituximab
appeared to be safe and effective. Moreover, the depletion
of CD20+ B cells was followed by cirrhosis syndrome
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Table 2. Series of patients with diffuse large B-cell lymphoma associated with HCV infection.

Year N. of pts M/F Transformed NHL Primary extranodal N. (%) Spleen involvement OS PFS
N. (%) N. (%) N.

Besson et al.86 2006 26 17/9 (27/73) 7 (32) NA 12 (46) 2-y OS 56% 2-y 53%

Visco et al.87 2006 156 74/82 (47/53) 14 (8) 67 (43) 53 (34) 5-y OS 75% 5-y PFS 51%

Arcaini et al.88 2010 99 46/53 (46/53)* NA 14 (14)* 34 (34) 5-y OS 68% Median PFS 1.9 y

Ennishi e et al.89 2010 131 79/52 (60/40) 5 (4) NA 24 (18) 3-y OS 75% 3-y PFS 69%

*L Arcaini, personal data, 2008. M: males; F: females; OS: overall survival; PFS: progression-free survival; y: years..



improvement despite the possibility of transient increases
in HCV-RNA.92 On the other hand, it is arguable that
immunodeficiency linked to hematologic malignancies
and combination of rituximab with immunosuppressive
and chemotherapy drugs may result in a more aggressive
evolution of liver damage.93

Regarding the use of rituximab in HCV-positive NHL,
in an Italian series87 rituximab was coupled with standard
chemotherapy in 35 patients. None of the rituximab-treat-
ed patients developed moderate-severe hepatic toxicity. In
another Italian report of 160 HCV-positive NHL (101
were DLBCL and 28 had been treated with rituximab)94

among 93 patients with normal ALT at presentation, 16
patients developed WHO grade 3-4 liver toxicity, and
among 67 patients with abnormal ALT, 8 patients had a 3.5
times elevation during treatment. Among 28 patients treat-
ed with rituximab and chemotherapy, 5 patients (18%)
developed liver toxicity. Severe hepatic toxicity occurred
more frequently in genotype 1 carriers.

A Japanese survey analyzed 553 patients with DLBCL
(131 HCV-positive) treated with R-CHOP.89 HCV infec-
tion was not a significant risk factor for prognosis. Of 131
HCV-positive patients, 36 (27%) had severe hepatic toxi-
city (grade 3-4), compared with 13 of 422 (3%) patients
who were negative for HCV infection. Multivariate analy-
sis revealed that HCV infection was a significant risk fac-
tor for severe hepatic toxicity. However, this excess of
hepatic toxicity seems to only slightly affect the outcome,
as the authors found only a trend toward a worst overall
survival in HCV-positive patients, without any difference
in response rate or progression-free survival between the
two cohorts. 

The interplay between HCV-RNA levels and transami-
nases in HCV-positive NHL during chemotherapy with or
without rituximab has only been analyzed in some reports
and with conflicting conclusions.94-102 For instance,
Ennishi and co-workers found that in 34 patients treated
with R-CHOP, HCV-RNA load significantly increased
during immunochemotherapy.95 While relatively small
case series suggested that HCV-RNA peak may precede or
coincide with the occurrence of a transaminases flare (pos-
sibly at the time of CD20 lymphocyte recovery),98,100 in the
majority of studies, ALT levels seem to have no impact on
HCV-RNA quantification and, therefore, this does not
appear to be useful to predict liver toxicity.94,97,99,102,103

Many researchers have explored the option of integrat-
ing AT in the context of immunochemotherapy programs
in HCV-positive DLBCL. Although some rare cases of
concurrent delivery of AT and immunochemotherapy with
the aim of preventing or treating hepatitis flares have been
reported,95 treatment with AT is usually not feasible
because of hematologic toxicity, as shown by a pilot study
by Musto in 4 patients with DLBCL,104 while a sequential
approach (immunochemotherapy followed by AT) seem
effective and well tolerated also in aggressive forms.105

These preliminary experiences are encouraging and have
to be confirmed in larger prospective series.

Conclusions

The association between HCV infection and B-cell
NHL has been demonstrated by epidemiological studies,
in particular in highly endemic geographical areas. MZL

and DLBCL are the histotypes most frequently associated
with HCV infection. Many mechanisms have been pro-
posed to explain the wide spectrum of HCV-induced lym-
phoproliferation that ranges from MC to indolent and
aggressive NHL. 

AT has been shown to be effective in the treatment of
HCV-positive indolent lymphomas while it is not suffi-
cient to treat HCV-associated DLBCL. It is likely that
future improvements in AT and advances in prognostica-
tion and monitoring of hepatic toxicity may directly result
in an increase in cure rates of HCV-associated NHL.
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Epstein-Barr virus-driven lymphomas: an update 

Introduction

The Epstein-Barr virus (EBV) was first
identified 40 years ago in cultured Burkitt’s
lymphoma (BL) cells when no human lym-
phoid cell had ever been maintained in
culture.1 EBV has a worldwide distribution
being able to establish a lifelong infection in
more than 90% of individuals. Primary infec-
tion is usually asymptomatic, and when it is
delayed until adolescence or adulthood, a
benign lymphoproliferative disease, known as
infectious mononucleosis (IM), may occur. B
lymphocytes are the main target of EBV infec-
tion in vivo, although epithelial cells, and T or
NK cells may also carry EBV. Infection of B
lymphocytes is usually non-productive or
latent, whereas intermittent reactivation and
virus replication at epithelial surfaces allow
the spreading of EBV to new hosts. Healthy
EBV-seropositive adults usually carry 1-50
EBV-infected B lymphocytes per million cells

in the peripheral blood.2 These latently infect-
ed B cells show features of resting memory B
lymphocytes2,3 and are considered the reser-
voir of EBV latency. After infection of naïve B
cells, EBV normally establishes different pro-
grams of latency that are sequentially
expressed according to the type, differentia-
tion, and activation status of infected cells,
finally driving them to the memory B-cell
compartment. The first program is expressed
shortly after infection and includes the full set
of EBV-encoded latency proteins, including
six EBV nuclear antigens (EBNAs) and three
latent membrane proteins (LMP-1, LMP-2A,
LMP-2B). This broad latency pattern (Latency
III) promotes the activation and growth of B
lymphocytes which can be initiated in vitro
into continuously proliferating lymphoblastoid
cell lines (LCLs). Similarly to normal B lym-
phocytes activated by interaction with the cog-
nate antigen, also EBV-carrying activated B
lymphoblasts migrate to the germinal centers

Virus-associated lymphomas  

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpes virus that has established an elegant strat-
egy to persist as a life-long asymptomatic infection in memory B lymphocytes. Despite its ubiquity,
EBV has potent transforming properties that may arise from its strategy to permanently infect indi-
viduals and that may lead to the development of a variety of lymphomas of B- or NK-/T- cell origin.
In the last decade, our understanding of the latency programs activated by the virus in different EBV-
driven lymphomas and the function of EBV-encoded proteins has considerably improved. The emerging
picture clearly indicates that EBV latency proteins are able to hijack or deregulate critical cellular
pathways to promote the proliferation and survival of infected cells, while impairing anti-viral immune
responses. Similar effects may be also induced by EBV-encoded micro-RNAs, which may have a rele-
vant pathogenic role, particularly in lymphomas showing a restricted expression of viral proteins.
Moreover, recent data have challenged the view that only the latency phase of EBV infection is rele-
vant for EBV-driven lymphomagenesis, suggesting that lytic EBV replication may also contribute to the
development of EBV-associated lymphoproliferations. The recent advances in the clarification of the
mechanisms underlying EBV-induced cell transformation and immune evasion help to design novel
treatment approaches for EBV-related lymphomas. 

Learning goals

At the conclusion of this activity, participants should be able to:
- provide an update on the continuously expanding spectrum of EBV-associated lymphomas in terms

of classification, epidemiology, extent of EBV-association, and pattern of EBV latent proteins
expressed;

- highlight recent data indicating that EBV lytic reactivation may also contribute to the EBV-mediated
lymphomagenesis, particularly in the early phases;

- review available evidence supporting a pathogenic role of EBV-encoded miRNA in the development
of EBV-associated lymphomas, particularly for the histotypes in which only a restricted set of viral
proteins is expressed;

- highlight how the ever-increasing understanding of the complex relationship between EBV and its
host may translate into new therapeutic approaches.
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of lymphoid follicles where the viral transcription pro-
gram changes.4 In these cells, only EBNA-1 and the LMPs
(Latency II) are expressed, a ‘rescue’ program that pro-
vides signals allowing infected lymphoblasts to survive
and differentiate into memory B cells.5 Cells leaving the
germinal center as resting memory B lymphocytes silence
the expression of all EBV latency proteins (Latency 0) or
may express EBNA-1 upon cell division (Latency I), a
strict requirement for replication of the viral genome and
its maintenance within the infected cell. This elegant strat-
egy allows EBV-carrying cells to escape immune surveil-
lance while establishing lifelong persistence in the infect-
ed host. In all forms of latency, EBV expresses the
EBERs, small non-polyadenylated, non-coding double-
strand RNAs, which may also contribute to EBV-driven
B-cell immortalization.6 When the EBV-infected memory
B cell differentiates into antibody-secreting plasma cells,
EBV activates an additional program, the lytic replication,
which favors the spreading of the virus both within and
outside the host.5 From this scenario, it appears that the
virus is able to exploit several steps of normal B-cell phys-
iology to establish (activation and differentiation) and
maintain (long-term memory) a persistent latent infection
and then be released (terminal differentiation). Although
well equipped to promote the growth of B lymphocytes,
EBV may drive the proliferation of these cells only tran-
siently in immunocompetent hosts. This may also explain
why only a limited proportion of EBV-seropositive indi-
viduals develop EBV-associated lymphomas, even in the
setting of immune deficiency. In rare cases, therefore, a
derangement of the normal differentiation pathway may
prevent infected B cells from entering into a resting state,
thus allowing EBV to fully manifest its transforming
potential.

The relevance of the different EBV latency programs is
strongly supported by studies of EBV-associated lym-
phomas, which mainly include tumors of B-cell origin,
consistently with the preferential tropism of the virus
(Table 1). In fact, the same latency programs that EBV has
evolved to successfully establish persistence in the infect-
ed host are expressed in different EBV-associated tumors
(Table 2).7 These observations also led to the hypothesis
that distinct stages of the EBV life cycle may be pathogen-
ically linked to the development of specific types of lym-
phoma expressing the equivalent latency program.5 The
various forms of latency observed in EBV-positive lym-
phomas are strongly influenced by the degree of EBV-spe-
cific immune responses that normally control very effi-
ciently EBV-infected cells. In particular, expression of the
full repertoire of growth-transformation-associated anti-
gens can be tolerated only in conditions of profound
immune suppression, whereas more restricted patterns of
EBV latency are usually found in lymphomas of immuno-
competent patients.

Lymphomas in immunosuppressed patients

Post-transplant lymphoproliferative disorders 
Post-transplant lymphoproliferative disorders (PTLDs)

are a heterogeneous group of disorders arising in iatro-
genically immunosuppressed recipients of organ or
hematopoietic stem-cell transplantation. EBV is mainly
associated with early-onset PTLDs that are frequently,

although not invariably, poly- or oligo-clonal, whereas
most late-onset PTLDs are true monoclonal lymphoid
malignancies associated with EBV in only a fraction of
cases. Infusion of a T-cell depleted donor stem-cell prod-
uct, a high degree of HLA mismatch between donor and
recipient, the use of anti-thymocyte globulin with
reduced-intensity transplant conditioning, the cumulative
load of immunosuppressive drugs and the EBV seronega-
tivity of the recipient at the time of transplantation consti-
tute the main risk factors for PTLD development.8,9 PTLD
is the most immunogenic EBV-driven lymphoma, charac-
terized by the expression of all latency proteins, including
the EBNA family proteins, most of which are immun-
odominant in eliciting CD8+ T-cell responses.
Nevertheless, impairment of EBV-specific T-cell respons-
es alone is not sufficient to explain PTLD development,
which requires additional factors able to maintain EBV-
carrying B cells in a continuous proliferative state, pre-
venting their exit from the cell cycle and evolution to the
harmless resting memory B lymphocytes.5

HIV-associated lymphoproliferative disorders
HIV-associated lymphoproliferative disorders are clini-

co-pathologically heterogeneous tumors and include the
same lymphomas that may occur in the general population
and those seen much more often in the setting of HIV
infection. The most common HIV-associated lymphomas
are BL and diffuse large B-cell lymphoma (DLBCL) (also
involving the central nervous system, CNS). Lymphomas
occurring specifically in HIV-infected patients include
two rare entities: primary effusion lymphoma and plas-
mablastic lymphoma. Globally, EBV is identified in the
neoplastic cells of approximately 40% of HIV-associated
lymphomas, but the detection of EBV and the pattern of
viral latency vary considerably with the site of presenta-
tion and histological subtype (Table 1). While the broad
latency III pattern is consistently found in DLBCL, partic-
ularly in immunoblastic and CNS lymphomas, more
restricted and still poorly defined forms of latency are
detected in primary effusion lymphoma and plasmablastic
lymphoma (Table 1).

Burkitt’s lymphoma

Although BL is rather monomorphous in terms of mor-
phological, immunophenotypic and genetic features, the
World Health Organization (WHO) classification identi-
fies three clinical BL subtypes: the endemic form, associ-
ated with EBV in the majority of cases and occurring in
tropical Africa and New Guinea where malaria is holoen-
demic; the sporadic variant, affecting children and young
adults from the rest of the world with no climatic or geo-
graphical link, and rarely EBV-associated; and the immun-
odeficiency-associated form, mainly occurring in HIV-
infected patients with more than 200 CD4 T cells per mL,
and carrying EBV in 30%-50% of the cases. The strict
pathogenic association between EBV and endemic BL is
supported by the constant presence of EBV genome in
lymphoma cells,10 by data indicating that EBV infection
precedes lymphomagenesis11 and by the relationship
between high antibody titers to EBV VCA and increased
risk for developing this lymphoma.12 Nevertheless, the
mechanisms by which EBV contributes to the pathogene-
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sis of endemic BL are still unclear. In these tumors, in fact,
EBV usually shows the most restricted pattern of latency,
which is limited to EBERs and the EBNA-1 protein
(Latency I), stimulating a debate as to how EBNA-1 or,
indeed, the non-coding EBER RNAs (present in all forms
of latency) might contribute to BL pathogenesis. The oper-
ational classification of EBV latency patterns has been
recently challenged by the demonstration that other EBV
latent proteins can be expressed by tumor cells in a frac-
tion of BL. In particular, a broadened expression of EBV
antigens, including EBNA-3 to -6 and BHRF1 proteins,
has been demonstrated in BLs carrying an EBNA-2 gene-
deleted EBV genome.13 Available data indicate that loss of
the c-MYC antagonist EBNA-2 may provide a survival
advantage to lymphoma cells,14 suggesting that EBV may
act as an anti-apoptotic rather than a growth-promoting
agent in BL, by selecting restricted transcriptional pro-
grams compatible with the inherently high c-MYC expres-
sion. In fact, forced expression of the full Latency III pro-
gram in BL cells is incompatible with high c-MYC expres-
sion and with maintenance of the malignant BL cell phe-
notype.15,16 Malaria has long been linked to the develop-
ment of endemic BL, mainly based on the geographical
correlations between the prevalence of malaria and the
reported incidence of endemic BL.17 Notably, two recent
case-control studies demonstrated a markedly high risk of
BL in individuals with the highest antibody titers against
both EBV and Plasmodium falciparum, also suggesting a
synergistic effect of the two infections.18,19 Moreover,
impaired EBV-specific T-cell responses have been
observed in children from malaria endemic regions at the
same age in which BL incidence peaks.20 This malaria-
induced immune aberration seems specific for the

responses to EBV, leaving unaltered the cellular immunity
to other herpes viruses, and mainly consists in a decrease
in the number of central memory T cells specific for
EBV.20 A direct link between malaria and EBV-infected
cells is represented by the cysteine-rich interdomain-1a of
the P. falciparum erythrocyte membrane protein that was
shown to trigger EBV reactivation.22 Moreover, through
activation of Toll-like receptor-9, P. falciparum may
induce in B lymphocytes the expression of activation-
induced cysteine deaminase (AID), a DNA modifying
enzyme that may contribute to the induction of c-MYC-
activating chromosomal translocations characteristic of
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Table 1. EBV-driven lymphoproliferative disorders. 

EBV-associated B-cell lymphoproliferative disorders
Burkitt’s lymphoma
Hodgkin’s lymphoma
PTLD
HIV-related lymphoproliferative disorders
Lymphomatoid gramulomatosis
Pyothorax-associated lymphoma
EBV- positive DLBCL of the elderly

EBV-associated T/NK-cell lymphoproliferative disorders
Peripheral T-cell lymphoma
AILT
Extranodal nasal T-/NK-cell lymphoma
Hepatosplenic T-cell lymphoma
Non-hepatosplenic go T-cell lymphomas
Enteropathy-type T-cell lymphoma

Table 2. EBV-associated lymphoproliferative disorders and the corresponding forms of viral latency.

Disease % of EBV-related cases Viral proteins expressed Latency type

Infectious mononucleosis >99 EBNA-1, -2, -3, -4, -5, -6, LMP-1, LMP-2A, -2B III, II, I

Burkitt’s lymphoma 
Endemic >95 EBNA-1, EBERs, BARF0 I
Sporadic 20-80a

AIDS-related 30-50

Post-transplant lymphoproliferative disorders >90 EBNA-1, -2, -3, -4, -5, -6, LMP-1, LMP-2A, EBERs, BARF0 III, II, I

AIDs-related DLBCL
Immunoblastic 70-100 All EBNAs, LMPs, EBERs, BARF0 III
Non-immunoblastic 10-30 All EBNAs, LMPs, EBERs, BARF0 III
CNS lymphomas >95 All EBNAs, LMPs, EBERs, BARF0 III
Plasmablastic lymphoma 60-75 EBERs only?? 0?
Primary effusion lymphoma 70-90 EBNA-1, EBERs I

Primary effusion lymphoma
HIV-unrelated 70-90 EBNA-1, EBERs I
HIV-associated 70-90

Hodgkin’s lymphoma
HIV-unrelated 20-90b EBNA-1, LMP-1, LMP-2A, EBERs, BARF0 II
HIV-associated ≈100

EBV+ DLBCL of the elderly ≈100 EBNA-1, EBNA-2 (30%), LMP-1, LMP-2A, -2B, EBERs, BARF0 II/III

Extranodal, T-/NK-cell lymphoma, nasal type ≈100 EBNA-1, LMP-1, LMP-2A, EBERs, BARF0 II
aThe prevalence of EBV associated cases varies widely in different areas of the world, with 20% in North America and Europe and higher percentages in some regions of South America, North Africa and Asia. bIn Western
countries the prevalence of EBV-association is approximately 40%, whereas in developing countries the global proportion of EBV-associated HL is higher (up to 90%), particularly for those cases occurring in early childhood.7



BL.23 With regard to HIV-associated BLs, the observation
that these lymphomas arise in patients with a relatively
high CD4 T-cell count indicates that immunosuppression
per se is not sufficient to explain the development of these
cases. Similarly to chronic P. falciparum infection and
endemic BL, also in HIV-associated BL a chronic anti-
genic stimulation of B lymphocytes may be of pathogenic
relevance, as also suggested by the increased serum levels
of B-cell activation markers detected prior to the onset of
these lymphomas.24,25 Chronic activation induced by HIV
and EBV infection may concur in the induction in B lym-
phocytes of DNA-modifying enzymes, such as AID26 and
RAG1/227 which may favor the generation of chromoso-
mal translocation of lymphomagenic relevance.

Diffuse large B-cell lymphoma of the elderly 

EBV-positive diffuse large B-cell lymphoma (DLBCL)
of the elderly was first recognized in the Japanese popula-
tion28 and it has been recently included as a provisional
entity among the DLBCL subtypes within the WHO clas-
sification. It is defined as blastic proliferation of an EBV+

B-cell clone in patients over 50 years of age with no
known cause of immunodeficiency or prior lymphoma.29

Nevertheless, lymphomas with the same histopathological
features and EBV association may also occur in younger
individuals and in children.30.31 EBV-positive DLBCL of
the elderly accounts for approximately 10% of all DLBCL
among Asian patients, whereas the limited data available
indicate that it is quite rare in Western countries.30,32 On
the basis of the obvious morphological similarities with
immunodeficiency-associated lymphoproliferative disor-
ders, it has been proposed that the development of EBV-
positive DLBCL of the elderly may be favored by the
immune senescence inherent to aging. In addition to a
decrease in naïve T cells, the decreased function of EBV-
specific T lymphocytes characterizing the elderly33 may
allow an uncontrolled proliferation of EBV-infected B
cells, with a consequent increased risk for developing a
lymphoma. The usually broad pattern of EBV latency
observed in these lymphomas is consistent with a subclin-
ical impairment of immune responses and this may
include EBERs, EBNA-1, and LMP-1 (Latency II) and
also EBNA-2 (latency III) in up to 32% of cases.28,30,34 The
prognosis of this subset of DLBCL is generally worse than
the age-matched cases without EBV infection.28,32

Hodgkin’s lymphoma

Hodgkin’s lymphoma (HL) is a distinct disorder charac-
terized by a relatively low proportion (<10%) of the dis-
tinguishing malignant cells, the so-called Hodgkin-Reed-
Sternberg cells (HRS), which are scattered in an abundant
admixture of inflammatory and accessory cells. The WHO
classification identifies classic and non-classic HL based
on different morphological, phenotypic, and molecular
features.29 Classic HL includes the nodular-sclerosis,
mixed-cellularity, lymphocyte-rich, and lymphocyte-
depleted histological subtypes, whereas nodular lympho-
cyte-predominant HL represents the non-classic form.
EBV is more commonly associated with classic HL, espe-

cially the mixed-cellularity subtypes. The non-classic
nodular lymphocyte-predominant HL cases are very rarely
associated with EBV. In Western countries, EBV is infre-
quently found in HL of young adults, although an associ-
ation with delayed exposure to EBV and a history of IM is
recognized.7 In contrast, HL of the elderly is more fre-
quently associated with EBV, as a possible consequence of
the declined immune functions related to aging. In devel-
oping countries, the global proportion of EBV-associated
HL is markedly higher, particularly for the cases occurring
in early childhood.35 The pathogenic role of EBV is sup-
ported by the demonstration of high titers of EBV-specific
antibodies at diagnosis and, more compellingly, before
onset of the disease. The virus is harbored in monoclonal
form in all HRS cells, which express EBERs, EBNA-1,
LMP-1, and LMP-2. Available evidence indicates that
HRS cells are derived from pre-apoptotic germinal center
B lymphocytes carrying crippling immunoglobulin gene
mutations being, therefore, cells committed to die by
apoptosis because of missing functional B-cell receptors
(BCRs). EBV infection can rescue these cells from apop-
tosis, mainly thanks to the ability of LMP-1 and LMP-2 to
mimic CD40- and BCR-mediated signaling.35

EBV-associated NK-cell  and T-cell lymphomas

Extranodal nasal NK-/T-cell lymphoma (ENKL) is an
angiocentric and angiodestructive tumor associated with
prominent necrosis which predominantly involves the
nasal cavity and has a geographical predilection for East
Asia and Central America.36 Most of the cases are EBV-
associated as shown by the presence of clonal virus
genomes in all tumor cells.37,38 While the non-coding
EBERs are abundantly expressed, a heterogeneous expres-
sion of LMP-1 and LMP-2 was found, indicating a preva-
lent latency II program.38,39 The reported difficulty in
detecting LMP-2 mRNA and protein in ENKL biopsies
has recently found a possible explanation in the discovery
of a novel LMP-2 transcript encoding for a truncated pro-
tein, which may have a role in the pathogenesis if these
lymphomas.40 Recently, expression of LMP-1, detected in
more than 70% of ENKL, was correlated with activation
of NF-κB and Akt and with a mainly localized disease
with favorable clinical outcome.41 A small proportion of
tumor cells were found to enter the lytic cycle of the virus,
suggesting a possible pathogenic involvement of a local
EBV reactivation.41 Aggressive NK cell leukemia is a
closely related entity presenting at a younger age than
ENKL and often showing a fulminant clinical course.
Genetic and immunophenotypic profile and association
with EBV are similar to those of ENKL.
Other histotypes of T/NK lymphomas

Other T-/NK-cell lymphoproliferative disorders that
have been rarely reported to be EBV associated include
angioimmunoblastic T-cell lymphoma,42 a subset of
peripheral T-cell lymphomas, unspecified,43 enteropathy-
type T-cell lymphoma,44,45 γδ T-cell lymphomas
(hepatosplenic and non-hepatosplenic),46 T-cell lympho-
proliferative disorders after chronic EBV infection,47 and
EBV-associated cutaneous T-cell lymphoproliferative dis-
orders (especially in Asia).48
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Pathogenic role of EBV latency proteins
The generation of recombinant forms of EBV lacking

individual latent genes allowed the identification of the
genes that are essential for B-cell immortalization in vitro.
These studies have provided convincing evidence that
EBNA-2 and LMP-1 are essential requirements for initiat-
ing the growth program in B cells, whereas a crucial role
is played by EBNA-1, EBNA-3, -5, and -6.49

Immortalization is achieved through the activity of viral
proteins that derange cellular pathways controlling growth
and/or survival. These viral proteins usually act co-opera-
tively and may induce different biological effects in differ-
ent cellular backgrounds. The main biological effects of
latent EBV proteins more frequently expressed in EBV-
driven lymphomas and contributing to lymphomagenesis
are briefly summarized below. For a more detailed
description see Middeldorp et al.50 and Saha and
Robertson.51

EBNA-1
EBNA-1 is a DNA-binding phosphoprotein essential for

replication and stable persistence of viral episomes within
EBV-infected cells and is the only EBV-encoded protein
consistently expressed in all EBV-driven lymphomas.50

Although transgenic expression of EBNA-1 in mouse B
cells appears to lead to B-cell lymphoma only inconsis-
tently, more convincing data point to an oncogenic role of
this protein. In particular, EBNA-1 was shown to induce
genomic instability and a DNA damage response through
increased production of reactive oxygen species.52

Moreover, EBNA-1 can induce the expression of the
recombinases RAG-1 and RAG-2, suggesting that this
protein might facilitate genomic recombination events and
could thereby contribute to the c-myc/Ig locus transloca-
tion that is crucial for BL development.27,53 EBNA-1 also
promotes B-cell survival as shown by the pro-apoptotic
effects induced in BL cells by EBNA-1 silencing and by
inhibition of p53-dependent apoptosis after ectopic
expression in an EBV-negative background.54 In addition,
EBNA-1 may indirectly destabilize p53 by blocking the
interaction between p53 and USP7, the p53 ubiquitin pro-
tease.55 The anti-apoptotic properties of EBNA-1 probably
contribute to the persistence of EBV-infected B cells in
vivo. This ability is particularly relevant in the EBV biol-
ogy if it is considered that the majority of B lymphocytes
that physiologically progress through the various stages of
B-cell differentiation die by apoptosis. Rescuing from
apoptosis B cells that are committed to die may allow
EBV to contribute to lymphomagenesis, as shown in the
case of HRS cells of HL, which may survive in the pres-
ence of EBV infection despite the fact they carry non-
functional rearrangements of their immunoglobulin
genes.35 Moreover, the anti-apoptotic function of EBNA-1
may sustain the survival of transformed cells long after
they have accumulated genetic changes that render them
independent of normal cellular controls. This hypothesis is
supported by the observation that inhibition of EBNA-1
functions with a dominant negative EBNA-1 derivative
decreased survival in several EBV-carrying tumor cell
lines.54

EBNA-2
The EBNA-2 protein is localized in the nucleus and is

one of the first viral proteins expressed in EBV infected B-
lymphocytes.56 In co-operation with EBNA-5, EBNA-2
induces the G0 to G1 transition of resting B cells and is a
key regulator of several virus-encoded genes (i.e. LMP-1
and LMP-2).56 In addition, EBNA-2 modulates the tran-
scriptional activity of several B-cell activation markers
including CD21, CD23, hes-1, runx3, and the proto-onco-
gene c-MYC.56 The function of EBNA-2 as transcriptional
transactivator mainly depends on its ability to bind RBP-
Jκ, thus mimicking a constitutively activated Notch recep-
tor, which is frequently activated in several lymphomas.
Considering that EBNA-2 is immunogenic and, conse-
quently, that its expression is allowed only in immuno-
compromised patients, EBNA-2 is probably not required
for the maintenance of the transformed phenotype in lym-
phomas of immunocompetent patients.
LMP-1

LMP-1 is expressed in most EBV-associated lympho-
proliferations and is essential for EBV-mediated B-cell
transformation.49 LMP-1 resembles a constitutively active
cellular receptor whose ligand-independent signaling
activity is attributable to spontaneous homo-oligomeriza-
tion of LMP-1 molecules within the membrane.57 By the
recruitment of tumor necrosis factor receptor-associated
factors molecules, LMP-1 mimics molecular functions of
the CD40 receptor in B-cell activation and proliferation.
However, compared to CD40, LMP-1 assembles a unique
and more efficient signaling complex.58,59 LMP-1 activates
multiple signaling pathways including mitogen-activated
protein kinase, c-jun N-terminal kinase, phosphatidylinos-
itol 3-kinase/Akt, IRF, WNT, and NF-κB.49 Constitutive
expression of LMP-1 in the B-cell compartment of trans-
genic mice induces B-cell lymphomas.60,61 LMP-1 alone
can induce many of the phenotypic and functional changes
associated with EBV infection, including increased homo-
typic adhesion and upregulation of adhesion molecules
(LFA-1, ICAM-1, LFA-3), B-cell activation markers
(CD23, CD30, CD40, CD71), and anti-apoptotic genes
(Bcl-2, Bcl-xL, Mcl-1, A20).49,50,62 Expression of LMP-1
in B lymphocytes up-regulates IL-10 production which
stimulates the growth of these cells and may inhibit local
immune responses.63 LMP-1 was also shown to transacti-
vate the hTERT promoter and enhance telomerase activity
in B cells, thereby contributing to the establishment of
latency and transformation.64 On the basis of these
pleiotropic properties, LMP-1 is considered the major
EBV-encoded oncoprotein.
LMP-2

LMP-2 is a hydrophobic membrane protein that exists
as two different forms, LMP-2A and LMP-2B, resulting
from alternative spliced mRNAs transcribed from the
region spanning the terminal repeats of the EBV
genome.65 Although the LMP-2 protein is not essential for
B-cell transformation in vitro, the expression of this viral
gene in EBV-carrying memory B cells from healthy indi-
viduals suggests that it plays an important role in mediat-
ing virus persistence.65 Expression of LMP-2A in trans-
genic mice was shown to provide survival signals allow-
ing immature B cells to progress through developmental
checkpoints that would normally result in cell death.66

This has been related to the ability of LMP-2A to activate
the PI3-K/Akt pathway that physiologically provides a
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survival signal in response to BCR triggering.67 LMP-2
was also shown to block BCR signaling through its bind-
ing to the cellular tyrosine kinases Lyn and Syk, thus pre-
venting the possible induction of EBV lytic cycle promot-
ed by BCR triggering.65 Results from gene expression pro-
filing demonstrated that LMP-2A expression is associated
with a marked downregulation of several transcription fac-
tors crucial for B-lymphocyte development, such as E2A,
early cell factor, and Pax-5.68 Strikingly, malignant HRS
cells of HL show a similar pattern of global downregula-
tion of B cell-specific genes,69 pointing to a role for LMP-
2A in the induction of the transcriptional alterations that
characterize these cells and allow them to survive without
a functional BCR. 

Role of EBV lytic replication in 
lymphomagenesis

The characteristics of EBV-driven lymphomas are a pre-
dominantly latent pattern of viral gene expression and that
several EBV latency proteins are strictly required for B-
cell immortalization in vitro.70-73 These findings have sug-
gested that only the latency phase of EBV infection is rel-
evant for EBV-driven lymphomagenesis. Nevertheless,
recent data have challenged this scenario suggesting that
lytic EBV replication may also contribute to the develop-
ment of EBV-associated lymphoproliferations (Figure 1).
In fact, small numbers of lytically infected cells are fre-
quently detected in tumor tissues of EBV-driven lym-
phomas.74,75 Besides favoring the local and systemic
spread of the virus, lytic infection may increase the pool of
latently infected cells, which is associated with a higher
risk of a clonal expansion of EBV-carrying B lymphocytes
in the immune compromised host. Consistent with a lym-
phomagenic role of lytic infection, prophylactic treatment

of transplant patients with antiviral drugs able to inhibit
EBV lytic replication was shown to reduce the occurrence
of EBV-associated PTLD.76,77 More direct insights came
from the observation that LCLs generated with EBV
strains defective for lytic replication are markedly less
effective in the induction of EBV-positive lymphoprolifer-
ations in SCID mice.78 The impaired in vivo growth
showed by LCLs with lytic-defective viruses could be
overcome by restoration of lytic gene expression, further
supporting a pathogenic role for these viral products in
EBV-driven lymphomagenesis.78 Notably, early-passage
LCLs obtained with lytic-defective EBV produce marked-
ly lower amounts of the B-cell growth-promoting factors
IL-6, cIL-10, and vIL-10,78 suggesting that local induction
or reactivation of EBV lytic cycle may contribute to the
growth of latently infected cells by promoting the release
of paracrine B-cell growth factors. This phenomenon may
be at least in part ascribed to the activity of BZLF1, the
main EBV lytic transactivator.78,79 BZLF1 was also shown
to transactivate the expression of IL-13,80 another B-cell
growth-promoting cytokine frequently detected in HRS
cells of HL and in NK cells of patients with chronic active
EBV infection.81,82 IL-13 may also promote the induction
of a microenvironment sustaining the growth and survival
of EBV-infected tumor cells. In fact, IL-13 downstream
proteins, such as ICAM-1, macrophage-derived
chemokine, thymus and activated related chemokine, and
eotaxin, may attract macrophages, Th2 cells and fibrob-
lasts and favor their clustering with tumor cells, as it may
occur in HL.83,84 However, the role of BZLF1 in the IL-13
induction in EBV-associated HL remains to be clarified,
since BZLF1 is only infrequently expressed by HRS
cells.85 Lytically EBV-infected B lymphocytes were also
shown to secrete factors, such as VEGF and IL-8, which
may promote angiogenesis.86 In addition to cIL-10 and
vIL-10, B cells undergoing EBV lytic replication also pro-
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duce high levels of TGF-b, which further contributes to
the generation of an immunosuppressive microenviron-
ment.87 The pathogenic involvement of EBV lytic replica-
tion has been convincingly demonstrated in a new human-
ized NOD/LtSz-scid/IL2Rgnull mouse model in which both
human CD34+ hematopoietic stem cells and human thy-
mus/liver tissue are engrafted.88 In fact, animals infected
with fully competent virus developed lymphomas more
frequently than those infected with BZLF1-deleted, lytic
cycle-defective EBV.88 Considering that this animal model
allows effective immune responses to be generated against
EBV-infected B cells, these findings are consistent with a
crucial lymphomagenic role of lytic EBV infection also in
the context of an active immune response.88

Viral and cellular miRNA: new players in the
field of EBV-driven lymphomas?

The study of the complex interactions between viral and
cellular proteins has long characterized the efforts made to
understand the mechanisms underlying viral oncogenesis.
Nevertheless, a new class of molecules, the microRNAs
(miRNAs), has recently emerged as a further critical medi-
ator of virus-host interactions, starting from the discovery
of virally-encoded miRNAs in EBV89 and other herpes
viruses. miRNAs are small (≈22 nucleotides), non-coding
single-stranded RNAs that regulate gene expression by
binding to complementary sequences within mRNAs. They
are first transcribed by RNA polymerase II as primary tran-
scripts (pri-miRNA) and are then processed into mature
miRNAs by the type-III RNase endonucleases Drosha and
Dicer.90 Mature miRNAs can be incorporated into the
RNA-induced silencing complex, where they can interact
with several target mRNAs and inhibit their expression
through mRNA destabilization followed by degradation
and/or impairment of protein translation. The use of molec-
ular and bio-informatic approaches allowed 44 mature
EBV miRNAs derived from 25 precursors to be identi-
fied.89,91,92 Two groups of EBV miRNAs can be distin-
guished based on their locations in the EBV genome:
BHRF1 miRNAs located within introns of the BHRF1
gene (encoding for a bcl-2 homolog) and produced from
the long EBNA transcript and BART miRNAs, located in
introns contained within the BART transcripts.89,91 Studies
carried out with viral miRNA deletion mutants indicate that
EBV miRNAs contribute to EBV-driven B-cell immortal-
ization in vitro, although they are not essential.93-95 Despite
the fact that the EBV B95.8 laboratory strain bears a dele-
tion within the BART region and is able to encode only 5
of the 22 BART miRNAs, this virus is still able to immor-
talize B cells.93 Nevertheless, mutational inactivation of the
BHRF1 miRNAs inhibits the outgrowth of LCLs, slows
down the G1 to S phase progression of these cells and
enhances their apoptotic rates.93-95 Therefore, BHRF1
miRNAs may provide an advantage during the early stages
of primary B-cell infection when the viral life cycle is crit-
ical for the establishment of long-term latency. Expression
of the BHRF1 miRNAs in vivo is, however, restricted to
type III latency, which is mainly observed in immunocom-
promised hosts, while BART miRNAs are variably
expressed at all latency stages.91,96 Notably, EBV-driven
lymphomas characterized by the more restricted forms of

latency, such as BL (latency I) and HL (latency II), were
shown to express the broad spectrum of BART miRNAs
detected in latency III tumors, whereas BHRF1 miRNAs
were not expressed or only barely detectable.96 These
intriguing results point to a pathogenic involvement of
BART miRNA deregulation in EBV-associated lym-
phomas. In particular, expression of latency III-associated
BART miRNAs may successfully deregulate viral and cel-
lular functions that are relevant for B-cell transformation in
the face of a competent immunity that does not allow the
expression of transforming but immunogenic viral pro-
teins. In this respect, the identification of cellular mRNAs
targeted by BART miRNAs will be crucial for a deeper
understanding of the still obscure mechanisms underlying
EBV-mediated transformation in immunocompetent indi-
viduals. Available evidence indicates that BART miRNAs
have only a minor role in regulating viral genes, most like-
ly functioning in down-regulating transcripts from the host
cell.97 In particular, BART miRNAs were shown to down-
regulate PUMA and Bim, two BH3-only proteins of the
Bcl-2 family with pro-apoptotic functions, thus promoting
enhanced cell survival.98,99 Moreover, BART miRNAs was
also shown to suppress expression of the stress-induced
NK cell ligand MICB in B cells, to escape recognition and
consequent elimination by NK cells.100 Notably, miRNAs
with similar function but engaging different target sites
within the MICB transcript have also been identified in
cytomegalovirus and Kaposi sarcoma human herpesvirus,
indicating that several herpesviruses have independently
evolved mechanisms able to successfully counteract this
critical mediator of innate immunity. 

EBV not only expresses its own set of viral miRNAs,
but also has the ability to strongly affect the cellular
miRNA profile, inducing a downregulation of the overall
level of cellular miRNAs in primary B lymphocytes.101

However, the level of a subset of cellular miRNAs, includ-
ing miR-155, is markedly increased by EBV infection of
B cells, an effect apparently due to activation of pri-miR-
155 transcription.102,103 This is an intriguing finding, con-
sidering that other transforming herpesviruses encode
viral orthologs of cellular miR155 that down-regulate a
similar set of cellular mRNAs. Notably, miR-155 is an
oncogenic miRNA critical for B-cell maturation and
immunoglobulin production in response to antigen.104 In
particular, blocking miR-155 function was found to induce
cell cycle arrest and apoptosis of EBV-immortalized
LCLs.105 Moreover, ectopic miR-155 expression in mice B
cells has been shown to induce pre-B-cell proliferation
followed by high-grade lymphoma/leukemia, effects
mediated by downregulation of the key transcriptional
repressor and proto-oncogene Bcl-6.106 The study of cellu-
lar miRNA expression during EBV-mediated primary B-
cell growth transformation also demonstrated that the
virus up-regulates mir-21, another putative pro-growth
onco-miR, and represses putative tumor suppressor onco-
miRs, such as let-7 and miR-29 family members.107 In B
cells, the EBV-encoded LMP-1 oncoprotein up-regulates
mir-146a, which acts as an inhibitor of interferon response
pathway, thereby helping suppress immune-mediated sur-
veillance of EBV-infected cells through interferon signal-
ing.108 EBV LMP-1 also up-regulates miR-34a, whose
expression is required for the proliferation of EBV-trans-
formed B cells.107 This pro-growth function of miR-34a
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contrasts with its canonical role as tumor suppressor and
strengthens the need to study miRNA functions in differ-
ent cell types. 

New therapeutic perspectives

The progressive increase in our knowledge of the multi-
ple mechanisms exploited by EBV for the development of
lymphoid malignancies is providing an increasing number
of new therapeutic targets. The immunogenic latent EBV
proteins can be targeted by specific cytotoxic T lympho-
cytes that can be easily generated and infused in patients
with EBV-driven lymphoproliferations.109,110 Although rel-
evant clinical benefits were especially registered in the
management of PTLD, the outcome of patients with lym-
phomas expressing more restricted patterns of EBV laten-
cy, such as in HL, is not satisfactory and the treatment pro-
tocols still require specific improvements.109,110

Identification of the cellular signalling pathways hijacked
by EBV offers the opportunity to design small molecules
or pharmacological inhibitors potentially able to selective-
ly block critical interactions with EBV oncoproteins.
Further studies on the altered expression of viral or cellu-
lar miRNAs that influence specific pathways involved in
lymphoma development and progression may help in the
identification and validation of new therapeutic options
for EBV-associated lymphoproliferations. This perspec-
tive is particularly encouraging since miRNAs can regu-
late multiple targets of the same or different signaling
pathways, thereby minimizing the development of resist-
ance or compensatory mechanisms. Notably, studies car-
ried out in pre-clinical animal models have validated sev-
eral miRNAs as suitable pharmacological targets, demon-
strating similar, enhanced or additive effects to standard
treatments. There is also an increasing interest in develop-
ing strategies able to reactivate EBV lytic gene expression
in latently infected tumor cells for the treatment of overt
EBV-associated lymphomas. In fact, lytic infection may
promote the death of EBV-positive lymphoma cells in
vivo, an effect that may be particularly effective and ther-
apeutically relevant since it favors immune recognition of
viral antigens that further enhances the killing of tumor
cells. Several chemotherapeutic drugs are known to trig-
ger EBV replication, and combination of antivirals with
lytic cycle inducers is emerging as a highly promising
strategy for the treatment of EBV-driven lymphomas.111

Successful exploitation of these and other virus-related
characteristics will lead to improved control of EBV-asso-
ciated lymphomas.
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