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Mutations that confer resistance to therapy

The t(9;22)(q34;q11) chromosomal
translocation gives rise to the
Philadelphia chromosome (Ph),

whose product is the BCR-ABL fusion pro-
tein (1). This constitutively activated tyrosine
kinase represents the pathogenic substrate of
chronic myelogenous leukemia (CML) and
Philadelphia chromosome-positive acute lym-
phoblastic leukemia (Ph+ ALL). The develop-
ment of imatinib, a small-molecule inhibitor
of BCR-ABL at its ATP-binding site, provided
a new, causative treatment option for Ph+
leukemia.2,3 A drawback of imatinib therapy
presented itself in emerging resistance
towards imatinib, found to be caused by sev-
eral molecular resistance mechanisms, in par-
ticular by point mutations in the kinase
domain of BCR-ABL that prevent imatinib
but not ATP, from binding to the enzyme.

Frequency of primary and secondary
resistance

The occurrence of primary hematologic
resistance in early chronic phase CML treated
with imatinib or second generation TKI, such
as dasatinib or nilotinib, is a rare event.
Primary resistance is defined as the failure to
achieve a certain degree of initial response.
According to the treatment recommendations
from the European LeukemiaNet (ELN), pri-
mary imatinib resistance exists if a patient
fails to achieve: a complete hematologic
response (CHR) by 3 months, any cytogenetic
response (CyR) by 6 months, a partial CyR
(PCyR) by 12 months, or a complete CyR
(CCyR) by 18 months on imatinib.4 In the cur-
rent ELN recommendations, failure to achieve
a major molecular response (MMR) at 18
months is not yet defined as primary resist-
ance but as a suboptimal response. However,
patients who fail to achieve a MMR at 18
months have an increased risk of developing
imatinib resistance. Hematologic imatinib
failures in early chronic phase occur in less
than 5% of cases.5,6 In contrast, primary cyto-
genetic failures are more common and occur
in 3-18% at 6 months,3,6 15-27% at 12
months,6,7 and 23-49% at 18 months in CML
patients treated with imatinib.6,8 Primary treat-
ment failure occurs less frequently with the
more potent TKI dasatinib and nilotinib.9,10

Since the frequency of primary resistance
depends on recommended arbitrary endpoints,
which should be achieved during therapy, the

numbers for primary resistance may increase
also for the second-generation inhibitors in
the future, as these endpoints will certainly be
modified over time. 
Secondary resistance is defined as a loss of
a previously achieved hematologic, cytoge-
netic, or molecular response despite continued
TKI treatment. In early chronic phase CML
patients, secondary resistance is an infrequent
event. In the IRIS study, early chronic phase
CML patients were treated with imatinib and
only approximately 4% of patients per year
had a progression event. Importantly, the
annual rates of secondary resistance or death
in the IRIS study continuously decreased from
the second (7.5%) to the sixth year (0.4%) so
that the risk to develop secondary resistance
to TKI peaks in the first years of treatment.3

The situation is different in advanced phase
CML, such as accelerated phase (AP), blast
crisis (BC), or BCR-ABL positive ALL in
which primary and secondary resistance are
observed much more frequently. In advanced
phase CML, primary hematologic failure was
reported in 18-30% of patients with AP and in
60% of patients with BC. After 4 years, resist-
ance to imatinib had emerged in 45-70% of
patients in accelerated phase and up to 90% of
patients in blast crisis CML.2,11-14

Mechanisms of resistance 

The mechanisms of TKI resistance were
first studied in cell culture-based systems.
BCR-ABL positive cells were incubated at
suboptimal concentrations of imatinib for
longer periods of time and some clones devel-
oped a moderate imatinib resistance.15-17 It
could be demonstrated that some of these
clones acquired amplification of the BCR-ABL
gene or overexpression of the multidrug-resis-
tance membrane associated transporter protein
MDR-1.15-17 However, in these first in vitro
studies in which gradually increasing concen-
trations of the inhibitor were applied, no muta-
tions in the BCR-ABL kinase domain could be
identified. Clinical studies in which resistance
to imatinib primarily occurred in advanced-
phase CML and Ph+ ALL prompted intensive
investigations to identify mechanisms of ima-
tinib resistance in primary patient samples. In
2001, it was shown for the first time by
Sawyer’s group that 3 out of 11 imatinib resist-
ant patients with advanced CML or Ph+ ALL
displayed amplification of the BCR-ABL
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gene.18 In addition, this group was able to identify a muta-
tion in the BCR-ABL kinase domain in 6 out of 9 imatinib
resistant patients. This mutation leads to an amino acid
exchange at position 315 from threonine to isoleucine
(Figure 1).18 The larger amino acid isoleucine instead of
threonine at this position blocks binding of imatinib while
still allowing the kinase to utilize ATP,19 resulting in strong
resistance against the drug.18 Subsequently, a large number
of additional BCR-ABL mutations were identified in ima-
tinib resistant patients leading to variable degrees of resist-
ance.20-25 The location of the most abundant BCR-ABL
point mutations in the kinase domain relative to the ima-
tinib binding site is shown in Figure 2. As illustrated, most
mutations are scattered around the imatinib-binding site
interfering with drug binding. Besides BCR-ABL amplifi-
cation and BCR-ABL kinase domain mutations, cytoge-
netic abnormalities in addition to the Philadelphia chro-
mosome were noted in imatinib resistant patients,25 indi-
cating that clonal evolution of an imatinib resistant
leukemic subclone had occurred. BCR-ABL amplifica-
tion, BCR-ABL kinase domain mutations, upregulation of
drug transporters or additional BCR-ABL independent
mutations may all alone or in combination occur in TKI
resistant patients. In the following, this article will focus
on BCR-ABL mutations as resistance mechanism, which
can be identified in approximately 50% of cases of TKI
resistance in early chronic phase CML and in the majority
of cases in advanced phase CML and PH+ ALL.

Resistance mutations identified for imatinib

The first imatinib resistance mutation, which was dis-
covered, leads to an exchange of threonine at position 315
to isoleucine18 (Figure 1). Interestingly, a crystal structure
analysis of the ABL kinase domain already published one
year before this resistance mutation was identified in a
patient, predicted threonine 315 to be a critical position
(gatekeeper position) required for imatinib binding to
ABL.19 The T315I mutation mediates a strong imatinib

resistance in vitro while the kinase activity of BCR-ABL
is preserved or even enhanced.18,26 To date, more than 90
different imatinib resistance mutations have been
described affecting more than 55 amino acid residues in
BCR-ABL.7,18,20-24,27-30 The great majority of the almost 100
reported resistance mutations can only be detected in very
few patients. However, some mutations are more com-
mon, among them mutations at the amino acid residues
G250, Y253, E255, T315, M351, F359, and H396. They
account for approximately 70% of all mutations identified
in resistant patients. Patients developing imatinib resist-
ance mutations have a lower progression free and overall
survival.31,32

In chronic phase CML, mutations are the most frequent
resistance mechanism overall and can be detected in
about 40-59% of cases of secondary resistance.33-37

Mutations are less frequent in cases of primary resistance
in chronic phase CML and were reported in 24% of
cases.37,38 In contrast, the vast majority of patients with
CML blast crisis and Ph+ ALL and imatinib resistance
display resistance mutations.39,40

Most mutations identified in imatinib resistant patients
are located within the ABL kinase domain. They lead to
structural changes of the kinase domain so that imatinib is
no longer able to prevent ATP from binding to the ATP
pocket while at the same time, the kinase activity is
retained. Based on the mechanism of resistance conferred
by these mutations, they can be classified into two distinct
groups:
1. Imatinib-contact positions, such as Y253, T315, and
F317. This class of mutations affects amino acids,
which are directly involved in binding of the drug.
Mutations at these positions thus directly impede drug
binding.

2. Mutations that destabilize the inactive conformation
of BCR-ABL. These mutations include exchanges at
positions located within the activation loop, such as
H396 and M388, or mutations of SH2-contact posi-
tions, such as M351. This second class of mutations
most likely shifts the equilibrium of the kinase from
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Figure 1. The position of threonine 315 (marked in blue, left) in Bcr-Abl relative to bound imatinib is depicted. Exchange
of the compact amino acid isoleucine at position 315 to the bulkier amino acid isoleucine (marked in red on the right)
leads to a strong steric hindrance. Picture is a courtesy of Darren R. Veach, MSKCC,NY.



an inactive towards an active state. Since imatinib
most efficiently binds to the inactive conformation of
the kinase with the activation loop in a closed posi-
tion,19 access of imatinib to the ATP-binding site is
impaired.20,24,41

Besides the mutations in the kinase domain described
above, in rare cases, imatinib resistance mutations outside
of the kinase domain have been described.42 These muta-
tions are localized in the linker, SH2, SH3, and Cap
domains adjacent to the kinase domain and were first
identified in an in vitro resistance screen43 and subse-
quently in few cases of imatinib resistant patients in a
study performing sequence analysis outside of the kinase
domain in imatinib resistant patients.42 These domains
have been reported to inhibit the kinase domain44 and thus
mutations in this region can enhance kinase activity.
T212R was identified in an imatinib resistant patient and
also mediated tyrosine kinase inhibitor resistance in vitro.
Although mutations outside the kinase domain seem to be
very rare, they may be responsible for resistance in
patients in which a typical mutation in the kinase domain
cannot be detected. 
Mutations directly affecting imatinib binding (class I
mutations) usually lead to strong imatinib resistance in
most cases. Examples are T315I, Y253H, and E255V.18,20

In contrast, mutations, which stabilize the inactive con-
formation (class II mutations), such as H396P, often lead
to moderate imatinib resistance only.20,24,41 Therefore, the
type of mutation can affect the therapeutic management in
case of imatinib resistance. Increasing the dose of ima-
tinib may be sufficient to overcome resistance due to a
moderately class II resistant BCR-ABL mutation but will
not be sufficient to block a strong class I resistance muta-
tion. Therefore, TKI IC50 values for different resistance
mutations determined in vitro, as shown in Table 1, might
be of help in choosing an effective second line therapy. 
Resistance mutations have also been grouped based

upon the region of the kinase domain in which the muta-
tion occurred. Frequently affected regions include single
amino acid residues, which directly interact with the drug,
such as the “gatekeeper” position T315. Other domains
frequently affected by mutations include the activation
loop (A-loop), the ATP phosphate-binding loop (P-loop),
and the C-Helix. However, in contrast to the categoriza-
tion in class I and class II mutations described above, the
mere position of an exchange does not allow to estimate
the degree of resistance. As an example, the class of P-
loop mutations include both moderate (G250A, Q252H,
E255D), as well as strong imatinib resistance mutations
(G250E, Y253H, E255V).45

Mutations associated with second-generation
inhibitors

Most mutations described above have been identified
and characterized in the setting of imatinib resistance.
The second-generation tyrosine kinase inhibitors dasa-
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Figure 2. The crystal structure of the BCR-ABL kinase
domain is shown in purple, imatinib in green and common
imatinib resistance mutation are highlighted in red and
marked by an arrow. Many mutations affect amino acid
residues directly involved in binding oft the drug (class I
mutations) whereas other positions are not in direct con-
tact with imatinib and modulate the structure oft the bind-
ing pocket (class II mutations).

Table 1. Cellular IC50-values of frequently observed imatinib
resistance mutations for imatinib, nilotinib, and dasatinib.
IC50-values are based on studies performed in cell lines,
which express BCR-ABL mutations that were identified in
patients with CML or Ph+ ALL and resistance to imatinib
cited in the manuscript.

Imatinib Nilotinib                Dasatinib

IC50 factor IC50 factor IC50 factor
[mM] IC50 wt [nM] IC50 wt [nM] IC50 wt

Wild-type 0.4 - 25 - 1 -

P-loop
M244V 2.3 5.8 67 2.7 1.3 1.3
L248V 1.5 3.8 102 4.2 NR -
G250A 1.3 3.3 65 2.6 NR -
G250E 3.9 7.5 145 5.8 1.8 1.8
Q252H 1.2 3 67 2.7 3.4 3.4
Y253F 9 22.5 125 5 1.4 1.4
Y253H >10 >25 700 28 1.3 1.3
E255K 10 25 566 23 5.6 5.6
E255V >10 >25 681 27 11 11

C-helix
D276G 1.5 3.8 69 2.8 NR -
F311L 1.3 3.25 23 1 1.3 1.3
T315I >10 >25 >10.000 >400 >5.000 >5.000
T315S 3.8 9.5 NR - NR -
F317L 1.5 3.8 80 3.2 7.4 7.4

SH2-contact
D325N 1.5 3.8 25 1 NR -
S348L 0.7 1.4 26 1 NR -
M351T 1.3 3.25 33 1.3 1.1 1.1
E355G 0.4 1 47 1.9 NR -
F359C 1.2 3 291 12 NR -
F359V 1.2 3 161 6.4 2.2 2.2

A-loop
L387F 1.1 2.8 39 1.6 NR -
L387M 1 2.5 49 2 2 2
H396P 2.5 6.25 41 1.6 0.6 1
H396R 1.75 4.4 41 1.6 1.3 1.3



tinib and nilotinib are active in imatinib resistant disease,
including patients with BCR-ABL kinase mutations with
the notable exception of T315I.46,47 Given first line in
chronic phase CML, both compounds compare favorably
to imatinib with respect to response rates at a follow-up
of 24 months.10,48 In vitro studies suggest a narrowed, but
partially overlapping spectrum of resistance mutations
with the novel inhibitors compared with imatinib (Table
1).49-53 As clinical data and follow up times with second-
generation inhibitors in first and second line therapy
mature, a specific pattern of resistance mutations in
patients has emerged that is associated with resistance to
dasatinib and nilotinib. 
Clinical studies demonstrated that mutations identified

in vitro (Q252H, E255K/V, V299L, F317L, and T315I
for dasatinib; Y253H/F, E255K/V, F311I, T315I, and
F359C/V for nilotinib) were associated with less favor-
able response rates, and also emerged at the time of dis-
ease progression receiving second line treatment.54-56 The
mutations F317L/I/C/V, V299L, T315A, and T315I for
dasatinib, and the mutations Y253H, E255K/V,
F359V/C, and T315I for nilotinib have been classified as
SGI (second generation inhibitor) clinically relevant
mutations by most investigators.57 This set of mutations
also emerged as newly acquired mutations with dasatinib
or nilotinib as 2nd or 3rd TKI, and in patients receiving
nilotinib or dasatinib as first line therapy.9,10,58

Interestingly, studies investigating nilotinib or dasatinib
in the second line setting could demonstrate that patients
already harboring imatinb resistance mutations at the
start of second line therapy had a greater risk of develop-
ing additional mutations.55,58 This indicates that there is a
subset of patients with a larger risk to develop resistant
mutations due to enhanced genetic instability of the
BCR-ABL oncogene. 

Resistance mutations occurring during
sequentially TKI therapy

Many patients are treated with a sequence of three or
more Abl TKIs. The frequency of resistance mutations
increases with sequential TKI therapy and was found in
one study in 83% of cases.58 Clinical data suggest that
this therapeutic approach is associated with the emer-
gence of specific mutational patterns, like selection for
the pan-resistant T315I mutation and acquisition of addi-
tional, drug-specific mutations that in some cases emerge
in the form of compound mutations, i.e., several muta-
tions on the same BCR-ABL transcript, or multiple muta-
tions, i.e., several mutations in different disease clones in
one patient.55,58-60 It has been suggested that compound
mutations modulate the response to inhibitors in unex-
pected ways, thereby making prediction of response
more complex.57 Multiple mutations emerging in patients
during sequential TKI therapy might be compound muta-
tions in sequentially resistant cell clones, making
sequential monotherapy a much less effective choice for
these patients. A different study identified a poor risk
subgroup of imatinib resistant CML patients with multi-
ple mutations detected by sensitive mutation analysis,
but not by conventional sequencing.61 The presence of
multiple mutations adversely affected response to second
line nilotinib or dasatinib and favored the emergence of

new mutations as detected by standard sequencing, with
10 out of 25 cases harboring more than one mutation.
Therapeutic strategies minimizing the occurrence of
resistance may consist in upfront combination therapy of
several TKIs, combination therapy with interferon or
first line therapy with nilotinib or dasatinib.
Cell-based in vitro assays may help to study the poten-
tial resistance mutation pattern emerging after differently
ordered sequential TKI treatments and to study the
impact of compound mutations on drug sensitivity. A
recent study aimed at depicting the clinical approach of
sequential inhibitor therapy in vitro, using a modified,
cell-based screening model (Bauer et al., in preparation).
The results revealed significant differences in response
characteristics and evolution of individual mutations
depending on the order and concentration of nilotinib
and dasatinib sequentially administered in identical
replicates of imatinib resistant cell lines. Sequential TKI
monotherapy in vitro was more often associated with
step-wise acquisition of double and triple mutations
compared with acquisition of the pan-resistant T315I
mutation. The composition of compound mutations
depended on inhibitor type and order of application. This
growth/resistance behavior in vitro is reminiscent of the
development of multidrug-resistant bacterial strains and
is compatible with a “fertile ground” process with step-
by-step acquisition of additional mutations in one disease
clone.  

Which second line therapy should be selected
in patients with resistance mutations?

Correlation of mutational status and clinical outcome
indicate that the in vitro sensitivity of a certain mutation
towards a second-generation inhibitor predicts for a
greater chance to achieve a CCyR after imatinib fail-
ure.56,62,63 Another study found such a correlation for some
but not all mutations.54 In addition, recently a paper cor-
related clinical trial data with published in vitro IC50 val-
ues, which had been adjusted to the peak plasma levels
achievable with nilotinib and dasatinib.64 This study
found only a poor correlation of adjusted IC50 values and
clinical responses for many mutations, indicating that
mutation analysis not in all cases can predict treatment
outcome. This is probably due to the fact that in addition
to the type of mutation, drug influx and efflux and indi-
vidual pharmacogenetics also play an important role for
the response to a second line TKI. Thus, treatment choice
in the second line setting cannot be based solely on IC50
values determined in vitro. On the other hand, a small
subset of mutations clearly predict for clinical outcome
in the second line setting.57 It is clear that presence of
T315I is associated with lack of response to nilotinib and
dasatinib. In addition, mutations at F317 and V299 are
associated with a poorer response to dasatinib, whereas
mutations at Y253, E255, and F359 are associated with a
lower response to nilotinib.57 Therefore, in these few
selected cases, second line therapy should be based on
the sensitivity of the mutations and chosen accordingly.
In the vast majority of cases, however, second line ther-
apy can be selected according to pre-existing comorbidi-
ties or personal preference.
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T315I
T315I stands out among the resistance mutations, as
BCR-ABLT315I is the only mutation, which does not
respond to any of the currently approved TKIs (Table 1).
This has led to an intensive search for third generation
inhibitors which either are able to block the ATP binding
pocket despite the presence of the bulkier isoleucine at
position 315, such as ponatinib or allosteric inhibitors
which do not block the ATP pocket (DCC-2036).65-67

Ponatinib has produced impressive responses in T315I
mutated patients in a phase I/II trial.68 Although recruit-
ment in the ponatinib trials is completed, this drug can be
obtained in many European countries within a compas-
sionate use program. DCC-2036 is currently under inves-
tigation in a phase I trial. In addition, other drugs have
shown activity in T315I mutated patients, such as the
plant alkaloid omeacetaxine in a phase II trial.69-73 The
action of this drug is not yet known and it displays signif-
icant myelotoxicities. Since approved drugs for T315I
mutated patients are not available at this time, allogeneic
stem cell transplantation should be considered to improve
the prognosis of these patients. If this is not an option,
these patients whenever possible should be treated within
a clinical trial with compounds with documented activity
against T315I mutated Abl.

Mutational analysis

An ELN consensus paper recommends mutational
analysis in any patient with CP-CML with suboptimal
response or failure to respond to imatinib according to the
ELN criteria, or after loss of a previously achieved CHR,
CCyR, or MMR. In addition, mutational analysis is rec-
ommended at any time prior to changing therapy.4

Different methods are currently used for the detection
of BCR-ABL kinase domain mutations, and their sensitiv-
ity ranges from lower than 0.01 to 20%. DHPLC (dena-
turing high-performance liquid chromatography)-based
methods are utilized in many laboratories since they offer
the advantage of high throughput capacity screening for
multiple mutations at one time.74-76 Sensitivity is in the
range of 0.1 to 10%. Mutations detected by HPLC are
confirmed by conventional direct sequencing. The sensi-
tivity of conventional direct sequencing is in the range of
20%.28 Both methods may not pick up mutations only
present in a subset of cells. Whether these low level muta-
tions contribute to disease prognosis is a matter of debate.
Several investigators found level mutation not correlated
with event-free or overall survival or with response to
TKI.23,24,77-80 Thus, the presence of a resistance mutation at
low level does not mean that the affected disease clone
will be selected in the presence of TKI.
Highly sensitive methods include allele-specific
(ASO)-PCR, DHPLC/wave technology, SSCP, PCR-
RFLP, or next generation sequencing technologies.
However, a recent comparison of these non-standardized
techniques in different laboratories showed a great vari-
ability in the detection of low-level mutations in a given
sample.81 Therefore, direct sequencing seems sufficiently
sensitive to detect clinically significant mutant leukemic
subpopulations, and in the moment still can be considered
as the technology of choice. Detection of low-level

mutant disease clones in a patient without evidence for
disease progression may have prognostic impact in the
future but cannot be recommended routinely at the
moment.61,82

Resistance mutations in other malignancies

CML is not only a model disease for the development
of TKI but also a pacemaker disease to explore mecha-
nisms of TKI resistance. In this context, similar mutations
conferring resistance to kinase inhibitors were also iden-
tified in several other malignancies. Imatinib resistance
mutations were identified in FIP1L1-PDGFRa in patients
with hypereosinophilic syndrome.45,83 and in cKit in
patients with gastrointestinal stromal tumors (GIST).84,85

In addition, a resistance mutation in the kinase domain of
FLT3-ITD in an AML patient treated with the kinase
inhibitor PKC412 has been described (86). Similarly, in
patients with non-small cell lung cancer (NSCL) treated
with the kinase inhibitor gefitinib, an exchange of threo-
nine at position 790 to methionine in the epidermal
growth factor receptor (EGFR) was reported.87,88

Mutations in the EGFR receptor even seem to account for
the majority of cases of secondary resistance in gefitinib
and erlotinib treated NSCLC patients.89 Interestingly, the
pattern and the resistance mechanisms of mutations iden-
tified in other oncogenic kinases and malignancies
remarkably resemble the situation found in TKI resistant
CML patients. T790M found in TKI resistant NSCLC
patients, cKit/T670I found in TKI resistant GIST, and
also FIP1L1-PDFGRa/T674I found in TKI resistant
patients with hypereosinophilic syndrome are all homolo-
gous to the position T315 in the Abl kinase domain. Thus,
many lessons learned in the past concerning resistance
mutations in CML might be extrapolated to other malig-
nancies.
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